圆锥曲线选择填空题
圆锥曲线高考选择填空压轴题专练

圆锥曲线高考选择填空压轴题专练A 组一、选择题1.过抛物线C : 24y x =上一点()00,P x y 作两条直线分别与抛物线相交于A , B 两点,连接AB ,若直线AB 的斜率为1,且直线PA , PB 与坐标轴都不垂直,直线PA ,PB 的斜率倒数之和为3,则0y =( )A. 1B. 2C. 3D. 4 【答案】D【解析】设直线,PA PB 的斜率分别为12,k k ,因为点()00,P x y 在抛物线24y x =上,所以200,4y P y ⎛⎫⎪⎝⎭,故直线PA 的方程为20014y y y k x ⎛⎫-=- ⎪⎝⎭ ,代入抛物线方程得220011440y y y y k k -+-= ,其解为0y 和014y k - ,则()201021144,4y k A y k k ⎛⎫- ⎪- ⎪⎝⎭ ,同理可得()202022244,4y k B y k k ⎛⎫- ⎪- ⎪⎝⎭,则由题意,得()()001222010222124414444y y k k y k y k k k ⎛⎫--- ⎪⎝⎭=--- ,化简,得01211214y k k ⎛⎫=+-=⎪⎝⎭, 故选D. 2.已知双曲线221221(0,0)x y C a b a b-=>>:,抛物线224C y x =:, 1C 与2C 有公共的焦点F , 1C 与2C 在第一象限的公共点为M ,直线MF 的倾斜角为θ,且12cos 32aaθ-=-,则关于双曲线的离心率的说法正确的是()A. 仅有两个不同的离心率12,e e 且()()121,2,4,6e e ∈∈B. 仅有两个不同的离心率12,e e 且()()122,3,4,6e e ∈∈ C. 仅有一个离心率e 且()2,3e ∈ D. 仅有一个离心率e 且()3,4e ∈ 【答案】C 【解析】24y x = 的焦点为()1,0 , ∴ 双曲线交点为()1,0,即1c = ,设M 横坐标为x ,则0000011,1,121p a x ex a x x a x a a++=-+=-=- ,001111112cos 1132111a x aa a x a aθ+----===++-+- , 可化为2520a a -+= , ()22112510,2510g e e e a a ⎛⎫⨯-⨯+==-+= ⎪⎝⎭,()()()()200,10,20,30,1,2510g g g g e e e >∴-+= 只有一个根在()2,3 内,故选C.3.已知点1F 、2F 是椭圆22221(0)x y a b a b+=>>的左右焦点,过点1F 且垂直于x 轴的直线与椭圆交于A 、B 两点,若2ABF 为锐角三角形,则该椭圆的离心率的取值范围是( )A. ()1 B.⎫⎪⎪⎝⎭C.⎛⎝⎭D. )1,1【答案】D【解析】由于2ABF 为锐角三角形,则2212145,tan 12b AF F AF F ac∠<∠=<, 22b ac < , 2222,210a c ac e e -+-,1e <或1e >,又01e <<,11e << ,选D .4.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过2F 作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且2213AF F B =,则该双曲线的离心率为A.B. C. D. 2【答案】A【解析】由()2,0F c 到渐近线by x a=的距离为d b == ,即有2AF b = ,则23BF b = ,在2AF O ∆ 中, 22,,,bOA a OF c tan F OA a==∠=224tan 1bb a AOB a b a ⨯∠==⎛⎫- ⎪⎝⎭,化简可得222a b = ,即有222232c a b a =+= ,即有62c e a == ,故选A. 5.焦点为F 的抛物线C : 28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线MA 的方程为( )A. 2y x =+或2y x =--B. 2y x =+C. 22y x =+或22y x =-+D. 22y x =-+ 【答案】A【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF===∠∠,则当MA MF取得最大值时, MAF ∠必须取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k =-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .6.设A 是双曲线22221(0,0)x y a b a b-=>>的右顶点, (),0F c 是右焦点,若抛物线224a y x c=-的准线l 上存在一点P ,使30APF ∠=,则双曲线的离心率的范围是( )A. [)2,+∞B. (]1,2C. (]1,3D. [)3,+∞ 【答案】A【解析】抛物线的准线方程为2a x c =,正好是双曲的右准线.由于AF= c a -,所以AF弦,圆心)2a c O c a ⎛⎫+- ⎪ ⎪⎝⎭,半径R c a =-圆上任取一点P, 30APF ∠=,现在转化为圆与准线相交问题.所以()22a c a c a c+-≤-,解得2e ≥.填A. 7.中心为原点O 的椭圆焦点在x 轴上, A 为该椭圆右顶点, P 为椭圆上一点,090OPA ∠=,则该椭圆的离心率e 的取值范围是 ( )A. 1,12⎡⎫⎪⎢⎣⎭B. ,12⎛⎫⎪ ⎪⎝⎭C. 1,23⎡⎫⎪⎢⎪⎣⎭D. 0,2⎛ ⎝⎭【答案】B【解析】设椭圆标准方程为22221(0)x y a b a b+=>>,设P(x,y),点P 在以OA 为直径的圆上。
高二圆锥曲线基础练习题及答案

