振动、波动学基础选择题及参考答案

合集下载

大学物理复习题答案(振动与波动)

大学物理复习题答案(振动与波动)

大学物理1复习题答案一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内)1.一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。

将它们拿到月球上去,相应的周期分别为'T 1和'T 2。

则有 ( B )A .'T T >11且 'T T >22B .'T T =11且 'T T >22C .'T T <11且 'T T <22D .'T T =11且 'T T =222.一物体作简谐振动,振动方程为cos 4x A t ⎛⎫=+⎪⎝⎭πω,在4Tt =(T 为周期)时刻,物体的加速度为 ( B )A. 2ω B 。

2ω C 。

2ω D2ω3.一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A -,且向x 轴的正方向 运动,代表此简谐振动的旋转矢量图为 ( D )AAAAAAC)AxxAAxA B C D4。

两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为)cos(1αω+=t A x .当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 ( B )A. )π21cos(2++=αωt A x B. )π21cos(2-+=αωt A x . C 。

)π23cos(2-+=αωt A x D. )cos(2π++=αωt A x . 5.波源作简谐运动,其运动方程为t y π240cos 100.43-⨯=,式中y 的单位为m ,t 的单位为s ,它所形成的波形以s m /30的速度沿一直线传播,则该波的波长为 ( A )A .m 25.0B .m 60.0C .m 50.0D .m 32.06.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为: ( B )A .cos x t ππ⎛⎫=+ ⎪⎝⎭22233B .cos x t ππ⎛⎫=+ ⎪⎝⎭42233C .cos x t ππ⎛⎫=- ⎪⎝⎭22233D .cos x t ππ⎛⎫=- ⎪⎝⎭42233二. 填空题(每空2分)1. 简谐运动方程为)420cos(1.0ππ+=t y (t 以s 计,y 以m 计),则其振幅为 0.1 m ,周期为 0。

大学物理 振动与波、波动光学练习题

大学物理 振动与波、波动光学练习题

06振动与波、波动光学练习题 一、选择题 1 一物体作简谐振动,振动方程为)4cos(πω+=t A y在4T t =(T 为周期)时刻,物体的加速度为 [ ]2222321)(,321)(,221)(,221)(ωωωωA D A C A B A A -- 2 两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为)cos(1αω+=t A y 。

当第一个质点从相对平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为 [ ])cos()(),23cos()()2cos()(),2cos()(2222παωπαωπαωπαω++=-+=-+=++=t A y D t A y C t A y B t A y A 3一质点沿y 轴作简谐振动,振动方程为)SI (),32cos(1042παπ++⨯=-t y ,从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为[ ]s 61)(s,31)(s,21)(s,41)(s,81)(E D C B A 4 已知两个简谐振动曲线如图所示,1x 相位比2x 的相位 [ ]ππππ超前,落后,超前,落后)()(2)(2)(D C B A5题图 7题图5 一质点作简谐振动,周期为T 。

质点由平衡位置向X 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为 [ ],8)(6)(12)(4)(T D T C T B T A ,,, 6 在下面几种说法中,正确的说法是: [ ](A )波源不动时,波源的振动周期与波动的周期在数值上是不同的,(B )波源振动的速度与波速相同,(C) 在波传播方向上的任一质点的振动相位总是比波源的相位滞后,(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前。

7一平面简谐波,沿X 轴负方向传播,角频率为ω,波速为u 。

设4T t =时刻的波形如图所示,则该波的表达式为: [ ]])(cos[)(),(cos )(]21)(cos[)(),(cos )(πωωπωω++=+=+-=-=ux t A y D u x t A y G u x t A y B ux t A y A 8 当机械波在媒质中传播时,一媒质质元的最大变形量发生在 [ ](A)媒质质元离开其平衡位置最大位移处,(B )媒质质元离开其平衡位置)2/2(A 处,(C )媒质质元在其平衡位置处,(D )媒质质元离开其平衡位置A/2处(A 是振动振幅)。

波动学基础练习及答案

波动学基础练习及答案
(A)波长为 5 m ; (B)波速为10 m ⋅ s−1 ;
(C)周期为 1 秒; (D)波沿 x 正方向传播。 3
(C )
根据公式ω =6 π ,T = 2π / ω =1/3 秒。其它均不正确, λ = 100 / 3, u = 100 (忽略单位),传
播方向为-x。
3.下列叙述中不正确的是
(A)在波的传播方向上,相位差为 2π 的两个质元间的距离称波长;
t (s)
-A
d
O
Px
计算题 1 图
5
解:(1)
yP
=
A cos( 1 2
πt
+
π)

