黄高预录数学

合集下载

黄高预录数学试题

黄高预录数学试题

黄高预录数学试题 Modified by JACK on the afternoon of December 26, 2020绝密★启用前湖北省黄冈中学理科实验班预录考试数学试卷一.选择题(共11小题)1.记号[x]表示不超过x的最大整数,设n是自然数,且.则()A.I>0 B.I<0 C.I=0 D.当n取不同的值时,以上三种情况都可能出现2.对于数x,符号[x]表示不大于x的最大整数.若[]=3有正整数解,则正数a的取值范围是()A.0<a<2或2<a≤3 B.0<a<5或6<a≤7C.1<a≤2或3≤a<5 D.0<a<2或3≤a<5个相同的球,放入四个不同的盒子里,每个盒子都不空的放法有()A.4种 B.6种 C.10种D.12种4.有甲、乙、丙三位同学每人拿一只桶同时到一个公用的水龙头去灌水,灌水所需的时间分别为分钟、分钟和1分钟,若只能逐个地灌水,未轮到的同学需等待,灌完的同学立即离开,那么这三位同学花费的时间(包括等待时间)的总和最少是()A.3分钟B.5分钟C.分钟D.7分钟5.已知实数x满足x2++x﹣=4,则x﹣的值是()A.﹣2 B.1 C.﹣1或2 D.﹣2或16.如图,在等边△ABC中,D为AC边上的一点,连接BD,M为BD上一点,且∠AMD=60°,AM交BC于E.当M为BD中点时,的值为()A.B.C.D.7.如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点E、F.若AD=2,BC=6,则△ADB的面积等于()A.2 B.4 C.6 D.88.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为() A.∠1>∠2 B.∠1<∠2 C.∠1=∠2 D.无法确定9.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.3π C.D.6π10.方程x2+2x+1=的正数根的个数为()A.0 B.1 C.2 D.311.如图,已知∠AOM=60°,在射线OM上有点B,使得AB与OB的长度都是整数,由此称B是“完美点”,若OA=8,则图中完美点B的个数为()A.1 B.2 C.3 D.4二.填空题(共4小题)12.已知x为实数,且,则x2+x的值为.13.满足方程|x+2|+|x﹣3|=5的x的取值范围是.14.多项式6x3﹣11x2+x+4可分解为.15.设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是.三.解答题16.如图,在△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.设点P 的运动时间为x(秒).(1)设△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(2)x为何值时,△PBQ的面积最大?并求出最大值;(3)当点Q在BC上运动时,线段PQ上是否存在一个点T,使得在某个时刻△ACT、△ABT、△BCT的面积均相等(无需计算,说明理由即可).17.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)18.某水库大坝的横截面是如图所示的四边形BACD,期中AB∥CD.了望台PC正前方水面上有两艘渔船M、N,观察员在了望台顶端P处观测渔船M的俯角α=31°,观测渔船N在俯角β=45°,已知NM所在直线与PC所在直线垂直,垂足为点E,PE 长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH的坡度为i=1:,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米(参考数据:tan31°≈,sin31°≈)19.已知关于x的方程,(1)若两根x1,x2满足x1<0<x2,求m的范围;(2)若,求m的值.20.当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”,已知点A(0,5)与点M都在直线y=﹣x+b上,点B,C是“完美点”,且点B在线段AM 上,若MC=,AM=4,求△MBC的面积.21.设p,q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x与函数值y满足:当p≤x≤q时,有p≤y≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.(1)反比例函数y=是闭区间[1,2014]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式;(3)若实数c,d满足c<d,且d>2,当二次函数y=x2﹣2x是闭区间[c,d]上的“闭函数”时,求c,d的值.22.我国是水资源比较贫乏的国家之一,各地采用了价格调控等手段来达到节约用水的目的,某市用水收费的方法是:水费=基本费+超额费+定额损耗费.若每月用水量不超过最低限量a立方米时,只付基本费8元和每月的定额损耗费c元;若用水量超过a 立方米时,除了付同上的基本费和定额损耗费外,超过部分每立方米付b元的超额费.已知每户每月的定额费不超过5元.(1)当月用水量为x立方米时,支付费用为y元,写出y关于x的函数关系式;(2)该市一家庭今年一季度的用水量和支付费用见下表,根据表中数据求a、b、c.月份用水量(m3)水费(元)1 9 92 15 193 22 3323.某市将建一个制药厂,但该厂投产后预计每天要排放大约80吨工业废气,这将造成极大的环境污染.为了保护环境,市政府决定支持该厂贷款引进废气处理设备来减少废气的排放:该设备可以将废气转化为某种化工产品和符合排放要求的气体.经测算,制药厂每天利用设备处理废气的综合成本y(元)与废气处理量x(吨)之间的函数关系可近似地表示为:y=,且每处理1吨工业废气可得价值为80元的某种化工产品并将之利润全部用来补贴废气处理.(1)若该制药厂每天废气处理量计划定为20吨时,那么工厂需要每天投入的废气处理资金为多少元?(2)若该制药厂每天废气处理量计划定为x吨,且工厂不用投入废气处理资金就能完成计划的处理量,求x的取值范围;(3)若该制药厂每天废气处理量计划定为x(40≤x≤80)吨,且市政府决定为处理每吨废气至少补贴制药厂a元以确保该厂完成计划的处理量总是不用投入废气处理资金,求a的值.24.如图,菱形ABCD的边长为6且∠DAB=60°,以点A为原点、边AB所在的直线为x轴且顶点D在第一象限建立平面直角坐标系.动点P从点D出发沿折线DCB向终点B以2单位/每秒的速度运动,同时动点Q从点A出发沿x轴负半轴以1单位/秒的速度运动,当点P到达终点时停止运动,运动时间为t,直线PQ交边AD于点E.(1)求出经过A、D、C三点的抛物线解析式;(2)是否存在时刻t使得PQ⊥DB,若存在请求出t值,若不存在,请说明理由;(3)设AE长为y,试求y与t之间的函数关系式;(4)若F、G为DC边上两点,且点DF=FG=1,试在对角线DB上找一点M、抛物线ADC对称轴上找一点N,使得四边形FMNG周长最小并求出周长最小值.参考答案与试题解析一.选择题1.∴等式成立,∴I=(n+1)2+n﹣(n+1)2=n>0,故选A.2.解:∵[]=3有正整数解,∴3≤<4,即6≤3x+a<8,6﹣a≤3x<8﹣a,∴≤x<,∵x是正整数,a为正数,∴x<,即x可取1、2;①当x取1时,∵6≤3x+a<8,6﹣3x≤a<8﹣3x,∴3≤a<5;②当x取2时,∵6≤3x+a<8,6﹣3x≤a<8﹣3x,∴0<a<2;综上可得a的范围是:0<a<2或3≤a<5.故选D.3.解:∵6个相同的球,放入四个不同的盒子里,∴若有三个盒子里放了1个,一个盒子里放了3个,这种情况下的方法有4种;若有两个盒子里放了2个,两个盒子里放了1个,这种情况下:设四个盒子编号为①②③④,可能放了两个小球的盒子的情况为:①②,①③,①④,②③,②④,③④,所以有6种情况;∴6个相同的球,放入四个不同的盒子里,每个盒子都不空的放法有:4+6=10.故选C.4. 