高二圆锥曲线基础练习题及答案一、选择题1. 下列关于椭圆的说法,正确的是:A. 所有椭圆都是对称图形。
B. 椭圆的离心率大于1。
C. 椭圆的长轴和短轴相等。
D. 椭圆的焦点个数与离心率有关。
答案:D2. 设椭圆的长轴长度为10,短轴长度为6,则该椭圆的离心率为:A. 3/5B. 1/2C. 2/3D. 5/6答案:C3. 下列关于双曲线的说法,正确的是:A. 所有双曲线都是开口向上的图形。
B. 双曲线的离心率等于1。
C. 双曲线的长轴和短轴相等。
D. 双曲线的焦点个数与离心率有关。
答案:D4. 设双曲线的长轴长度为8,短轴长度为4,则该双曲线的离心率为:A. 2B. 3/2C. 4/3D. 5/4答案:B5. 下列关于抛物线的说法,正确的是:A. 抛物线的焦点位于抛物线的顶点上。
B. 抛物线的离心率等于1。
C. 抛物线的长轴和短轴相等。
D. 抛物线的焦点个数与离心率有关。
答案:A二、填空题1. 设椭圆的长轴长度为12,短轴长度为8,则该椭圆的离心率为__________。
答案:2/32. 设直角双曲线的焦点到中心的距离为3,焦点到顶点的距离为5,则该直角双曲线的离心率为__________。
答案:4/53. 设抛物线的焦距为6,顶点到焦点的距离为4,则该抛物线的离心率为__________。
答案:3/2三、解答题1. 某椭圆的长轴长度为10,焦距为6,求离心率和短轴的长度。
解:设椭圆的离心率为e,短轴长度为b。
根据椭圆的定义,焦距的长度为ae,即6 = ae。
由此可以解得椭圆的离心率为e = 6/a。
又已知长轴长度为10,即2a = 10,解得a = 5。
将a = 5代入离心率的公式,可得e = 6/5。
由椭圆的定义可知,离心率e = √(1 - b²/a²),代入已知的离心率和a的值,可得√(1 - b²/25) = 6/5。
将等式两边平方化简,得到1 - b²/25 = 36/25,即1 - b² = 36,解得b = √(1 - 36) = √(-35)。
圆锥曲线综合测试题(含详细答案)

圆锥曲线测试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =-14x 2的准线方程为( )A .x =116B .x =1C .y =1D .y =2解析: 抛物线的标准方程为x 2=-4y , 准线方程为y =1. 答案: C2.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 解析: 双曲线x 24-y 212=-1的焦点坐标为(0,±4),顶点坐标为(0,±23),故所求椭圆的焦点在y 轴上,a =4,c =23, ∴b 2=4,所求方程为x 24+y 216=1,故选D. 答案: D3.设P 是椭圆x 2169+y 2144=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .13解析: 由椭圆的定义知,|PF 1|+|PF 2|=26, 又∵|PF 1|=4,∴|PF 2|=26-4=22. 答案: A4.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A.⎝⎛⎭⎫22,0B.⎝⎛⎭⎫52,0C.⎝⎛⎭⎫62,0D .(3,0)解析: 将双曲线方程化为标准方程为x 2-y 212=1,∴a 2=1,b 2=12,∴c 2=a 2+b 2=32,∴c =62, 故右焦点坐标为⎝⎛⎭⎫62,0.答案: C 5.若抛物线x 2=2py的焦点与椭圆x 23+y 24=1的下焦点重合,则p 的值为( )A .4B .2C .-4D .-2解析: 椭圆x 23+y 24=1的下焦点为(0,-1),∴p2=-1,即p =-2. 答案: D6.若k ∈R ,则k >3是方程x 2k -3-y 2k +3=1表示双曲线的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析: 方程x 2k -3-y 2k +3=1表示双曲线的条件是(k -3)(k +3)>0,即k >3或k <-3.故k >3是方程x 2k -3-y 2k +3=1表示双曲线的充分不必要条件.故选A. 答案: A7.已知F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1) B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫0,22 D.⎣⎡⎭⎫22,1解析: 由MF 1→·MF 2→=0可知点M 在以线段F 1F 2为直径的圆上,要使点M 总在椭圆内部,只需c <b ,即c 2<b 2,c 2<a 2-c 2,2c 2<a 2, 故离心率e =c a <22.因为0<e <1,所以0<e <22. 即椭圆离心率的取值范围是⎝⎛⎭⎫0,22.故选C. 答案: C8.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A.45B.35 C .-35D .-45解析 方法一:由⎩⎪⎨⎪⎧ y =2x -4,y 2=4x ,得⎩⎪⎨⎪⎧ x =1,y =-2或⎩⎪⎨⎪⎧x =4,y =4.令B (1,-2),A (4,4),又F (1,0),∴由两点间距离公式得|BF |=2,|AF |=5,|AB |=3 5. ∴cos ∠AFB =|BF |2+|AF |2-|AB |22|BF |·|AF |=4+25-452×2×5=-45.方法二:由方法一得A (4,4),B (1,-2),F (1,0), ∴F A →=(3,4),FB →=(0,-2), ∴|F A →|=32+42=5,|FB →|=2.∴cos ∠AFB =F A →·FB→|F A →|·|F B →|=3×0+4×(-2)5×2=-45.