(2)
y
=
Acos[2π( t 4
+
x
− λ
d
)
+
π] ;(3)
y0
=
Acos(
1 2
πt) 。
解:(1)由振动曲线可知,P 处质点振动方程为
yP
=
Acos[( 2π t) 4
+
π] =
A cos( 1 2
πt
+
(D ) 由传播方向可知,时间项为正的 x/u;
设表达式为 y = A cos[ω(t + x / u) + φ] ,依图可知,x=0 处在 t=T/4 时相位为 − π ,代入后相 2
位公式得: φ =- π ,等价于 π 。
5.在同一介质中两列相干的平面简谐波的强度之比是 I1 I 2 = 4 ,则两列波的振幅之比是
2
2
O
(C) π 与 − π ; (D) − π 与 π 。
22
22
u

振动、波动部分答案

振动、波动部分答案

振 动一、填空题: 1、21T ; 2、;10cm A =16-⋅=srad πω;3πϕ=; 3、gl 322π4、(略); 二、计算题: 1、 解:是;假设木块的边长为L ,平衡时浸入水中的高度为h , 平衡时: h gl F mg 2水浮=ρ=在任一位置时:x l l x h h gl F mg F g )(g 222水水水浮=ρρρ-=+-'-=∑ 令 K =g 2水ρl则∑Kx F =-,K 是一个常数,表明木块所作的运动是简谐振动。

由∑=22dtx d m F ,可得木块运动的微分方程为:22dtx d +0/2=m x gl 水ρ令m l /g 22水ρω=,可得其振动周期为:2/22l g m T 水ρπωπ==2、解:(1)要求物体的简谐运动方程,要确定角频率、振幅和初相:110.602.072.0--=⋅==skg m N mk ω再根据2202ωv x A +=由于0,05.000==v m x ,故m x v x A 05.0022020==+=ω初相:00=-=x v tg ωϕ,πϕ或0=,根据已知条件:0=ϕ则简谐振动的方程为:])0.6cos[()05.0(1t s m x -= (2)物体第一次抵达2A 处时,即t A ωcos 2=,故353ππω或=t ,用旋转矢量法,得3t πω=,故:126.0sin -⋅-=-=s m t A v ωω3、解: (1)由题意,假设简谐振动的表达式:)cos(ϕω+=t A x 得速度的表达式:)sin(ϕω+-=wt A v 故:ωA v m ==2103-⨯故:5.110210322=⨯⨯==--Av m ω(2)由速度的表达式可得加速度的表达式为:)cos(2ϕωω+-=t A a则:2ωA a m ==2222/105.45.1102s m --⨯=⨯⨯ (3)振动的表达式为:)25.1cos(1022π-⨯=-t x4、解: 如图所示,可得两个分振动分别为:)2cos(08.01ππ-=t x )2cos(04.02ππ+=t x故:合振动的方程为:)2cos(04.021ππ-=+=t x x x5、解:由旋转矢量法解。

振动、波动练习题及答案

振动、波动练习题及答案

振动、波动练习题及答案振动、波动练习题⼀.选择题1.⼀质点在X 轴上作简谐振动,振幅A=4cm。

周期T=2s。

其平衡位置取作坐标原点。

若t=0 时刻质点第⼀次通过x= -2cm 处,且向X 轴负⽅向运动,则质点第⼆次通过x= -2cm 处的时刻为()。

A 1sB 2sC 4sD 2s332.⼀圆频率为ω的简谐波沿X 轴的正⽅向传播,t=0 时刻的波形如图所⽰,则t=0 的波形t=0 时刻,X 轴上各点的振动速度υ与X轴上坐标的关系图应()3.图⽰⼀简谐波在 t=0 时刻的波形图,波速υ =200m/s ,则图中O 点的振动加速度的表达式为()2A a 0.4 2 cos( t ) 2 23B a 0.4 2 cos( t )22C a 0.4 2cos(2 t ) 4.频率为 100Hz ,传播速度为 300m/s 的平⾯简谐波,波线上两点振动的相位差为 3 ,则这两点相距()A 2mB 2.19mC 0.5mD 28.6m5.⼀平⾯简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最⼤位置处的过程中,()。

A 它的动能转换成势能它的势能转换成动C 它从相邻的⼀段质元获得能量其能量逐渐增⼤Da20.4 2 cos(2 t2)υ (m/s)Bυ (m/s)DX(m)D 它把⾃⼰的能量传给相邻的⼀段质元,其能量逐渐减⼩6.在下⾯⼏种说法中,正确的说法是:()。

A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播⽅向上的任⼀质点振动位相总是⽐波源的位相滞后D 在波传播⽅向上的任⼀质点振动位相总是⽐波源的位相超前7.⼀质点作简谐振动,周期为T,当它由平衡位置向X 轴正⽅向运动时,从⼆分之⼀最⼤位移处到最⼤位移处这段路程所需要的时间为()。