这道题可以采用逆推法,我们可以先分析最后一位会用多长时间,很显然不管是谁最后灌水都得用3分钟,所以只需考虑前两个接水的,怎样能够更加节省时间,显然乙第一个灌水会最省时,因为只需分钟.接着是丙,丙灌水的时间加上等乙的时间,也就是分钟,最后是甲.所以只有按乙,丙,甲安排灌水才最省时.【解答】解:按乙,丙,甲安排灌水最省时,这三位同学花费的时间(包括等待时间)的总和最少是+(+1)+(+1+)=5分钟.故选B.【点评】考查了应用类问题,运用了逆推法,按照灌水所需的时间由少到多的顺序安排灌水花费的时间的总和最少.5.已知实数x满足x2++x﹣=4,则x﹣的值是()A.﹣2 B.1 C.﹣1或2 D.﹣2或1【分析】利用完全平方公式可把原式变为(x﹣)2+x﹣﹣2=0,用十字相乘法可得x﹣的值.【解答】解:x2+﹣2+x﹣﹣2=0∴(x﹣)2+(x﹣)﹣2=0解得x﹣=﹣2或1.故选D【点评】本题的关键是把x﹣看成一个整体来计算,即换元法思想.6.如图,在等边△ABC中,D为AC边上的一点,连接BD,M为BD上一点,且∠AMD=60°,AM交BC于E.当M为BD中点时,的值为()A.B.C.D.【分析】作DK∥BC,交AE于K.首先证明BE=DK=CD,CE=AD,设BE=CD=DK=a,AD=EC=b,由DK∥EC,可得=,推出=,即a2+ab﹣b2=0,可得()2+()﹣1=0,求出即可解决问题.【解答】解:作DK∥BC,交AE于K.∵△ABC是等边三角形,∴AB=CB=AC,∠ABC=∠C=60°,∵∠AMD=60°=∠ABM+∠BAM,∵∠ABM+∠CBD=60°,∴∠BAE=∠CBD,在△ABE和△BCD中,,∴△ABE≌△BCD,∴BE=CD,CE=AD,∵BM=DM,∠DMK=∠BME,∠KDM=∠EBM,∴△MBE≌△MDK,∴BE=DK=CD,设BE=CD=DK=a,AD=EC=b,∵DK∥EC,∴=,∴=,∴a2+ab﹣b2=0,∴()2+()﹣1=0,∴=或(舍弃),∴==,故选B.【点评】本题考查全等三角形的判定和性质、等边三角形的性质、平行线分线段成比例定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,学会用方程的思想思考问题,本题体现了数形结合的思想,属于中考选择题中的压轴题.7.如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点E、F.若AD=2,BC=6,则△ADB的面积等于()A.2 B.4 C.6 D.8【分析】作AH⊥BC,根据折叠的性质得到BE=DE,∠BDE=∠DBE=45°,则∠DEB=90°,再根据等腰梯形的性质得到BH=CE,可计算出CE=2,DE=BE=4,然后根据三角形面积公式进行计算.【解答】解:作AH⊥BC,如图,∵翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点E、F,∴BE=DE,∠BDE=∠DBE=45°,∴∠DEB=90°,∴DE⊥BC,∵梯形ABCD为等腰梯形,∴BH=CE,而AD=HE,AD=2,BC=6,∴CE=(6﹣2)=2,∴DE=BE=4,∴△ADB的面积=×2×4=4.故选B.【点评】本题考查了折叠的性质:折叠前后两图象全等,即对应线段相等,对应角相等.也考查了等腰梯形的性质.8.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为()A.∠1>∠2 B.∠1<∠2 C.∠1=∠2 D.无法确定【分析】易证△ADE∽△ECF,求得CF的长,可得根据勾股定理即可求得AE、EF 的长,即可判定△ADE∽△AEF,即可解题.【解答】解:∵∠AED+∠CEF=90°,∠DAE+∠ADE=90°,∴∠DAE=∠CEF,∵∠ADE=∠ECF=90°,∴△ADE∽△ECF,且相似比为2,∴AE=2EF,AD=2DE,又∵∠ADE=∠AEF,∴△ADE∽△AEF,∴∠1=∠2.【点评】本题考查了相似三角形的判定,相似三角形对应边比值相等的性质,相似三角形对应角相等的性质,本题中求证△ADE∽△AEF是解题的关键.9.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.3π C.D.6π【分析】通过三视图判断几何体的特征,利用三视图的数据,求出几何体的体积即可.【解答】解:由三视图可知几何体是圆柱底面半径为1高为6的圆柱,被截的一部分,如图所求几何体的体积为:×π×12×6=3π.故选B.【点评】本题考查三视图与几何体的关系,正确判断几何体的特征是解题的关键,考查计算能力.10.方程x2+2x+1=的正数根的个数为()A.0 B.1 C.2 D.3【分析】求方程x2+2x+1=的解,可以理解为:二次函数y=x2+2x+1与反比例函数y=的图象交点的横坐标.【解答】解:二次函数y=x2+2x+1=(x+1)2的图象过点(0,1),且在第一、二象限内,反比例函数y=的图象在第一、三象限,∴这两个函数只在第一象限有一个交点.即方程x2+2x+1=的正数根的个数为1.故选B.【点评】本题利用了二次函数的图象与反比例函数图象来确定方程的交点的个数.11.如图,已知∠AOM=60°,在射线OM上有点B,使得AB与OB的长度都是整数,由此称B是“完美点”,若OA=8,则图中完美点B的个数为()A.1 B.2 C.3 D.4【分析】首先过点B作BC⊥OA,交OA于点C,连接AB,可能有两种情况,垂足在OA上或者垂足在OA延长线上,然后设OB=y,AB=x,由勾股定理即可求得:y2﹣(y)2=x2﹣(8﹣y)2或x2﹣(y﹣8)2=y2﹣(y)2,整理可得x2﹣(y﹣4)2=48,然后将原方程转为 X2﹣Y2=48,先求(X+Y)(X﹣Y)=48的正整数解,继而可求得答案.【解答】解,过点B作BC⊥OA,交OA于点C,连接AB,可能有两种情况,垂足在OA上或者垂足在OA延长线上.设OB=y,AB=x,∵∠AOM=60°,∴OC=OB?cos60°=y,∴AC=OA﹣OC=8﹣y或AC=OC﹣OA=y﹣8,∵BC2=OB2﹣OC2,BC2=AB2﹣AC2,∴y2﹣(y)2=x2﹣(8﹣y)2或x2﹣(y﹣8)2=y2﹣(y)2,∴x2﹣(y﹣4)2=48,∵x与y是正整数,且y必为正整数,x﹣4为大于等于﹣4的整数,将原方程转为 X2﹣Y2=48,先求(X+Y)(X﹣Y)=48的正整数解,∵(X+Y)和(X﹣Y)同奇同偶,∴(X+Y)和(X﹣Y)同为偶数;∴X2﹣Y2=48可能有几组正整数解:,,,解得:,,,∴x的可能值有3个:x=7,x=8或x=13,当x=7时,y﹣4=±1,y=3或y=5;当x=8时,y﹣4=±4,y=8或y=0(舍去);当x=13时,y﹣4=±11,y=15或y=﹣7(舍去);∴共有4组解:或或或.故选D.【点评】此题考查了勾股定理的应用以及整数的综合应用问题.此题难度较大,注意掌握方程思想、分类讨论思想与数形结合思想的应用.二.填空题(共4小题)12.已知x为实数,且,则x2+x的值为1.【分析】本题用换元法解分式方程,由于x2+x是一个整体,可设x2+x=y,可将方程转化为简单的分式方程求y,将y代换,再判断结果能使x为实数.【解答】解:设x2+x=y,则原方程变为﹣y=2,方程两边都乘y得:3﹣y2=2y,整理得:y2+2y﹣3=0,(y﹣1)(y+3)=0,∴y=1或y=﹣3.当x2+x=1时,即x2+x﹣1=0,△=12+4×1=5>0,x存在.当x2+x=﹣3时,即x2+x+3=0,△=12﹣4×3=﹣11<0,x不存在.∴x2+x=1.【点评】当分式方程比较复杂时,通常采用换元法使分式方程简化.需注意换元后得到的根也必须验根.13.满足方程|x+2|+|x﹣3|=5的x的取值范围是﹣2≤x≤3.【分析】分别讨论①x≥3,②﹣2<x<3,③x≤﹣2,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.【解答】解:从三种情况考虑:第一种:当x≥3时,原方程就可化简为:x+2+x﹣3=5,解得:x=3;第二种:当﹣2<x<3时,原方程就可化简为:x+2﹣x+3=5,恒成立;第三种:当x≤﹣2时,原方程就可化简为:﹣x﹣2+3﹣x=5,解得:x=﹣2;所以x的取值范围是:﹣2≤x≤3.