答案: D9.F 1、F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7 B.72 C.74D.752解析: |F 1F 2|=22,|AF 1|+|AF 2|=6,|AF 2|=6-|AF 1|.|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|cos 45° =|AF 1|2-4|AF 1|+8(6-|AF 1|)2 =|AF 1|2-4|AF 1|+8,∴|AF 1|=72.S =12×72×22×22=72. 答案: B10.已知点M (-3,0)、N (3,0)、B (1,0),动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( )A .x 2-y 28=1(x >1) B .x 2-y 28=1(x <-1) C .x 2+y 28=1(x >0) D .x 2-y 210=1(x >1) 解析: 设圆与直线PM 、PN 分别相切于E 、F , 则|PE |=|PF |,|ME |=|MB |,|NB |=|NF |. ∴|PM |-|PN |=|PE |+|ME |-(|PF |+|NF |) =|MB |-|NB |=4-2=2<|MN |.所以点P 的轨迹是以M (-3,0),N (3,0)为焦点的双曲线的一支,且a =1, ∴c =3,b 2=8, ∴所以双曲线方程是x 2-y 28=1(x >1). 答案: A11.(2009全国卷Ⅰ理)已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D). 3解:过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =,故2||3BM =.又由椭圆的第二定义,得222||233BF =⋅=||2AF ∴=.故选A 12.(2009山东卷理)设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ).A.45B. 5C. 25D.5【解析】:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x a y x ⎧=⎪⎨⎪=+⎩,消去y,得210b x x a -+=有唯一解,所以△=2()40ba-=, 所以2b a =,2221()5c a b b e a a a+===+=,故选D.答案:D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.若双曲线的渐近线方程为y =±13x ,它的一个焦点是(10,0),则双曲线的标准方程是________.解析: 由双曲线的渐近线方程为y =±13x ,知b a =13,它的一个焦点是(10,0),知a 2+b 2=10, 因此a =3,b =1,故双曲线的方程是x 29-y 2=1.答案: x 29-y 2=112.若过椭圆x 216+y 24=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是________.解析: 设直线方程为y -1=k (x -2),与双曲线方程联立得(1+4k 2)x 2+(-16k 2+8k )x +16k 2-16k -12=0, 设交点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=16k 2-8k 1+4k 2=4,解得k =-12, 所以直线方程为x +2y -4=0. 答案: x +2y -4=013.如图,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是________.解析: ∵△POF 2是面积为3的正三角形, ∴12c 2sin 60°=3, ∴c 2=4, ∴P (1,3),∴⎩⎪⎨⎪⎧1a 2+3b 2=1,a 2=b 2+4,解之得b 2=2 3. 答案: 2 314.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________.解析: 显然x 1,x 2≥0,又y 21+y 22=4(x 1+x 2)≥8x 1x 2, 当且仅当x 1=x 2=4时取等号,所以最小值为32. 答案: 32三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,且经过点(2,0)和点(0,1);(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解析: (1)因为椭圆的焦点在x 轴上, 所以可设它的标准方程为x 2a 2+y 2b 2=1(a >b >0),∵椭圆经过点(2,0)和(0,1)∴⎩⎨⎧22a 2+0b 2=10a 2+1b 2=1,∴⎩⎪⎨⎪⎧a 2=4b 2=1,故所求椭圆的标准方程为x 24+y 2=1.(2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为 y 2a 2+x 2b 2=1(a >b >0), ∵P (0,-10)在椭圆上,∴a =10.又∵P 到它较近的一个焦点的距离等于2, ∴-c -(-10)=2,故c =8,∴b 2=a 2-c 2=36. ∴所求椭圆的标准方程是y 2100+x 236=1.18.(12分)已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,求双曲线方程.解析: 由椭圆方程可得椭圆的焦点为F (0,±4), 离心率e =45,所以双曲线的焦点为F (0,±4),离心率为2, 从而c =4,a =2,b =2 3. 所以双曲线方程为y 24-x 212=1.19.(12分)设椭圆的中心在原点,焦点在x 轴上,离心率e =32.