A TBTCTDT4 12 6 88.在波长为λ的驻波中两个相邻波节之间的距离为()。

A λB 3 λ/4C λ/2D λ /49.在同⼀媒质中两列相⼲的平⾯简谐波的强度之⽐I1I 4是,则两列波的振幅之⽐是:()A A1 4 B1 2 CA1 16 DA11A2 A2 A2 A2 410.有⼆个弹簧振⼦系统,都在作振幅相同的简谐振动,⼆个轻质弹簧的劲度系数K 相同,但振⼦的质量不同。

振动、波动部分答案(新)

振动、波动部分答案(新)

大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。

*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。

练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。

若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。

2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。

3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。

已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。

大连工业大学大学物理学振动与波动题库

(A) x 0 .12 cos ( t 4、机械波的表达式为 y 0.05cos 6πt 0. 06πx m ,则 ( (A) 波长为100 m (B) 波速为10 m·s-1 ) )
(C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、 两分振动方程分别为 x1=3cos (50πt+π/4) ㎝ 和 x2=4cos (50πt+3π/4)㎝, 则它们的合振动的振幅为 ( (A) 1 ㎝ (B)3 ㎝ (C)5 ㎝ (D)7 ㎝ 6、一平面简谐波,波速为 =5 cm/s,设t= 3 s时刻的波形 如图所示,则x=0处的质点的振动方程为 ( - (A) y=2×10 2cos (πt/2-π/2) (m) - (B) y=2×10 2cos (πt + π) (m) -2 (C) y=2×10 cos(πt/2+π/2) (m) -2 (D) y=2×10 cos (πt-3π/2) (m) )
y
u
A X -A
17.一平面简谐波,沿 X 轴负方向传播,波长λ=8 m。已知 x=2 m 处质点的振动方程为 y 4 cos(10t
5 x ) ; 8 12 2 (C) y 4 cos(10 t x ); 4 3
(A)
) , 则该波的波动方程为( 6
(B)
20.在驻波中,两个相邻波节间各质点的振动(
1、一个弹簧振子和一个单摆,在地面上的固有振动周期分别为 T1 和 T2,将它们拿到月球上去,相应 的周期分别为 1 和 2 ,则它们之间的关系为 1 T1 且 2 T2 。 。
2、一弹簧振子的周期为T,现将弹簧截去一半,下面仍挂原来的物体,则其振动的周期变为 3、一平面简谐波的波动方程为 y 0.08cos 4 πt 2 πx