【点评】解一元一次方程,注意最后的解可以联合起来,难度很大.14.多项式6x3﹣11x2+x+4可分解为(x﹣1)(3x﹣4)(2x+1).【分析】将﹣11x2分为﹣6x2和﹣5x2两部分,原式可化为6x3﹣6x2﹣5x2+x+4,6x3﹣6x2可提公因式,分为一组,﹣5x2+x+4可用十字相乘法分解,分为一组.【解答】解:6x3﹣11x2+x+4,=6x3﹣6x2﹣5x2+x+4,=6x2(x﹣1)﹣(5x2﹣x﹣4),=6x2(x﹣1)﹣(x﹣1)(5x+4),=(x﹣1)(6x2﹣5x﹣4),=(x﹣1)(3x﹣4)(2x+1).【点评】本题考查了用分组分解法进行因式分解,要考虑分组后还能进行下一步分解,把﹣11x2分成﹣6x2和﹣5x2两部分是解题的关键,也是难点.15.设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是18.【分析】首先将方程组5x2﹣5ax+26a﹣143=0左右乘5得25x2﹣25ax+(130a﹣262)﹣39=0,再分解因式.根据39为两个整数的乘积,令两个因式分别等于39分解的整因数.讨论求值验证即可得到结果.【解答】解:∵5x2﹣5ax+26a﹣143=025x2﹣25ax+(130a﹣262)﹣39=0,即(5x﹣26)(5x﹣5a+26)=39,∵x,a都是整数,故(5x﹣26)、(5x﹣5a+26)都分别为整数,而只存在39=1×39或39×1或3×13或13×3或四种情况,①当5x﹣26=1、5x﹣5a+26=39联立解得a=不符合,②当5x﹣26=39、5x﹣5a+26=1联立解得a=18,③当5x﹣26=3、5x﹣5a+26=13联立解得a=不符合,④当5x﹣26=13、5x﹣5a+26=3联立解得a=不符合,∴当a=18时,方程为5x2﹣90x+325=0两根为13、﹣5.故答案为:18.【点评】本题考查因式分解的应用、一元二次方程的整数根与有理根.解决本题的关键是巧妙利用39仅能分解为整数只存在39=1*39或39*1或3*13*13*3或四种情况,因而讨论量,并不大.三.解答题(共4小题)16.如图,在△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.设点P 的运动时间为x(秒).(1)设△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(2)x为何值时,△PBQ的面积最大?并求出最大值;(3)当点Q在BC上运动时,线段PQ上是否存在一个点T,使得在某个时刻△ACT、△ABT、△BCT的面积均相等(无需计算,说明理由即可).【分析】(1)由在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,设AC=4y,BC=3y,由勾股定理即可求得AC、BC的长;分别从当点Q在边BC上运动与当点Q在边CA上运动去分析,首先过点Q作AB的垂线,利用相似三角形的性质即可求得△PBQ的底与高,则可求得y与x的函数关系式;(2)由二次函数最值的求法得到两种情况下的△PBQ的面积最大值,进行比较即可得到答案;(3)根据三角形的面积公式得到符合条件的点应该是:到三边的距离之比为12:15:20.【解答】解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2,即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm;分两种情况:①如图1,当点Q在边BC上运动时,过点Q作QH⊥AB于H.∵AP=x,∴BP=10﹣x,BQ=2x,∵△QHB∽△ACB,∴=,∴QH=x,y=BP?QH=(10﹣x)x=﹣x2+8x(0<x≤3),②如图2,当点Q在边CA上运动时,过点Q作QH′⊥AB于H′,∵AP=x,∴BP=10﹣x,AQ=14﹣2x,∵△AQH′∽△ABC,∴=,即:=,解得:QH′=(14﹣2x),∴y=PB?QH′=(10﹣x)(14﹣2x)=x2﹣x+42(3<x<7);(2)①当0<x≤3时,y=﹣(x﹣5)2+20.∵该抛物线的开口方向向下,对称轴是x=5,=.∴当x=3时,y取最大值,y最大当3<x<7时,y=x2﹣x+42=(x﹣)2+(3<x<7);∵该抛物线的开口方向向上,对称轴是x=,∴当x=3时,y取最大值,但是x=3不符合题意.综上所述,△PBQ的面积的最大值是.(3)存在.理由如下:设点T到AB、AC、BC的距离分别是a、b、c.∵AB=10cm,AC=8cm,BC=6cm,∴AB?a=AC?c=BC?c,即5a=4b=3c,故a:b:c=12:15:20.∴当满足条件的点T到AB、AC、BC的距离之比为12:15:20时,△ACT、△ABT、△BCT的面积均相等.【点评】本题考查了相似三角形的判定与性质,勾股定理,以及最短距离问题.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.17.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是6.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是(或不化简为).(结果可以不化简)【分析】(1)根据旋转的性质知A′A=AB=BA′=2,AP=A′C,所以在△AA′C中,利用三角形三边关系来求A′C即AP的长度;(2)以B为中心,将△APB逆时针旋转60°得到△A'P'B.根据旋转的性质推知PA+PB+PC=P'A′+P'B+PC.当A'、P'、P、C四点共线时,(P'A′+P'B+PC)最短,即线段A'C最短.然后通过作辅助线构造直角三角形A′DC,在该直角三角形内利用勾股定理来求线段A′C的长度.【解答】解:(1)如图2,∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)如图3,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A'P'B.则A'B=AB=BC=4,PA=P′A′,PB=P′B,∴PA+PB+PC=P′A′+P'B+PC.∵当A'、P'、P、C四点共线时,(P'A+P'B+PC)最短,即线段A'C最短,∴A'C=PA+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵∠A'BA=60°(由旋转可知),∴∠1=30°.∵A'B=4,∴A'D=2,BD=2,∴CD=4+2.在Rt△A'DC中A'C====2+2;∴AP+BP+CP的最小值是:2+2(或不化简为).故答案是:2+2(或不化简为).【点评】本题综合考查了旋转的性质、等腰直角三角形的性质、勾股定理以及等边三角形的判定与性质.注意:旋转前、后的图形全等.18.某水库大坝的横截面是如图所示的四边形BACD,期中AB∥CD.了望台PC正前方水面上有两艘渔船M、N,观察员在了望台顶端P处观测渔船M的俯角α=31°,观测渔船N在俯角β=45°,已知NM所在直线与PC所在直线垂直,垂足为点E,PE 长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH的坡度为i=1:,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈,sin31°≈)【分析】(1)根据已知求出EN,根据正切的概念求出EM,求差得到答案;(2)根据坡度和锐角三角函数的概念求出截面积和土石方数,根据题意列出分式方程,解方程得到答案.【解答】解:(1)在Rt△PEN中,∵∠PNE=45°,∴EN=PE=30米,在Rt△PEM中,∠PME=31°,tan∠PME=,∴ME=≈50(米),∴MN=EM﹣EN=20米,答:两渔船M,N之间的距离约为20米;(2)过点F作FK∥AD交AH于点K,过点F作FL⊥AH交直线AH于点L,则四边形DFKA为平行四边形,∴∠FKA=∠DAB,DF=AK=3,由题意得,tan∠FKA=tan∠DAB=4,tan∠H=,在Rt△FLH中,LH==36,在Rt△FLK中,KL==6,∴HK=30,AH=33,梯形DAHF的面积为:×DL×(DF+AH)=432,所以需填土石方为432×100=43200,设原计划平均每天填x立方米,由题意得,12x+(﹣12﹣20)×=43200,解得,x=600,经检验x=600是方程的解.