已知点P ⎝⎛⎭⎫0,32 到这个椭圆上的点的最远距离为7,求这个椭圆的方程.解析: 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),M (x ,y )为椭圆上的点,由c a =32得a =2b .|PM |2=x 2+⎝⎛⎭⎫y -322=-3⎝⎛⎭⎫y +122+4b 2+3(-b ≤y ≤b ), 若b <12,则当y =-b 时,|PM |2最大,即⎝⎛⎭⎫b +322=7, 则b =7-32>12,故舍去.若b ≥12时,则当y =-12时,|PM |2最大,即4b 2+3=7,解得b 2=1.∴所求方程为x 24+y 2=1.20.(12分)已知椭圆的长轴长为2a ,焦点是F 1(-3,0)、F 2(3,0),点F 1到直线x =-a 23的距离为33,过点F 2且倾斜角为锐角的直线l 与椭圆交于A 、B 两点,使得|F 2B |=3|F 2A |.(1)求椭圆的方程; (2)求直线l 的方程.解析: (1)∵F 1到直线x =-a 23的距离为33,∴-3+a 23=33.∴a 2=4. 而c =3, ∴b 2=a 2-c 2=1. ∵椭圆的焦点在x 轴上, ∴所求椭圆的方程为x 24+y 2=1.(2)设A (x 1,y 1)、B (x 2,y 2). ∵|F 2B |=3|F 2A |,∴⎩⎪⎨⎪⎧3=x 2+3x 11+3,0=y 2+3y 11+3,⎩⎪⎨⎪⎧x 2=43-3x 1,y 2=-3y 1.∵A 、B 在椭圆x 24+y 2=1上,∴⎩⎪⎨⎪⎧x 214+y 21=1,(43-3x 1)24+(-3y 1)2=1.∴⎩⎪⎨⎪⎧x 1=1033,y 1=233(取正值).∴l 的斜率为233-01033-3= 2.∴l 的方程为y =2(x -3), 即2x -y -6=0.21.(12分)已知直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线相交于A 、B 两点.(1)若|AF |=4,求点A 的坐标; (2)求线段AB 的长的最小值. 解析: 由y 2=4x ,得p =2, 其准线方程为x =-1,焦点F (1,0). 设A (x 1,y 1),B (x 2,y 2). (1)由抛物线的定义可知.|AF |=x 1+p2,从而x 1=4-1=3.代入y 2=4x ,解得y 1=±2 3.∴点A 的坐标为(3,23)或(3,-23). (2)当直线l 的斜率存在时, 设直线l 的方程为y =k (x -1).与抛物线方程联立,得⎩⎪⎨⎪⎧y =k (x -1)y 2=4x,消去y ,整理得k 2x 2-(2k 2+4)x +k 2=0, 因为直线与抛物线相交于A 、B 两点, 则k ≠0,并设其两根为x 1,x 2, 则x 1+x 2=2+4k 2.由抛物线的定义可知, |AB |=x 1+x 2+p =4+4k2>4,当直线l 的斜率不存在时,直线l 的方程为x =1,与抛物线交于A (1,2),B (1,-2),此时|AB |=4.所以|AB |≥4,即线段AB 的长的最小值为4.22.(12分)如图,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,x 轴被曲线C 2:y =x 2-b截得的线段长等于C 1的长半轴长.(1)求C 1,C 2的方程.(2)设C 2与y 轴的交点为M ,过坐标原点O 的直线l 与C 2相交于点A ,B ,直线MA ,MB 分别与C 1相交于点D ,E .证明:MD ⊥ME .解析: 由题意知e =c a =32,从而a =2b .又2b =a ,所以a =2,b =1.故C 1,C 2的方程分别为x 24+y 2=1,y =x 2-1.(2)证明:由题意知,直线l 的斜率存在,设为k ,则直线l 的方程为y =kx .由⎩⎪⎨⎪⎧y =kx ,y =x 2-1,得x 2-kx -1=0. 设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,于是x 1+x 2=k ,x 1x 2=-1. 又点M 的坐标为(0,-1),所以k MA ·k MB =y 1+1x 1·y 2+1x 2=(kx 1+1)(kx 2+1)x 1x 2=k 2x 1x 2+k (x 1+x 2)+1x 1x 2=-k 2+k 2+1-1=-1.故MA ⊥MB ,即MD ⊥ME .。
(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
圆锥曲线基础训练题及答案

圆锥曲线基础训练题姓名____________分数______________一、选择题1 .抛物线y 2=ax 的焦点坐标为(-2,0),则抛物线方程为( )A .y 2=-4x B .y 2=4x C .y 2=-8x D .y 2=8x2 .如果椭圆的两个焦点三等分它所在的准线间的垂线段,那么椭圆的离心率为 ( )A .23 B .33 C .36 D .66 3 .双曲线191622=-y x 的渐近线方程为 ( )A . x y 34±= B .x y 45±= C .x y 35±= D .x y 43±= 4 .抛物线 x y 42= 的焦点坐标是( )A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)5 .双曲线221916y x -=的准线方程是 ( ) A 165x =±B 95x =±C 95y =±D 165y =± 6 .双曲线221169x y -=上的点P 到点(5,0)的距离是15,则P 到点(-5,0)的距离是 ( )A .7B .23C .5或23D .7或237 .双曲线1322=-y x 的两条渐近线方程是 ( )A .03=±y xB .03=±y xC .03=±y xD .03=±y x8 .