振动和波动要点习题

振动和波一、选择题1.(3分,答D )已知一平面简谐波的表达式为cos()y A at bx =-(,a b 为正值常量),则 (A )波的频率为a (B )波的传播速度为/b a (C )波长为/b π (D )波的周期为2/a π2.(本题3分,答B )一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[]3. (3分,答B )一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点,若t =0时刻质点第一次通过x =-2cm 处,且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为(A) 1s (B) (2/3)s (C)(4/3)s (D) 2s4. (3分,答D )一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期T 2等于 (A) 2 T 1 (B) T 1(C)T 12/ (D) T 1 /2 (E) T 1 /45.(本题3分,答A )轴一简谐波沿Ox 轴正方向传播,t = 0 时刻的波形曲线如图所示,已知周期为 2 s ,则 P 点处质点的振动速度v 与时间t 的关系曲线为:6.(3分,答B )一平面简谐波在弹性媒质时,某一时刻媒质中某质元在负最大位移处,则它的能量是(A ) 动能为零 势能最大 (B )动能为零 势能为零 (C ) 动能最大 势能最大 (D )动能最大 势能为零v (m/s)O 1 t (s)ωA(C)· v (m/s)O1 t (s)ω A(A)·1 v (m/s)t (s)(D)O-ω A1 v (m/s) t (s)-ωA(B) O ··x o A x A 21 ω(A)A 21ω(B) A 21-(C) (D)o oo A 21-xxxAxAxAxω ω2O 1 y (m)x (m)t =0 A u图17.(3分,答D )沿相反方向传播的两列相干波,其波动方程为y 1=A cos2π (νt -x /λ)y 2=A cos2π (νt + x /λ) 叠加后形成的驻波中,波节的位置坐标为(A)x =±k λ.(B)x =±k λ/2 .(C)x =±(2k +1)λ/2 .(D)x =±(2k +1)λ/4 . 其中k = 0 , 1 , 2 , 3…….8.(3分,答D )如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为y =A cos(ω t+φ0),则B 点的振动方程为 (A )y =A cos[ω t-(x/u )+φ0] (B )y =A cos ω[ t+(x/u )] (C )y =A cos{ω [t-(x/u ) ]+φ0} (D )y =A cos{ω[ t+(x/u ) ]+φ0}9.(3分,答D )一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A )它的动能转换成势能. (B )它的势能转换成动能. (C )它从相邻的一段质元获得能量,其能量逐渐增大. (D )它把自己的能量传给相邻的一段质元,其能量逐渐减小. 10.(3分,答B )在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4 (B )λ/2 (C )3λ/4 (D )λ11.(3分,答C )某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是 (A )0 (B )/2π (C )π (D )5/4π12.(本题3分,答B)在驻波中,两个相邻波节间各质点的振动(A )振幅相同,相位相同 (B )振幅不同,相位相同 (C )振幅相同,相位不同 (D )振幅不同,相位不同 二、填空题1. (3分)已知一个简谐振动的振幅A=2cm, 角频率14s ωπ-=,以余弦函数表达式运动规律时的A -Ayxλ λ/2O ··a b · · · · · · · · ··x 2A A/2x 1初相12φπ=,试画出位移和时间的关系曲线(振动图线) 2.(4分)两个简谐振动方程分别为x 1=Acos(ω t ) ;x 2=Acos(ω t +π/3) 在同一坐标上画出两者的x-t 曲线.3. (3分)有两相同的弹簧,其劲度系数均为k .(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为;(2)把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为.[答案:(1)22m k π,(2)22mkπ] 4.(4分)一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的劲度系数,振子的振动频率.[答案:2210N/m,1.6Hz ⨯]5.(3分)一平面机械波沿x =-1m 轴负方向传播,已知处质点的振动方程cos()y A t ωϕ=+,若波速为u ,求此波的波函数.[答案:cos{[(1)/]}y A t x u ωϕ=+++]6.(3分)一作简谐振动的振动系统,振子质量为2kg ,系统振动频率为1000Hz ,振幅为0.5cm ,则其振动能量为.(答案:29.9010J ⨯ )7.(3分)两个同方向同频率的简谐振动211310cos(),3x t ωπ-=⨯+221410cos()(SI)6x t ωπ-=⨯-,它们的合振幅是. (答案:2510m -⨯ )8.(3分)一平面简谐波沿Ox 轴正方向传播,波动表达式为cos[(/)/4]y A t x u ωπ=-+,则1x L =处质点的振动方程是;2x L =-处质点的振动和1x L =处质点的振动相位差为21φφ-=. (答案:1cos[(/)/4]y A t L u ωπ=-+,12()/L L u ω+)9.(5分)一余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在该时刻的运动方向.A 向下 ,B 向上 ,C 向上.10. (本题4分)一平面简谐波的表达式cos (/)cos(/)y A t x u A t x u ωωω=-=-其中/x u 表示,/x u ω表示,y 表示.[答案:波从坐标原点传至x 处所需时间(2分),x 处质点此原点处质点滞后的相位(1分),t 时刻x 处质点的振动位移(1分)]11. (本题3分)如图所示,两相干波源S 1和S 2相距为3λ/4,λ为波长,设两波在S 1 S 2连O Cyxu · · · A B线上传播,它们的振幅都是A ,并且不随距离变化,已知在该直线上S 1左侧各点的合成波强度为其中一个波强度的4倍,则两波源应满足的相位条件是__π/2_ 12. (3分)一驻波的表达式为y =2A cos(2πx/λ) cos(2πνt ),两个相邻波 腹之间的距离是.(答案:λ/2) 三、计算题1. (5分)一质点作简谐运动,其振动方程为110.24cos()()23x t SI ππ=+,试用旋转矢量法求出质点由初始状态运动到x =-0.12 m ,v <0的状态所经过的最短时间. 解:旋转矢量如图所示.图3分 由振动方程可得π21=ω,π=∆31φ1分667.0/=∆=∆ωφt s 1分2(本题10分)一质量m =0.25kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点,弹簧的劲度系数k =25N/m.(1)求振动的周期T 和频率ω. (2)如果振幅A =15cm ,t =0时物体位于x =7.5cm 处,且物体沿x 轴反方向运动,求初速度v 0及初相φ.