答:原计划平均每天填筑土石方600立方米.【点评】本题考查的是解直角三角形和分式方程的应用,掌握锐角三角函数的概念和解直角三角形的一般步骤、根据题意正确列出分式方程是解题的关键,注意分式方程解出未知数后要验根.19.已知关于x的方程,(1)若两根x1,x2满足x1<0<x2,求m的范围;(2)若,求m的值.【分析】(1)由关于x的方程4x2+mx+m﹣4=0 有两根,可知此一元二次方程的判别式△>0,即可得不等式,又由x1<0<x2,可得x1x2<0,根据根与系数的关系,可得不等式=m﹣1<0,解此不等式组即可求得答案;(2)由一元二次方程根与系数的关系即可得 4x12+mx1+m﹣4=0,x1+x2=﹣,x1x2==m﹣1,然后将6x12+mx1+m+2x22﹣8=0变形,可得4x12+mx1+m﹣4+2[(x1+x2)2﹣2x1x2]=4,则可得方程(﹣)2﹣2[m﹣1]=2,解此方程即可求得答案.【解答】解:(1)∵关于x的方程4x2+mx+m﹣4=0 有两根,∴△=m2﹣4×4×(m﹣4)=m2﹣8m+64=(m﹣4)2+48>0,∵两根x1,x2满足x1<0<x2,∴x1x2==m﹣1<0,∴m<8,(2)∵x1、x2是方程的根,∴4x12+mx1+m﹣4=0,x1+x2=﹣,x1x2==m﹣1,∵6x12+mx1+m+2x22﹣8=0,∴4x12+mx1+m﹣4+2(x12+x22)﹣4=0∴4x12+mx1+m﹣4+2[(x1+x2)2﹣2x1x2]=4,∴(x1+x2)2﹣2x1x2=2,即(﹣)2﹣2[m﹣1]=2,化简得:m2﹣4m=0,解得:m=0 或m=4,∴m的值为0或4.【点评】此题考查了一元二次方程判别式、根与系数的关系等知识.此题难度较大,解题的关键是注意利用根与系数的关系将原方程变形求解,注意方程思想的应用.20.【解答】解:∵m+n=mn且m,n是正实数,∴+1=m,即=m﹣1,∴P(m,m﹣1),即“完美点”B在直线y=x﹣1上,∵点A(0,5)在直线y=﹣x+b上,∴b=5,∴直线AM:y=﹣x+5,∵“完美点”B在直线AM上,∴由解得,∴B(3,2),∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=﹣x,而直线y=x﹣1与直线y=x平行,直线y=﹣x+5与直线y=﹣x平行,∴直线AM与直线y=x﹣1垂直,∵点B是直线y=x﹣1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,∴点C在直线y=x﹣1上,∴△MBC是直角三角形,∵B(3,2),A(0,5),∴AB=3,∵AM=4,∴BM=,又∵CM=,∴BC=1,=BM?BC=.∴S△MBC【点评】本题考查了一次函数的性质,直角三角形的判定,勾股定理的应用以及三角形面积的计算等,判断直线垂直,借助正比例函数是本题的关键.21.解:(1)反比例函数y=是闭区间[1,2014]上的“闭函数”,理由如下:反比例函数y=在第一象限,y随x的增大而减小,当x=1时,y=2014;当x=2014时,y=1,所以,当1≤x≤2014时,有1≤y≤2014,符合闭函数的定义,故反比例函数y=是闭区间[1,2014]上的“闭函数”;(2)分两种情况:k>0或k<0.①当k>0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而增大,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=x;②当k<0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而减小,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=﹣x+m+n;(3)∵y=x2﹣2x=(x2﹣4x+4)﹣2=(x﹣2)2﹣2,∴该二次函数的图象开口方向向上,最小值是﹣2,且当x<2时,y随x的增大而减小;当x>2时,y随x的增大而增大.①当c<2<d时,此时二次函数y=x2﹣2x的最小值是﹣2=c,根据“闭函数”的定义知,d=c2﹣2c或d=d2﹣2d;Ⅰ)当d=c2﹣2c时,由于d=×(﹣2)2﹣2×(﹣2)=6>2,符合题意;Ⅱ)当d=d2﹣2d时,解得d=0或6,由于d>2,所以d=6;②当c≥2时,此二次函数y随x的增大而增大,则根据“闭函数”的定义知,,解得,,∵c<d,∴不合题意,舍去.综上所述,c,d的值分别为﹣2,6.【点评】本题综合考查了二次函数图象的对称性和增减性,一次函数图象的性质以及反比例函数图象的性质.解题的关键是弄清楚“闭函数”的定义.解题时,也要注意“分类讨论”数学思想的应用.22.【解答】解:月用水量为x立方米,支付费用为y元,则有:y=;(2)由表知第二、第三月份的水费均大于13元,故用水量15m3,22m3均大于最低限量am3,于是就有,解得b=2,从而2a=c+19,再考虑一月份的用水量是否超过最低限量am3,不妨设9>a,将x=9代入x>a的关系式,得9=8+2(9﹣a)+c,即2a=c+17,这与2a=c+19矛盾.∴9≤a.从而可知一月份的付款方式应选0≤x≤a的关系式,因此就有8+c=9,解得c=1.故a=10,b=2,c=1.23.【解答】解:(1)由题意可知,当废弃处理量x满足0<x<40时,每天利用设备处理废气的综合成本y=40x+1200,∴当该制药厂每天废气处理量计划为20吨,即x=20时,每天利用设备处理废气的综合成本为y=40×20+1200=2000元,又∵转化的某种化工产品可得利润为80×20=1600元,∴工厂每天需要投入废气处理资金为400元;(2)由题意可知,y=,①当0<x<40时,令80x﹣(40x+1200)≥0,解得30≤x<40,②当40≤x≤80时,令80x﹣(2x2﹣100x+5000)≥0,即2x2﹣180x+5000≤0,∵△=1802﹣4×2×5000<0,∴x无解.综合①②,x的取值范围为30≤x<40,故当该制药厂每天废气处理量计划为[30,40)吨时,工厂可以不用投入废气处理资金就能完成计划的处理量;(3)∵当40≤x≤80时,投入资金为80x﹣(2x2﹣100x+5000),又∵市政府为处理每吨废气补贴a元就能确保该厂每天的废气处理不需要投入资金,∴当40≤x≤80时,不等式80x+ax﹣(2x2﹣100x+5000)≥0恒成立,即2x2﹣(180+a)x+5000≤0对任意x∈[40,80]恒成立,令g(x)=2x2﹣(180+a)x+5000,则有,即,即解得,答:市政府只要为处理每吨废气补贴元就能确保该厂每天的废气处理不需要投入资金.【点评】本题主要考查函数模型的选择与应用.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.属于中档题.24.【解答】解:(1)△DAB中,∠DAB=60°,DA=AB=6则:D到y轴的距离=AB=3、D到x轴的距离=DA?sin∠DAB=3;∴D(3,3);由于DC∥x轴,且DC=AB=6,那么将点D右移6个单位后可得点C,即C(9,3);设抛物线的解析式为:y=ax2+bx,有:,解得∴抛物线解析式为:y=﹣x2+x.(2)如图1,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,若PQ⊥DB,则PQ∥AC,∵点P在BC上时,PQ与AC始终相交,和PQ∥AC矛盾,∴点P在BC上时不存在符合要求的t值,当P在DC上时,由于PC∥AQ且PQ∥AC,所以四边形PCAQ是平行四边形,则PC=AQ,有6﹣2t=t,得t=2.(3)①如图1,当点P在DC上,即0<t≤3时,有△EDP∽△EAQ,则===,那么AE=AD=2,即y=2;②如图2,当点P在CB上,即3<t≤6时,有△QEA∽△QPB,则=,即=,得y=,。