以椭圆的焦点为圆心,以焦距为半径的圆过椭圆的两个顶点,则椭圆的离心率为 ( )A .43)D (23)C (22)B (219 .抛物线y x 42=上一点A 纵坐标为4,则点A 与抛物线焦点的距离为( )A .2B .3C .4D .510.抛物线()042<=a ax y 的焦点坐标是( )A .⎪⎭⎫⎝⎛041,a B .⎪⎭⎫ ⎝⎛a 1610,C .⎪⎭⎫ ⎝⎛-a 1610,D .⎪⎭⎫⎝⎛0161,a 11.椭圆2x 2=1-3y 2的顶点坐标为( )A .(±3,0),(0,±2)B .(±2,0),(0,±3)C .(±22,0),(0,±33) D .(±12,0),(0,±13) 12.焦距是10,虚轴长是8,经过点(23, 4)的双曲线的标准方程是( )A .116922=-y x B .116922=-x y C .1643622=-y x D .1643622=-x y 13.双曲线22124x y -=-的渐近线方程为( )A .y =B .x =C .12y x =±D .12x y =±14.已知椭圆方程为1322=+y x ,那么左焦点到左准线的距离为 ( )A .22 B .223 C .2D .2315.抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x-4y-12=0上,此抛物线的方程是 ( )A .y 2=16xB .y 2=12xC .y 2= -16xD .y 2= -12x16.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .3C .12 D .217.下列表示的焦点在y 轴上的双曲线方程是( )A .13422=+y xB .14322=+y xC .13422=-y xD .13422=-x y 18.抛物线y =2px 2(p ≠0)的焦点坐标为( )A .(0,p )B .(10,4p ) C .(10,8p) D .(10,8p±) 19.与椭圆205422=+y x 有相同的焦点,且顶点在原点的抛物线方程是( )A .x y 42=B .x y 42±=C .y x 42=D .y y 42±=20.已知双曲线的渐近线方程为x y43±=,则此双曲线的( )A .焦距为10B .实轴和虚轴长分别是8和6C .离心率是45或35 D .离心率不确定21.双曲线122=-y x 的渐近线方程是( )A .±=x 1B .y =C .x y ±=D .x y 22±= 22.若命题“曲线C 上的点的坐标都是方程f(x ,y)=0的解”是正确的,则以下命题中正确的是( )A .方程(x ,y)=0的曲线是CB .坐标满足方程f(x ,y)=0的点都在曲线C 上 C .曲线C 是方程f(x ,y)=0的轨迹D .方程f(x ,y)=0的曲线不一定是C23.双曲线221916y x -=的准线方程是 ( )A .165x =±B .95x =±C .95y =±D .165y =±24.双曲线191622=-x y 的焦点坐标是 ( )A .()0,5和()0,5-B .()5,0和()5,0-C .()0,7和()0,7- D .()7,0和()7,0-25.已知抛物线的焦点坐标为(-3,0),准线方程为x =3,则抛物线方程是( )A .y 2+6x =0B .y 2+12x =0C .y +6x 2=0D .y +12x 2=0 26.双曲线 191622=-y x 的渐近线的方程是( )A .x y 43±= B .x y 34±= C .x y 169±= D .x y 916±= 27.对抛物线24y x =,下列描述正确的是( )A .开口向上,焦点为(0,1)B .开口向上,焦点为1(0,)16 C .开口向右,焦点为(1,0)D .开口向右,焦点为1(0,)1628.双曲线2y 2-x 2=4的一个焦点坐标是( )A .(0,-)6B .(6,0)C .(0,-2)D .(2,0)29.若抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则p 的值为 ( )A .-2B .2C .-4D .430.到直线x=-2与定点P (2,0)距离相等的点的轨迹是( )A .抛物线B .双曲线C .椭圆D .直线二、填空题31.(1)短轴长为6,且过点(1,4)的椭圆标准方程是(2)顶点(-6,0),(6,0)过点(3,3)的椭圆方程是 32.与两坐标轴距离相等的点的轨迹方程是________________________33.椭圆4422=+y x 的焦点坐标为___________,__________. 34.抛物线x y 42=的准线方程为______ 35.到x 轴,y 轴距离相等的点的轨迹方程_________.36.已知两个定点1(4,0)F -,2(4,0)F ,动点P 到12,F F 的距离的差的绝对值等于6,则点P 的轨迹方程是 ;37.若双曲线22145x y -=上一点P 到右焦点的距离为8,则P 到左准线的距离为38.若定点(1,2)A 与动点(),Px y 满足,4OP OA ⋅=则点P 的轨迹方程是39.已知双曲线的离心率为2,则它的实轴长和虚轴长的比为 。
圆锥曲线练习题含答案