(3)写出振动的数值表达式. 解:(1)12/10k m s ωπ-== (2分)2/0.63T s πω== (1分)(2) A=15cm , 在t =0时,07.5cm x =,00v < 由2200(/)A x v ω=+得2200 1.3m/s v A x ω=--=- (2分)100(/)/3/3tg v x φωππ-=-=或400,/3x φπ>∴=(3分)(3)21510cos(10/3)(SI)x t π-=⨯+(2分)3.(10分)在一轻弹簧下端悬挂0100g m =砝码时,弹簧伸长8cm. 现在这根弹簧下端悬挂0250g m =物体,构成弹簧振子,将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 的初速度(令这时t=0).选x 轴向下,求振动方程的数值式.解:k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯=N/mx (m) ωωπ/3π/3t = 0t0.12 0.24 -0.12 -0.24 OAAO xS 1S 211s 7s 25.025.12/--===m k ω(2分) 5cm )721(4/2222020=+=+=ωv x A cm (2分) 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad (3分))64.07cos(05.0+=t x (SI) (1分)4.(8分)在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长0 1.2cm l =而平衡.再经拉动后,该小球在竖直方向作振幅为2cm A =的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数(图参考上题)0/k mg l = 选平衡位置为原点,向下为正方向. 小球在x 处时,根据牛顿第二定律得202()d x mg k l x m dt -+=将k 代入整理后得 220d x g x dt l =-所以振动为简谐振动,其角频率为0/28.589.1(rad/s)g l ωπ===(5分)设振动表达式为 c o s ()x A t ωφ=+ 由题意:t=0时,200210m0x A v -==⨯=解得:0φ=2210cos(9.1)x t π-∴=⨯m (3分)5.(10分)在一轻弹簧下端悬挂m 0=100g 的砝码时,弹簧伸长8cm,现在这根弹簧下端悬挂m =250g 的物体, 构成弹簧振子. 将物体从平衡位置向下拉动4cm,并给以向上的21cm/s 的初速度(这时t =0) ,选x 轴向下,求振动方程的数值式. 解:物体受向下的重力和向上的弹性力.k=m 0g/∆l , x 0=4×10-2m, v 0=-21×10-2m/sω=()m l g m m k Δ0==7s -1A=22020ω/v x +=5×10-2m因A cos ϕ=4×10-2m, A sin ϕ=-v 0/ω=3×10-2m,有 ϕ=0.64rad 所以x=5×10-2cos(7t +0.64) (SI)6.(本题5分)一质量为0.2kg 的质点作简谐振动,其振动方程为10.6cos(5)(SI)2x t π=-求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力.解:(1)003.0sin(5)()0, 3.0m/s 2dx v t SI t v dt π==--==(2分) (2)2F ma m x ==-ω12x A =时, 1.5N F =-(无负号扣1分) (3分) 7.(5分)一平面简谐波沿x 轴正方向传播,波速为1m/s ,在x 轴上某质点的振动频率为1Hz ,振幅为0.01m. t = 0时该质点恰好在正最大位移处,若以该质点的平衡位置为x 轴的原点. 求此一维简谐波的表达式.解. 0.01cos[2()](m)y t x =-π8.(本题10分)某质点作简谐振动,周期为2s ,振幅为0.06m ,t =0时刻,质点恰好处在负最大位移处,求(1)该质点的振动方程.(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长. 解:(1)振动方程 00.06cos(2/2)0.06cos()(SI)y t t ππππ=+=+3分 (2)0.06cos[((/))0.06cos[(/2))(SI)y t x u t x ππππ=-+=-+ 4分(3)波长4m uT λ==9.(10分)一列平面简谐波在以波速5m/s u =,沿x 轴正向传播,原点O 处质点的振动曲线如图所示.1)求解并画出25cm x =处质元的振动曲线 2)求解并画出3s t =时的波形曲线 解:1)原点O 处质元的振动方程为211210cos(),(SI)22y t ππ-=⨯-(2分)波的表达式 (2分)211210cos((/5)),(SI)22y t x ππ-=⨯--x =25m 处质元的振动方程21210cos(3),(SI)2y t ππ-=⨯-振动曲线如右y-t 图 (2分)2)t=3s 时的波形曲线方程2210cos(/10),(SI)y x ππ-=⨯-(2分)波形曲线见右y-x 图 (2分)10.(10分)某质点作简谐振动,周期为2s ,振幅为0.6m ,t =0时刻,质点恰好处在负最大4O2 y(cm)t (s)2位移处,求(1)该质点的振动方程;(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长.解:(1) 振动方程)22cos(06.00π+π=ty )cos(06.0π+π=t (SI) (3分) (2) 波动表达式])/(cos[06.0π+-π=u x t y (4分)])21(cos[06.0π+-π=x t (SI)(3) 波长4==uT λm (3分)11.(5分)如图所示,一简谐波向x 轴正向传播,波速0500/,1,u m s x m P ==点的振动方程为10.03cos(500)(SI)2y t ππ=-. (1) 按图所示坐标系,写出相应的波的表达式; (2) 在图上画出t=0时刻的波形曲线.解:(1) 2m )250/500(/===νλu m 波的表达式 ]/2)1(21500cos[03.0),(λπ--π-π=x t t x y110.03cos[500(1)2/2]0.03cos(500)(SI)22t x t x =π-π--π=π+π-π(3分)(2) t = 0时刻的波形曲线x x x y π=π-π=sin 03.0)21cos(03.0)0,( (SI) (2分)12.(10分)图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图(波向左传播).已知波速为u ,波的周期大于2 s ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φcos 0A =,φωsin 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为)24cos(2/ππ-=νA A 所以244πππ-=-ν,ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI)(2) 波速u = 20 /2 m/s = 10 m/s,波长λ = u /ν = 160 m 波动表达式]21)16016(2cos[π-+π=x t A y (SI) x (m)uP y (m)O-2-112-0.030.03x (m)O160A y (m)8020t =0t =2 s2A。