2021年黄冈中学重点高中预录提前招生数学模拟试卷一

2021年黄冈中学重点高中预录提前招生数学模拟试卷一

2021年重点高中提前招生数学模拟试卷(一)2021-2-28(满分:120分 时间:120分钟)班级_________ 姓名___________一、选择题(每小题5分,共30分)1. 设m=3+22+3-22,则1a a +的整数部分为 ( ) A.1 B.2 C.3 D.42. 已知△ABC 中,∠ACB=90°,∠ABC=15°,则tanB= ( )A. 23+B. 13+C. 23-D. 13-3. 正整数构成的数列 ,,,,21n a a a 满足:①数列递增,即 <<<n a a a 21; ②)3(21≥+=--n a a a n n n ,则称为“类斐波拉契数列”,例如:3,4,7,11,18,29,……, 则满足615=a 的“类斐波拉契数列”有 ( )A. 3种B. 4种C. 5种D. 6种4. 如图,正方形ABCD 的顶点A 在第二象限xk y =图象上,点B ,点C 分别在x 轴、y 轴负 半轴上,点D 在第一象限直线y=x 的图象上,若23=阴影S ,则k 的值为 ( ) A. 3- B. 34- C. 35- D. 2-5. 如图所示,正方形ABCD 中,E ,F 分别是AB ,BC 上的点,DE 交AC 于点M. AF 交BD 于点N ,若AF 平分∠BAC ,DE ⊥AF ;记,,,OM BE z BF CF y ON BN x ===则有 ( ) A. z y x >> B. z y x == C. z y x <= D. z y x >=6. 如图所示,已知抛物线12+-=x y 的顶点为P ,点A 是第一象限内该二次函数图象上一 点,过点A 作x 轴的平行线交二次函数图象于点B ,分别过点B ,A 作x 轴的垂线、垂足分别为C ,D ,连接P A ,PD ,PD 交AB 于点E ,则 ( )A. PA=PD — PE B . PD=PA • PE C. PD=PE+AD D. 2PA PE PD =•二、填空题(每小题5分,共30分)7. 关于x ,y 的方程组⎪⎩⎪⎨⎧==+-1x y y x y x y x 的解是____________________________. 4题图 5题图 6题图8. 已知直角三角形的三边长都是整数,且其面积与周长在数值上相等,若将全等的三角形 都作为同一个,那么这样的直角三角形的个数是 个.9. 若关于x 的方程0)6)(4(2=+--m x x x 的三个根恰好可以组成某直角三角形的三边长,则 m = .10. 如图,矩形ABCD 中,AB =10,BC =12,M 为AB 中点,N 为BC 边上一动点,将△MNB 沿MN 折叠,得到'MNB ∆,则'CB 的最小值为 .11. 如图,四边形ABHK 是边长为6的正方形,点CD 在边AB 上,且AC =DB =1,点P 是线 段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作正方形AMNP 和正方形BRQP , E ,F 分别为MN ,QR 的中点,连接EF ,设EF 的中点为G ,则当点P 从点C 运动到点D 时,点G 移动的路径长为 .12. 如图,△ABC 中,,8,53sin ,90==︒=∠AC A ACB 将△ABC 绕点C 顺时针旋转︒90,得到C B A ''∆,P 为线段''B A 上的动点,以点P 为圆心,'PA 长为半径作⊙P ,当⊙P 与△ABC 的边相切时,⊙P 的半径为 .三、解答题(每小题12分,共60分)13. 设互不相等的非零实数a ,b ,c 满足a c c b b a 333+=+=+,求222)3()3()3(ac c b b a +++++ 的值.14. 如右图,在平面直角坐标系中已知四边形ABCD 为菱形,且)0,4(),3,0(-B A .(1)求过点C 的反比例函数表达式;(2)设直线l 与(1)中所求函数图象相切,且与x 轴,y轴的交点分别为M ,N ,O 为坐标原点. 求证:△OMN 的面积为定值.10题 11题 12题15. 如图,在△ABC 中,D 是BC 的中点,过D 的直线交AC 于E ,交AB 的延长线于F ,AB =mAF ,AC =nAE. 求:(1)m+n 的值; (2)1+m n 的取值范围.16. 如图1 ,P 为第一象限内一点,过P ,O 两点的⊙M 交x 轴正半轴于点A ,交y 轴正 半轴于点B ,︒=∠45OPA .(1)求证:PO 平分∠APB ;(2)作OH ⊥P A 交弦P A 于H ;①若AH =2,OH +PB =8,求BP 的长;②若BP =m ,OH =n ,把△POB 沿y 轴翻折,得到OB P '∆(如图2 ),求'AP 的长.14题图15题图 图1 图217. 如图,已知抛物线c bx x y 222++=(bc 是常数,且c <0)与x 轴分别交于点AB (点A 位于点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为)0,1(-.(1)点B 的坐标为 (结果用含c 的代数式表示);(2)连接BC ,过点A 作直线AEBC ,与抛物线c bx x y 222++=交于点E ,点D 是x 轴上的一点,其坐标为(2,0). 当CDE 三点在同一直线上时,求抛物线的解析式;(3)在(2)条件下,点P 是x 轴下方的抛物线上的一个动点,连接PB ,PC ,设所得△PBC 的面积为S. ①求S 的取值范围;②若∆PBC 的面积S 为整数,则这样的∆PBC 共有 个.17题图。

黄冈高中预录考试数学训练题01(含解答)

黄冈高中预录考试数学训练题01(含解答)