圆锥曲线一、选择题(共13小题;共65分)1. 已知方程表示椭圆,则实数的取值范围是A. B.C. D.2. 已知双曲线的一条渐近线的方程为,则该双曲线的离心率为A. B. C. D.3. 如果方程表示焦点在轴上的椭圆,那么实数的取值范围是A. B. C. D.4. 是双曲线上一点,,分别是双曲线左右焦点,若,则A. B.C. 或D. 以上答案均不对5. 已知椭圆的离心率为,双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为,则椭圆的方程为A. B. C. D.6. 已知椭圆的左焦点为,上顶点为,若直线与平行,则椭圆的离心率为A. B. C. D.7. 已知是抛物线的焦点,,是该抛物线上的两点,,则线段的中点到轴的距离为A. B. C. D.8. 以坐标原点为对称中心,两坐标轴为对称轴的双曲线的一条渐近线的倾斜角为,则双曲线的离心率为A. 或B. 或C.D.9. 已知方程表示双曲线,则实数的取值范围是A. B.C. D.10. 已知椭圆:的左、右焦点为,,离心率为,过的直线交于,两点,若的周长为,则的方程为A. B. C. D.11. 已知抛物线的焦点为,为抛物线上一点,满足,则A. B. C. D.12. 已知双曲线右支上一点到左、右焦点的距离之差为,到左准线的距离为,则到右焦点的距离为A. B. C. D.13. 已知椭圆的左右顶点分别为,,上顶点为,若是底角为的等腰三角形,则A. B. C. D.二、填空题(共5小题;共25分)14. 已知双曲线经过点,其一条渐近线方程为,则该双曲线的标准方程为.15. 设,是双曲线的两个焦点,点在双曲线上,设为线段的中点,为坐标原点,若,则,.16. 已知点,是椭圆的两个焦点,过且垂直于轴的直线交椭圆于,两点,且,那么椭圆的方程为.17. 若拋物线上一点到焦点的距离是该点到轴距离的倍,则.18. 设是抛物线上的一个动点,则点到点的距离与点到直线的距离之和的最小值为.三、解答题(共6小题;共78分)19. 在抛物线上求一点,使到焦点与到点的距离之和最小.20. 已知,是双曲线的两个焦点,过的直线交双曲线右支于,两点,且,求的周长.21. 已知,为双曲线的焦点,过作垂直于轴的直线交双曲线于点,且.求双曲线的渐近线方程.22. 已知双曲线与椭圆有相同的焦点,,且两曲线的一个公共点满足:是直角三角形且,求双曲线的标准方程.23. 在中,,如果一个椭圆通过,两点,它的一个焦点为点,另一个焦点在边上,求这个椭圆的焦距.24. 如图,已知,为双曲线的焦点,过作垂直于轴的直线交双曲线于点,且.求:(1)双曲线的离心率;(2)双曲线的渐近线方程.答案第一部分1. D2. B3. D4. B 【解析】双曲线的,,,由双曲线的定义可得,,可得或,若,则在右支上,应有,不成立;若,则在左支上,应有,成立.5. C【解析】由题意,双曲线的渐近线方程为,因为以这四个交点为顶点的四边形的面积为,所以边长为所以在椭圆上,所以因为椭圆的离心率为,所以,则联立解得:,.所以椭圆方程为:.6. B 【解析】由题意,,所以,所以,所以.7. B 【解析】设点到准线的距离为,点到准线的距离为,则,则线段的中点到轴的距离为.8. B 【解析】因为以坐标原点为对称中心,两坐标轴为对称轴的双曲线的一条渐近线的倾斜角为,所以或,当时,,,,此时,当时,,,,此时.10. A【解析】依题意可得:解出所以椭圆方程为.11. C12. B 【解析】由题意可知:双曲线焦点在轴上,焦点为,,则,即,则,由,双曲线的准线方程为,点到右准线的距离为,由双曲线的第二定义,点到右焦点的距离为,故到右焦点的距离.13. D第二部分14.15. ,或【解析】如图,由题意,为的一条中位线,所以.由双曲线的定义,得,所以,或.16.【解析】由题意知,且,解得,,所以椭圆的方程为.【解析】拋物线上一点到焦点的距离是该点到轴距离的倍,可得,所以.18.【解析】如图,易知抛物线的焦点为,准线是,由抛物线的定义知:点到直线的距离等于点到的距离.于是,问题转化为在抛物线上求一点,使点到点的距离与点到的距离之和最小,显然,连接与抛物线相交的点即为满足题意的点,此时最小值为.第三部分19. 如图所示,设抛物线上的点到准线的距离为.所以.显然当、、三点共线时,最小.因为,可设为,将其代入得,故的坐标为.20. 由题意及双曲线的定义可知,,所以.又因为,所以,所以的周长为.21. 如图,设,,则,解得,所以.在直角三角形中,,所以,由双曲线定义可知,得.因为,所以,即,所以 .故所求双曲线的渐近线方程为.22. 设双曲线的标准方程为.由题意得.由题意不妨设,则.又,所以,,所以,所以,所以双曲线的标准方程为.23. 如图所示,在中,得由得.所以.得.所以焦距.故椭圆的焦距为.24. (1)因为,.在中,,,又,即,,所以.(2)对于双曲线,有,所以,所以.所以双曲线的渐近线方程为.。
圆锥曲线试卷

圆锥曲线复习卷一.选择题(共12题,每小题5分,共60分)1.若双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线被圆22(2)2x y -+=所截得的弦长为2,则C 的离心率为( )A B C D .22.设F 是双曲线22221(0,0)x y a b a b-=>>的右焦点.过点F 作斜率为-3的直线l 与双曲线左、右支均相交.则双曲线离心率的取值范围为( )A .B .C .)+∞D .)+∞3.我们把由半椭圆22221(0)x y x a b +=≥与半椭圆22221(0)y x x b c+=<合成的曲线称作“果圆”(其中222,a b c =+0a b c >>>).如图,设点012,,F F F 是相应椭圆的焦点,12,A A 和12,B B 是“果圆”与,x y 轴的交点,若012F F F ∆是边长为1的等边三角,则,a b 的值分别为( )A B C .5,3 D .5,44.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF ∆是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .221412x y -= B .221124x y -= C .2213x y -= D .2213y x -= 5.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点P 是C 的右支上一点,连接1PF 与y 轴交于点M ,若12||FO OM =(O 为坐标原点),12PF PF ⊥,则双曲线C 的渐近线方程为( )A .3y x =±B .y =C .2y x =±D .y = 6.