振动、波动学基础选择题及参考答案

(A) 。
(B) 。
(C) 。
13、一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为 , 。其合成运动的运动方程为 。
14、已知一个简谐振动的振幅 ,圆频率 ,以余弦函数表达运动规律时的初相位 ,试画出位移和时间的关系曲线(振动曲线)。
振动学基础 参考答案
选择题:
1C, 2C, 3B, 4C, 5D, ,6D ,7B, 8C, 9E, 10B, 11B, 12B
(A) 。
(B) 。
(C) 。(D)
11、一沿 轴负方向传播的平面简谐波在 时的波形曲线如图所示,则原点 的振动方程为:
(A) 。
(B) 。
(C) 。(D) 。
12、 一列机械横波在 时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元位置是:
(A) , , , 。
(B) , , , 。
(C) , 。 (D) , 。
填空题:
1、; (SI)
2、
3、4(SI);
4、
5、
6、 b和f ;a和e
7、0; (SI)
9、 ; (SI)
10、 ;
12、(A)
(B)
(C)
13、 (SI)
14、 (SI)
波动学基础
一、选择题:
1、一平面简谐波的波函数为 , 时的波形曲线如左下图所示,则:
(A) 点的振幅为 。
(B)波长为 。
(C) 、 两点间的相位差为 。
5、一简谐波沿 轴正向传播。已知 点的振动曲线如下图,试在它右边的图中画出 时的波形曲线。
6、一列强度为 的平面简谐波通过一面积为 的平面,波速 与该平面的法线 的夹角为 ,则通过该平面的能流是。
7、机械波在媒质中传播过程中,当一媒质质元的振动动能的相位是 时,它的弹性势能的相位是。

物体的振动和波动练习题

物体的振动和波动练习题一、选择题1. 下列哪个不属于机械振动的基本特征?A. 振幅B. 周期C. 频率D. 波长2. 以下哪种波不需要介质传播?A. 机械波B. 横波C. 纵波D. 都需要介质传播3. 以下哪个现象不属于机械波传播中的失能?A. 反射B. 折射C. 干涉D. 散射4. 把频率为30Hz的振动用电路方式表示,需要设备的最小档位是A. 10sB. 1sC. 1msD. 1us5. 振幅越大,波的能量传播速度越快,这一说法A. 对B. 错6. 当一个横波传播时,传播介质上的每一个质点的振动方向A. 垂直于波的传播方向B. 与波的传播方向相同C. 与波的传播方向相反D. 与波的振动方向相同7. 下列不属于机械波的是A. 音波B. 光波C. 水波D. 地震波8. 声音能传播的介质是A. 真空B. 水C. 铁D. 木头9. 长度为0.1m的弦上传播的频率为500Hz的波,其波长为A. 10cmB. 20cmC. 40cmD. 50cm10. 一个在弹簧中传播的波,它所具有的振动特点可以用频率 f 表示。

当频率 f 增大时,振动速度将A. 不变B. 增大C. 减小D. 变为零二、填空题1. 机械波在介质中的传播速度与_________、_________有关。

2. 波长和_________成反比。

3. 波的频率和振动的_________有关。

4. 当光束从水中垂直射入空气时,光的_________发生折射。

5. 在两根相互平行的弹簧上各拧一节,右手拇指指向电流的方向,右手四指的弯曲方向表示_________。

三、简答题1. 请简要说明机械波和电磁波的区别。

2. 请解释频率和周期的概念,并写出它们的单位。

3. 什么是衰减? 请说明衰减对波传播的影响。

4. 什么是驻波? 它是如何形成的?5. 请举例说明机械波的反射和折射现象。

四、计算题1. 一支弦上传播的横波的振动频率为100Hz,波长为0.5m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)振动学基础一、选择题:1、一质量为m 的物体挂在倔强系数为k 的轻弹簧下面,振动园频率为ω,若把此弹簧分割为二等份,将物体m 挂在分割后的一根弹簧上,则振动园频率为:(A )ω2。

(C )ω2。

(C )2ω。

(D )22ω。

2、一质点沿x 轴作简谐振动,振动方程为))(32cos(1042SI t x ππ+⨯=-,从0=t 时刻起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为:(A )s )8/1(。