M预录考试数学训练题(一)参考答案一、选择题(共4小题,每小题5分,共20分)1.D .解析:设高速列车和普通列车的车速分别为x 米/秒和y 米/秒,则100520(/x y m s -=÷=, 所以坐在普通列车上的旅客看见高速列车驶过窗口的时间是:80÷20=4秒 .2.D .3.C .4.C .二、填空题(共8小题,每小题5分,共40分)5.17,2.6.1或8.7.﹣5或﹣6.8.30.9.18.解析:由题意,得222255202860(552)156()a a a k k N ∆=-+=-+=∈,即22(552)156[(552)][(552)]782262k a k a k a --=⇒+-⨯--=⨯=⨯. 因为[(552)][(552)]k a k a +---和具有相同的奇偶性,且[(552)][(552)]2k a k a k +---=≥+0,故(552)=78(552)=26(552)=2(552)=6(552)=2(552)=6(552)=78(552)=26k a k a k a k a k a k a k a k a +-+-+-+-⎧⎧⎧⎧⎨⎨⎨⎨--------⎩⎩⎩⎩或或或, 解得,只有=40=18k a ,符合题意.即所求a 的值是18.10.17. 解析:如图,1//33AE AF AB CD DM AE DM FD ⇒==⇒=1336AG AE AE AE AG GC CM CD DM AE AE AC ∴====⇒=++11.112°. 解析:分别延长BD ,CE ,交点即为点A ,由三角形中位线的性质知DE ∥BC , ∴∠ADE =∠B =180°-∠C -∠A =180°-120°-26°=34°,又由轴对称的性质知∠A ′DE =∠ADE =34°,∴∠A ′DB =180°-∠ADE -∠A ′DE =180°-2×34°=112°.12.24<x <38.解析:分别求线段AB 、BC 与线段OD 的交点的横坐标.三、解答题(本大题共4小题,共60分)13.(本小题12分)(Ⅰ)35; (Ⅱ)(1)35; (2)1319151=3531036⨯+⨯+⨯. 14.(本小题16分)四个点),)、(,)、,)、,121554552(554552(51658(--. 15.(本小题14分)连接AC 和BD .∵弦CD 垂直于直径AB ,∴BC =BD ,∴∠BCD =∠BDC .∵OA =OC ,∴∠OCA =∠OAC .∵∠BDC =∠OAC ,∴∠BCD =∠OCA ,∴△BCD ∽△OCA ,∴CO CB =CA CD . ∵∠DCN =∠ACM ,∠CDN =∠CAM ,∴△CDN ∽△CAM . ∵CM CN =CA CD =CO CB =CMCB 2,∴CN =21CB ,即BN =CN . 16.(本小题18分)(1)由于派往A 地的乙型收割机x 台,则派往B 地的乙型收割机为(30-x )台,派往A ,B 地区的甲型收割机分别为(30-x )台和(x -10)台.∴y =1600x +1200(30-x )+1800(30-x )+1600(x -10)=200x +74000(10≤x ≤30).(2)由题意,得200x +74000≥79600,解得x ≥28,∵10≤x ≤30,x 是正整数,∴x =28、29、30∴有3种不同分派方案:①当x =28时,派往A 地区的甲型收割机2台,乙型收割机28台,余者全部派往B 地区; ②当x =29时,派往A 地区的甲型收割机1台,乙型收割机29台,余者全部派往B 地区; ③当x =30时,即30台乙型收割机全部派往A 地区,20台甲型收割机全部派往B 地区;(3)∵y=200x +74000中,200>0,∴y 随x 的增大而增大,∴当x =30时,y 取得最大值, 此时,y =200×30+74000=80000,建议农机租赁公司将30台乙型收割机全部派往A 地区,20台甲型收割机全部派往B 地区,这样公司每天获得租金最高,最高租金为80000元.。

黄冈中学自主招生预录数学模拟试题

黄冈中学自主招生预录数学模拟试题

黄冈中学自主招生预录数学试题一、 选择题(每小题5分,共20分)1. 方程023x =+-x x 实根个数为( )A 1B 2C 3D 4 2.=+++=-=6,231,23122b a b a 则( ) A 3 B 4 C 5 D 63.已知一个六边形六个内角都是1200,连续四条边长依次是1,3,3,2则该六边形的周长是( )A 13B 15C 14D 164.实数a,b 满足()()111a 22=----b b a ,说法:(1)a=b, (2)a=-b, (3)ab=1,(4)ab=-1中正确的有( )个A 1B 2C 3D 4 二、填空题(每小题5分,共40分)5.若a,b 都是正实数,0111=+--b a b a ,则=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛33b a a b 6.不论m 为任何实数,抛物线1222-+++=m m mx x y 的顶点都在一条直线上,则这条直线的解析式是7.甲从A 地到B 地,乙从B 地到A 地,甲,乙同时出发相向匀速而行,经t 小时相遇于C 地,相遇后二人继续前进,甲又用了4小时到达B 地,乙又用了9小时到达A 地,则t= 8.75+的小数部分是a ,75-的小数部分是b ,则ab-2a+3b-12=9.设a ax -=1,则24x x += 10.如果一个三位数,百位数字与个位数字都大于十位数字,则称这个三位数为“凹数”,从所有三位数中任取一个三位数是“凹数”的概率是11.化简:=++⎪⎪⎭⎫ ⎝⎛+--+-+-b a ab ab a a ab b b b ab a 21b 12.同心圆半径分别为6,8,AB 为小圆的弦,CD 为大圆的弦,且ABCD 为矩形,圆心在矩形ABCD 内,当矩形ABCD 面积最大时,矩形ABCD 的周长为三、解答题(13、14题各13分,15题14分)13.一号列车从甲站开往乙站,一小时后二号列车从乙站开往甲站,二号列车每小时比一号列车多行10千米,两列车刚好在甲乙两站中点处相遇。

2020-2021学年度湖北省 黄冈市高级中学提前招生数学考试模拟试卷1(Word版,附答案)

2020-2021学年度湖北省 黄冈市高级中学提前招生数学考试模拟试卷1(Word版,附答案)

2021年黄高预录考试数学模拟试题(一)考试时间:120分钟,满分:120分一、选择题(每小题3分,共30分)1.若2|1|816x x x ---+化简的结果为25x -,则x 的取值范围是( ) A .x 为任意实数 B .14x ≤≤C .1x ≥D .4x ≤2.边长为的正六边形的面积等于( ) A .243a B .2a C .2233a D .233a3.已知三角形的三边长分别是3,8,x ;若x 的值为偶数, 则x 的值有( )A.6个 B.5个 C.4个 D.3个4.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A .点(0,3)B . 点(2,3)C .点(5,1)D . 点(6,1)5.在△ABC 中,M 是边AB 的中点,N 是边AC 上的点,且AN =2NC ,CM 与BN 相交于点K ,若△BCK 的面积等于1,则△ABC 的面积等于( )A.3 B.103C.4 D.1336.⊙O 的半径为r ,其外切直角梯形ABCD 的两底AB =a ,DC =b ,则r ,a ,b 之间的关系是( )A .r a b =-B . 2212r a b =- C . 12r ab = D . 111r a b=+ 7.已知x ,y ,z 是三个非负实数,满足3x +2y +z =5,x +y -z =2,若S =2x +y -z ,则S 的最大值与最小值的和为( ) A.8 B.7 C.6 D.58.已知关于x 的不等式组230bx a x -≥⎧⎨<⎩的整数解有且仅有4个:-1,0,1,2,那么适合这个不等式组的所有可能的整数对(,)a b 的个数有 ( )A 2 对B 4对C 6对D 8对9.如图所示,在直角坐标系中,A 点坐标为(﹣3,﹣2),⊙A 的半径为1,P 为x 轴上一动点,PQ 切⊙A 于点Q ,则当PQ 最小时,P 点的坐标为( ) A .(﹣4,0) B .(﹣2,0)C .(﹣4,0)或(﹣2,0)D .(﹣3,0)10、已知关于x 的方程029|3|)2(62=-+--+-a x a x x 有两个不同的实数根,则实数a 的取值范围是( )A 、a >0或a =-2B 、a =-2C 、 a ≥0D 、a =0二、填空题(每小题3分,共18分)11.从-2,-1,2这三个数中任取两个不同的数作为点的坐标, 该点在第四象限的概率是 .12.如图,AC =BC ,AC ⊥BC 于点C ,AB =AD =BD ,CD =CE =DE ,若AB =2,则BE = 。