已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于,A B 两点.若223AF BF =,125BF BF =,则C 的方程为( ).A .2212x y += B .22132x y += C .22143x y += D .22154x y += 7.已知抛物线24y x =,过点(2,0)的直线交该抛物线于A B ,两点O 为坐标原点,F 为抛物线的焦点若||5AF =,则AOB 的面积为( )A .5B .6C .7D .88.下列命题错误的是( )①y =2y x =表示的是同一条抛物线①所有过原点的直线都可设为y kx =;①若方程220x y Dx Ey F ++++=表示圆,则必有2240D E F +->①椭圆2248x y +=A .①②B .②④C .③④D .①②④9.直线l 过抛物线2:2C y px =(0)p >的焦点F ,与抛物线C 交于点A ,B ,若||||AF t FB =,若直线l 的斜率为125,则t =( ) A .169 B .32或23 C .94 D .94或4910.已知双曲线22122:1x y C a b -=(0,0)a b >>以椭圆222:143x y C +=的焦点为顶点,左右顶点为焦点,则1C 的渐近线方程为( )A 0y ±=B .0x ±=C .20x =D 20y ±=11.已知双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线均与圆222()4b x a y -+=相切,则双曲线C 的离心率为( )A B .2 C .3 D .412.双曲线C :22221(0,0)x y a b a b-=>>左、右焦点分别为1F ,2F ,左、右顶点分别为12,A A ,B 为虚轴的上顶点,若直线2BF 上存在两点()1,2i P i =使得()121,2i i A P A P i ⊥=,且过双曲线的右焦点2F 作斜率为1的直线与双曲线的左、右两支各有一个交点,则双曲线离心率的范围是( )A e <<B e <<C 2e <<D 12e +<< 二.填空题(共4小题,每题5分,共20分)13.已知12F F 、是椭圆22221(0)y x a b a b+=>>的两焦点,过2F 且垂直于y 轴的直线与椭圆交于A B 、两点,若1ABF 为直角三角形,则该椭圆离心率的值为_____.14.已知抛物线2:4C y x =的准线为l ,过点(1,0)-作斜率为正值的直线l 交C 于A ,B 两点,AB 的中点为M .过点A ,B ,M 分别作x 轴的平行线,与l 分别交于D ,E ,Q ,则当||||MQ DE 取最小值时,||AB =________.15.已知F 是双曲线C :2213y x -=的一个焦点,点P 在C 上,O 为坐标原点,若OP OF =,则OPF 的面积为______.16.已知直线1y x =-+与椭圆()222210,0x y a b a b-=>>相交于A ,B 两点,且OA OB ⊥(O 为坐标原点),若椭圆的离心率122e ⎡∈⎢⎣⎦,则a 的最大值为___________.三.解答题(共6题,第一题10分,其他每题12分,共70分)17.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(①)求曲线C 的方程;(①)设不经过点(0,Q 的直线l 与曲线C 相交于A ,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为-2,证明:直线l 过定点.18.如图,已知抛物线2:8C y x =的焦点是F ,准线是l .(①)写出焦点F 的坐标和准线l 的方程;(①)已知点()8,8P ,若过点F 的直线交抛物线C 于不同的两点A 、B (均与P 不重合),直线PA 、PB 分别交l 于点M 、N 求证:MF NF ⊥.19.已知点F 是椭圆C :22221(0)x y a b a b +=>>的右焦点,且其短轴长,若2,0a A c ⎛⎫ ⎪⎝⎭点满足20FO FA +=(其中点O 为坐标原点).(①)求椭圆的方程;(①)若斜率为1的直线与椭圆C 交于P ,Q 两点,与y 轴交于点B ,若点P 是线段BQ 的中点,求该直线方程;若12//l l ,求实数a 的值;20.已知点A (0①①2),椭圆E ①22221x y a b += (a >b >0)的离心率为2①F 是椭圆E 的右焦点,直线AF 的斜率为3①O 为坐标原点. (①)求E 的方程;(①)设过点A 的动直线l 与E 相交于P ①Q 两点.当①OPQ 的面积最大时,求l 的方程.21.设椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12F F 、,过2F 的直线交椭圆于A B ,两点,若椭圆C 的离心率为12,1ABF 的周长为8. (①)求椭圆C 的方程;(①)已知直线:2l y kx =+与椭圆C 交于M N 、两点,是否存在实数k 使得以MN 为直径的圆恰好经过坐标原点?若存在,求出k 的值;若不存在,请说明理由.22.已知椭圆Γ:22221(0)x y a b a b+=>>的离心率为12,点A 为该椭圆的左顶点,过右焦点(),0F c 的直线l 与椭圆交于B ,C 两点,当BC x ⊥轴时,三角形ABC 的面积为18.(①)求椭圆Γ的方程;(①)如图,当动直线BC 斜率存在且不为0时,直线x c =分别交直线AB ,AC 于点M 、N ,问x 轴上是否存在点P ,使得PM PN ⊥,若存在求出点P 的坐标;若不存在说明理由.。
专题9-1 圆锥曲线(选填)(解析版)2023年高考数学二轮专题全套热点题型