(B )s )4/1(。

(C )s )2/1(。

(D )s )3/1(。

(E )s )6/1(。

3 (A )s 62.2。

(B )s 40.2。

(C )s 20.2。

(D )s 00.2。

4、已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒,则此简谐振动方程为:(A )cm t x 3232cos(2ππ+=。

(B )cm t x )3232cos(2ππ-=。

(C )cm t x 3234cos(2ππ+=。

(D )cm t x 3234cos(2ππ-=。

(E )cm t x 434cos(2ππ-=。

5、一弹簧振子作简谐振动,总能量为1E ,如果简谐振动动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量1E 变为:(A )4/1E 。

(B )2/1E 。

(C )12E 。

(D )14E 。

6、一物体作简谐振动,振动方程为)2/cos(πω+=t A x 。

则该物体在0=t 时刻的动能与8/T t =(T 为周期)时刻的动能之比为:(A )4:1。

(B )2:1。

(C )1:1。

(D )1:2。

(E )1:4。

7、一质点在x 轴上作简谐振动,振幅cm A 4=,周期s T 2=,其平衡位置取作坐标原点。

若0=t 时刻质点第一次通过cm x 2-=处,且向x 轴负方向运动,则质点第二次通过cm x 2-=处的时刻为: (A )s 1。

(B )s )3/2(。

(C )s )3/4(。

(D )s 2。

8、两个简谐振动的质点方向相同、频率相同,振幅均为A 每当它们经过振幅一半时相遇,且运动方向相反,则两者的相位差φ∆和合振幅A '为:(A )πφ=∆,0='A ; (B )0=∆φ,A A 2='。

(C )3/2πφ=∆,A A ='。

(D )2/πφ=∆,A A 2='。

9、一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的4/1时,其动能为振动总能量的 (A )167。

(B )169。

(C )1611。

(D )1613。

(E )1615。

10、已知一质点沿y 轴作简谐振动。

其振动方程为)4/3cos(πω+=t A y 。

与之对应的振动曲线是:11、当质点以频率υ作简谐振动时,它的动能的变化频率为: (A )υ。

(B )υ2。

(C )υ4。

(D )2/υ。

12、已知两个简谐振动曲线如右图所示。

1x 的相位比2x 的相位 (A )落后2π。

(B )超前2π。

(C )落后π。

(D )超前π。

二、填空题:1、一质点沿x 轴以0=x 为平衡位置作简谐振动。

频率为Hz 25.0,0=t 时m x 37.0-=而速度等于零,则振幅是 ,振动的数学表达式为 。

2、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点。

已知周期为T ,振幅为A 。

-))(c (1)若0=t 时质点过0=x 处且朝x 轴正方向运动,则振动方程为=x 。

(2)若0=t 时质点过2/A x =处且向x 轴负方向运动,则振动方程为=x 。

3、一弹簧振子,弹簧的倔强系数为m N /32.0,重物的质量为kg 02.0,则这个振动系统的固有频率为 ,相应的振动周期为 。

4、一竖直悬挂的弹簧振子,自然平衡时弹簧的伸长量为0x ,此振子自由振动的周期=T 。

5、右图中用旋转矢量法表示了一个简谐振动,旋转矢量的长度为m 04.0,旋转角速度s r a d /4π。

此简谐振动以余弦函数表示的振动方程为=x )(SI 。

6、一水平弹簧简谐振子的振动曲线如图所示。

振子处在位移为零、速度为A ω-、加速度为零和弹性力为零的状态,对应于曲线上的 点。

振子处在位移的绝对值为A 、速度为零、加速度为A 2ω-和弹性力为kA -的状态,则对应于曲线上的 。

7、一简谐振动曲线如右图所示,试由图确定在s t 2=时刻质点的位移为 ,速度为 。

9、一简谐振动的旋转矢量图如图所示,振幅矢量长cm 2,则该简谐振动的初相位为 ,振动方程为 。

10、一质点作简谐振动,其振动曲线如右图所示,根据此图,它的周期=T ,用余弦函数描述时初相位=φ 。

12、在0=t 时,周期为T 、振幅为A 的单摆分别位于图)(a 、)(b 、)(c 三种状态,若选择单摆的平衡位置为x 轴的原点,x 轴指向正右方,则单摆作小角度摆动的振动表达式(用余弦函数表示)分别为: (A )=x 。

(B )=x 。

(C )=x 。

13、一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为))(4/cos(05.01SI t x πω+=,))(4/3cos(05.02SI t x πω+=。