湖北省黄冈市黄冈中学2018-2019学年高一上学期提前录取模拟数学试题(一)Word版

湖北省黄冈市黄冈中学2018-2019学年高一上学期提前录取模拟数学试题(一)Word版

湖北省黄冈市黄冈中学2018-2019 学年高一上学期提前录取模拟数学试题(一)一、选择题最新试卷多少汗水曾洒下,多少希望曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦念,多少青春付与流水,人生,总有一次这样的成败,才算长大。

温馨提示:多少汗水曾洒下,多少希望曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦念,多少青春付与流水,人生,总有一次这样的成败,才算长大。

高考保持心平气和,不要紧张,像对待平常考试相同去做题,做完检查一下题目,不要直接交卷,检查下有没有错的地方,此后耐心等候考试结束。

1.若 a 为实数,则化简的结果是()A.﹣ a B.a C.± a D.| a|2.假如 x2﹣( m+1) x+1 是完满平方式,则m 的值为()A.﹣ 1 B.1C.1 或﹣ 1 D.1 或﹣ 33.如图,点 A、B、 C 挨次在直线 l 上,点 M 是线段 AC 的中点,点 N 是线段 BC 的中点.若想求出MN 的长度,那么只需条件()A.AB=12 B.BC=4 C.AM=5 D.CN=24.如图,正方形 ABCD的边 AB=1,和都是以1为半径的圆弧,则无暗影两部分的面积之差是()A.B.1﹣C.﹣1D.1﹣5.已知关于x 的方程( 2a+b)x﹣1=0 无解,那么ab 的值是()A.负数B.正数C.非负数D.非正数6.有铅笔、练习本、圆珠笔三种学惯用品,若购铅笔3 支,练习本 7 本,圆珠笔 1 支共需 3.15 元;若购铅笔 4 支,练习本 8 本,圆珠笔 2 支共需 4.2 元,那么,购铅笔、练习本、圆珠笔各 1 件共需()A.1.2 元B.1.05 元C.0.95 元D.0.9 元7.如图,在线段 AE 同侧作两个等边三角形△ABC和△ CDE(∠ ACE< 120°),点P 与点 M 分别是线段 BE和 AD 的中点,则△ CPM 是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形8.假如关于 x 的方程 x2﹣ax+a2﹣ 3=0 最稀有一个正根,则实数 a 的取值范围是()A.﹣ 2< a< 2B.C.D.9.如图,△ABC中, D、E 是BC边上的点,BD: DE:EC=3:2:1,M在 AC边上, CM:MA=1:2, BM 交AD,AE 于H, G,则BH:HG:GM 等于()A.3:2:1 B.5:3:1 C.25:12:5D.51:24: 1010.已知锐角三角形的边长是2, 3, x,那么第三边x 的取值范围是()A.1<x<B.C.D.二、填空题11.假如不等式组无解,则 a 的取值范围是.12.若抛物线y=2x2﹣px+4p+1 中无论p 取何值时都经过定点,则定点坐标为.13.如图,在菱形ABCD中, AE⊥ BC, E为垂足,若cosB=,EC=2,P 是 AB 边上的一个动点,则线段PE的长度的最小值是.14.已知:实常数 a、b、c、d 同时满足以下两个等式:①asin θ+bcos θ﹣c=0;②acos θ﹣ bsin θ+d=0(此中θ为任意锐角),则 a、b、c、d 之间的关系式是:.15.函数 y=| x﹣ 1|+ 2| x﹣2|+ 3| x﹣3|+ 4| x﹣4| 的最小值是., BC=2,以AB 为直径的⊙O 分别交AC、BC 16.如图,在△ABC中,AB=AC=两边于点D、E,则△ CDE的面积为.2 2px 1=0的两个实数根一个小于1,另一个大于 1,则17.已知关于 x 的方程 x + +实数 p 的取值范围是.18.若直线 y=b( b为实数)与函数 y=| x2﹣4x+3| 的图象最稀有三个公共点,则实数 b 的取值范围是.三、解答题(共 4 小题,共 50 分)19.设 m 是不小于﹣ 1 的实数,关于 x 的方程 x2+2(m﹣ 2)x+m2﹣3m+3=0 有两个不相等的实数根 x1、x2,(1)若 x12+x22=6,求 m 值;(2)求的最大值.20.如图,已知⊙ O 和⊙ O′订交于 A、B 两点,过点 A 作⊙ O′的切线交⊙ O 于点 C,过点 B 作两圆的割线分别交⊙ O、⊙ O′于 E、 F, EF与 AC订交于点 P.(1)求证: PA?PE=PC?PF;( 2)求证:;(3)当⊙ O 与⊙ O′为等圆时,且 PC:CE: EP=3: 4: 5 时,求△ PEC与△FAP的面积的比值.21.察以下各个等式: 12=1,12+22=5,12+22+32=14,12+22+32+42=30,⋯.(1)你能从中推出算 12 +22+32+42+⋯+n2的公式?写出你的推程;(2)你用( 1)中推出的公式来解决以下:已知:如,抛物y= x2+2x+3 与 x、y 的正半分交于点A、 B,将段OAn 均分,分点从左到右挨次A1、A2、A3、A4、 A5、A6、⋯、A n﹣1,分 n1 个点作 x 的垂挨次交抛物于点B1、B2、 B3、B4、 B5、B6、⋯、B n﹣1,△ OBA1、△ A1B1A2、△ A2B2A3、△ A3B3A4、⋯、△ A n﹣1B n﹣1A 的面挨次S1、S2、S3、 S4、⋯、Sn.①当 n=2013 ,求 s1+s2+s3+s4 +⋯+s2013的;② 研究:当n 取到无无尽,中全部三角形的面和将是什么?什么?22.已知:直角三角形AOB中,∠ AOB=90°,OA=3厘米, OB=4厘米.以 O 坐原点如建立平面直角坐系. P、Q 分 AB ,OB 上的点,它同分从点 A、 O 向 B 点匀速运,移的速度都 1 厘米每秒. P、Q 运的 t 秒( 0≤ t≤4).( 1)求△ OPQ的面 S 与(厘米2)与 t 的函数关系式;并指出当t 何 S的最大是多少?(2)当 t 何,△ BPQ和△ AOB 相似;(3)当 t 何,△ OPQ直角三角形;(4)① 明无 t 何,△ OPQ不能够能正三角形;②若点 P 的移速度不,改点Q 的运速度,使△ OPQ正三角形,求出点 Q 的运速度和此的t .湖北省黄冈市黄冈中学2018-2019 学年高一上学期提前录取模拟数学试题(一)参照答案一、选择题1.D;2.D;3.A; 4. A; 5. D; 6. B; 7. C; 8. C; 9. D; 10.B;二、填空题11.a≤1;12.( 4, 33); 13.;14.a2+b2=c2+d2; 15.8;16.;17.p <-1;18.0< b≤ 1;。

2020年湖北省黄冈中学理科实验班提前招生(预录)数学模拟试题一及答案

2020年湖北省黄冈中学理科实验班提前招生(预录)数学模拟试题一及答案

4.由 1,2,3,4 这四个数字组成四位数 abcd (数字可重复使用),要求满足 a c b d .
这样的四位数共有
()
A.36 个.
B.40 个.
C.44 个.
D.48 个. .
5、已知△ ABC 为锐角三角形,⊙ O 经过点 B,C,且与边 AB,AC 分别相交于点 D,E. 若
⊙ O 的半径与△ ADE 的外接圆的半径相等,则⊙ O 一定经过△ ABC 的( ).
( ).
(A)10 (B)9 (C)7 (D)5
8、设方程组 x3-xyz=-5, y3-xyz=2, z3-xyz=21 的正实数解有(