其合成运动的运动方程为_________________=x 。

14、已知一个简谐振动的振幅cm A 2=,圆频率s rad /4πω=,以余弦函数表达运动规律时的初相位2/πφ=,试画出位移和时间的关系曲线(振动曲线)。

振动学基础 参考答案选择题:1C, 2C , 3B , 4C , 5D , ,6D ,7B , 8C , 9E, 10B , 11B , 12B 填空题:1、0.37m ;)2cos(37.0ππ+=t x (SI )2、)232cos(ππ+=t T A x )32cos(ππ+=t T A x 3、4(SI );s 2π 4、gx 02π5、)234cos(04.0ππ+=t x 6、 b 和f ;a 和e 7、0;π3 (SI )9、4π ;)4cos(02.0ππ+=t x (SI )10、3.43s ;π3412、(A ))232cos(ππ+=t T A x (B ))22cos(ππ+=t T A x (C ))2cos(ππ+=t TA x 13、)2cos(0707.0)2cos(205.0πωπω+=+=t t x (SI )-)m 14、24cos(02.0ππ+=t x (SI )波动学基础一、选择题:1、一平面简谐波的波函数为))(3cos(1.0SI x t y πππ+-=,0=t 时的波形曲线如左下图所示,则: (A )O 点的振幅为m 1.0-。

(B )波长为m 3。

(C )a 、b 两点间的相位差为2/π。

(D )波速为s m /9。

2、一简谐波沿Ox 轴传播。

若Ox 轴上1P 和2P 两点相距8/λ(其中λ为该波的波长),则在波的传播过程中,这两点振动速度的(A )方向总是相同。

(B )方向总是相反。

(C )方向有时相同,有时相反。

(D )大小总是不相等。

3、如图所示,一平面简谐波沿X 轴正向传播,已知P 点的振动方程为)cos(0φω+=t A y ,则其波函数为: (A )}]/)([cos{0φω+--=u l x t A y 。

(B )})]/([cos{0φω+-=u x t A y 。

(C ))/(cos u x t A y -=ω。

(D )}]/)([cos{0φω+-+=u l x t A y 。

4、一平面简谐波,沿x 轴负方向传播,圆频率为ω,波速为u ,设4/T 时刻波形如左下图所示,则该波的表达式为:(A ))](cos[u x t A y -=ω。

(B) ]2)(cos[πω+-=u x t A y 。

(C )(cos[u x t A y +=ω (D )])(cos[πω++=uxt A y 。

5、一平面简谐波以波速u 沿x 轴正方向传播,O 为坐标原点。

已知P 点的振动方程为t A y ωcos =,则: (A )O 点的振动方程为)/cos(u l t A y -=ω。

(B )波的表达式为)]/()/([cos u x u l t A y --=ω。

)m )(m )(C )波的表达式为)]/()/([cos u x u l t A y -+=ω。

(D )C 点的振动方程为)/3(cos u l t A y -=ω。

6、如右图所示为一平面简谐波在0=t 时刻的波形图,该波的波速s m u /200=,则P 处质点的振动曲线为:7、一平面简谐波,其振幅为A ,频率为υ,波沿x 轴正方向传播。

设0t t =时刻波形如图所示,则0=x 处质点振动方程为: (A )]2/)(2cos[0ππυ++=t t A y 。

(B )]2/)(2cos[0ππυ+-=t t A y 。

(C )]2/)(2cos[0ππυ--=t t A y 。

(D )])(2cos[0ππυ+-=t t A y 。

8、在下列四个式子中,表示两列相干波波函数(均取国际单位制,式中y 表示质点元沿y 轴方向的振动)的是:(1))01.0(10cos 50x t y -=π。

(2)t x y )01.010cos(50-=。

(3))5.110sin(100x t y -=π。

(4)t x y )5.110sin(50-=π。

(A )(1)(2)。

(B )(2)(4)。

(C )(1)(3)。

(D )(3)(4) 9、已知一平面简谐波的波函数为:)cos(bx at A y --=,(A 、a 、b 为正值),则: (A )波的频率为a ;(B )波的传播速度为ab /;(C )波长为b /π;(D )波的周期为a /2π;(E )波的振幅为A -。

10、图示一简谐波在0=t 时刻的波形图,波速s m u /200=,则P 处质点的振动速度表达式为: (A )))(2cos(2.0SI t v πππ--=。

(B )))(cos(2.0SI t v πππ--=。

)21) 0-)(b)(a)(C)))](2/(2cos[2.0SItvπππ-=。

(D)))](2/3(cos[2.0SItvπππ-=11、一沿x轴负方向传播的平面简谐波在st2=时的波形曲线如图所示,则原点O的振动方程为:(A))](2cos[5.0SItyππ+=。

(B))](22cos[(5.0SItyππ-=。

(C))22cos[(5.0SItyππ+=。

(D))](24cos[(5.0SItyππ-=12、一列机械横波在t时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元位置是:(A)o',b,b,f。

相关文档
最新文档