A、1 组 B、2 组 C、3 组 D、4 组
二、填空题:(本题满分 28 分,每小题 7 分)
9.在△ABC 中,已知 AB=AC,∠A=40°,P 为 AB 上一点,∠ACP=20°,则 BC =
(Ⅱ)解法一 设 PC a , DQ b ,不妨设 a ≥ b >0,
由(Ⅰ)可知
∠ ABP =∠ ABQ 30 , BC = 3a , BD = 3b ,
所以 AC = 3a 2 , AD = 2 3b . 因为 PC ∥ DQ ,所以△ ACP ∽△ ADQ .
于是 PC AC ,即 a 3a 2 .所以 a b 3ab . DQ AD b 2 3b
( xP
xQ )
3. 3
同理,若 xQ
3,可得 xP
3 ,从而 2
2 k 3 (xP xQ )
3. 3
所以,直线 PQ 的函数解析式为
y 3 x 1 ,或 y 3 x 1. ……………………………………19、如图,△ABC 为等腰

2005年黄高预录数学试卷

2005年黄高预录数学试卷

2005年黄高预录数学试卷一 选择题(6×5=30)1 若b+a 1=1 c+b 1=1 则a+c1=___ A 1 B 2 C 3 D 42 若x=a 2-2b+3π y=b 2-2c+6π z=c 2-2a+2π,则x,y,z 中( ) A 至少有一个大于0B 至少有一个不大于0A 至少有一个不小于0D 至少有一个小于03 如图,一个梯子放在左墙或右墙上,脚在P 点,梯顶分别在R,Q ,已知QM=k ,RN=h 则MN=_____ A 2h k + B hk kh + C k+(3-1)h D k+(2-3)h4已知点A(31,a 1) B(41,b 1) C(51,c 1), 且c a b +=21,b a c +2=21 则点A 、B 、C 可能A 在同一条直线上B 构成Rt △ABCC 组成锐角△ABCD 组成钝角△ABC5用3个边长为1的三个正方形组成一个对称图形,如图,用能将其覆盖的圆的最小半径为 A 2 B 25 C 45 D 16517 二,填空题(6×5=30)6 已知锐角△ABC 中 ,CA=2005 CB=2004 AB=4009则 cosC .sinA=_____7 直线y=-2x+1与抛物线y=x 2交于点P,Q ,坐标原点为O 则S △POQ =_____8学校有2001人,分别说西班牙语和法语,说西班牙语人数占总数的80%--85%。

说法语占30%--40%,则同时说两种语言的人数的最大值与最小值之差为____9 对于任意正数x ,满足x 2+x1-x ≧a-2 恒成立的a 的取值范围是_____10 已知AC=BC=4 DE=6 且BE,AE 为整数,则BE=_______三解答题(10×6=60)11 已知实数x、y满足x+y=35 3x+3y=13求x+y的值=1,求四边形ABEF的面积12 在梯形ABCD中,AE=EC CD=2AB.且S梯形ABCD13 设a,b,c 为三个不同的实数,方程x 2+ax+1=0和方程x 2+bx+c=0有一个相同实数根,并且方程x 2+x+a=0和方程x 2+cx+b =0也有一个相同实根,求5a+b+c 的值14 已知y=334222+-+-x x x x 为整数,求实数x15设x 1 x 2 ……x n 是整数,并且满足(1) -1≦x i ≦2(i=1、2 ……n)(2) x 1 +x 2 ……+x n =1.9(3) x 12+x 22+ ……x n 2 =99求x 13 +x 23 ……+x n 3最大值和最小值16 M 为线段BC 的中点,A 为平面上任一点(1) 求使∠MAC=150的A 点的轨迹(2)求∠ABC 的最大值(3)求542+-x x +2582+-x x 的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年黄冈预录训练数学试题
时间:120分钟 满分:120分
一、选择题(每小题5分,共30分)
1.若1
52
525+-+
+=
N ,则N =( )
A .1
B .2
C .3
D .4
2.一个完全平方数的最前两位数为19,最末两位数为99,则这样的完全平方数( ) A .不存在 B .只有一个 C .有两个 D .有两个以上
3.已知三角形的三条边长分别8x 、x 2、84,其中x 是正整数,这样的互不全等的三角形共有( )个.
A .5
B .6
C .7
D .8
4.如图,菱形ABCD 的边长为a ,点O 是对角线AC 上的一点,且OA
=a ,OB =OC =OD =1,则a 等于( ). (A

(B
(C )1 (D )2 5.将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先
后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组
322
ax by x y +=⎧⎨
+=⎩,
只有正数解的概率为( ). (A )
121 (B )92 (C )185 (D )36
13 6.如图1所示,在直角梯形ABCD 中,AB ∥DC ,90B ∠=︒. 动点P 从点
B 出发,沿梯形的边由B →
C →
D →A 运动. 设点P 运动的路程为x ,△ABP 的面积为y . 把y 看作x 的函数,函数的图像如图2所示,则△ABC 的面积为( ).
(A )10 (B )16 (C )18 (D )32
二、填空题(每小题5分,共30分)
7.当x 分别等于2008,2007,2006,,2,1,21
,,20061,20071,20081 时,计算代数式2
21x
x +的值,再把所得的结果全部加起来.则这个总和为____________.
8.某班学生共有50人,会游泳的有27人,会体操的有18人,游泳、体操都不会的有15人,那么既会游泳又会体操的有 人.
9.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶 3000 km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶 km .
10.设a ,b ,c 是从1到9的互不相同的整数,则
abc
c
b a ++的最大值
为 .
11.如图,D ,E 是等边△ABC 两边上的两个点,且AE=CD ,连结BE ,与AD 交
于点P ,过点B 作BQ ⊥AD 于Q , 那么,BP :PQ = .
12.已知12345a a a a a ,,,,是满足条件123459a a a a a ++++=的五个不同
的整数,若b 是关于x 的方程()()()()()123452009x a x a x a x a x a -----=的整数根,则b 的值为 .
三、解答题(共60分)
13.(10分)设a ,b 为整数,且方程012
=++bx ax 的两个不同的正数根都小于1,求a 的最小值.
14.(12分)已知正六边形ABCDEF 的边长为1,QR 是正六边形内平行于AB 的任意线段,求以QR 为底
边的内接于正六边形ABCDEF 的△PQR 的最大面积.
15.(12分)如图,给定锐角三角形ABC ,BC CA <,AD ,BE 是它的两条高,过点C 作△ABC 的外接圆的切线l ,过点D ,E 分别作l 的垂线,垂足分别为F ,G .试比较线段DF 和EG 的大小,并证明你的结论.
16.(12分)对满足2
2
1t s +=的一切实数,t s ,不等式
222(2)2(21)(21)2m t s t s t m ++->-++恒成立,求实数m 的取值范围.
17.(14分)如图,抛物线2
y 23=--x x 与x 轴交A 、B 两点 (A 点在B 点左侧),直线l 与抛物线交于A 、C 两点, 其中C 点的横坐标为2. (1)求A 、B 两点的坐标; (2)求直线AC 的函数表达式;
(3)P 是线段AC 上的一个动点,过P 点作y 轴的 平行线交抛物线于E 点,求线段PE 长度的最大值; (4)点G 抛物线上的动点,在x 轴上是否存在点F , 使A 、C 、F 、G 这样的四个点为顶点的四边形是平行 四边形?如果存在,求出所有满足条件的F 点坐标; 如果不存在,请说明理由.。

相关文档
最新文档