【答案】1 【详解】 抛物线 y2 8x ,
抛物线的准线为 x 2 ,焦点 F 2,0 ,
过点 P 作直线 l 的垂线交于点 C ,如图所示:
由抛物线的定义可知,| PF || PB || PA | p , 2
则| PA || PF | p | PF | 2 , 2
d | x0 || PC | | PF | 2, 当 F , P , C 三点共线时, | PC | | PF |取得最小值,即 d | x0 | 取得最小值, F (2, 0),
专题 9-1 圆锥曲线(选填)
目录 专题 9-1 圆锥曲线(选填) ................................................................................................................... 1
B. x2 y2 1
32 36
C. x2 y2 1 95
【答案】C 【详解】根据题意,作图如下:
D. x2 y2 1 59
易知 NM NQ ,则 NP NM 6 ,即 NP NQ 6 PQ 4 ,
故点 N 的轨迹是以 P,Q 为焦点且长轴长为 6 的椭圆,
设其方程为 x2 a2
③抛物线的定义:平面内与一个定点 F 和一条定直线 l (其中定点 F 不在定直线 l 上)的距 离相等的点({M || MF | d} )的轨迹叫做抛物线,定点 F 叫做抛物线的焦点,定直线 l 叫做
抛物线的准线.
【变式演练】
1.(2022·四川·成都外国语学校高二期中(理))已知双曲线
x2 9
y2 16
整理得 x2 2ax 2b2 0 ,
由于点 M 在第一象限, x a a2 2b2 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、(2017新课标2)9.若双曲线)00(1:22
22>>=-b a b
y a x C ,的一条渐近线被圆
4)2(22=+-y x 所截得的弦长为2,则C 的离心率为
A .2
B .3
C .2
D .
3
32 2、(2016新课标2)(11)已知F 1,F 2是双曲线E 的左,右焦点,点
M 在E 上,M F 1与 轴垂直,sin ,则E 的离心率为
(A ) (B ) (C ) (D )2
3、(2015新课标2)11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A
.2 C
4、(2014新课标2)10.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )
C. 6332
D. 94
5、(2013新课标2)(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,
|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为 (A )y2=4x 或y2=8x (B )y2=2x 或y2=8x (C )y2=4x 或y2=16x (D )y2=2x 或y2=16x
6、(2012新课标2)(4)设是椭圆22
22:1(0)x y E a b a b +=>>的左、右焦点,
P 为直线上一点, 12F F 32
a
x =
∆是底角为的等腰三角形,则E 的离心率为( )
()
A 12 ()
B 23 ()
C 3
4
()
D 4
5
7、(2012新课标2)(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B
两点,AB =C 的实轴长为( )
()
A ()B
()C 4 ()D 8
8、(2011新课标2)(10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=
(A) 45
(B)35 (C)3
5- (D)45-
9、(2011新课标2)(15)已知F 1、F 2分别为双曲线C : 2
9
x - 227y =1的左、右焦点,
点A ∈C ,点M 的坐标为(2,0),AM 为∠F 1AF 2∠的平分线.则|AF 2| = . 10、(2017新课标1)10.已知F 为抛物线C :y 2
=4x 的焦点,过F 作两条互相
垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16
B .14
C .12
D .10
11、(2017新课标1)15.已知双曲线C :22
221x y a b
-=(a >0,b >0)的右顶点为A ,
以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点。
若∠MAN =60°,则C 的离心率为________。
12、(2016新课标1)(5)已知方程1322
2
2=--+n
m y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则m 的取值范围是 (A )(1-,3) (B )
(1-,3) (C )(0,3) (D )(0,3)
21F PF 30
13、(2016新课标1)(10)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知24=AB ,52=DE ,则C 的焦点到准线的距离为
(A )2 (B )4 (C )6 (D )8 14、(2015新课标1)(5)已知M (x 0,y 0)是双曲线C :
2
212
x y -= 上的一点,F 1、F 2是C 上的两个焦点,若1MF ∙2MF <0,则y 0的取值范围是
(A )(-3,3)(B )(-6,6
)(C )(3-,3) (D )(
) 15、(2015新课标1)(14)一个圆经过椭圆14
162
2=+
y x 的三个顶点,且圆心在x 轴上,则该圆的标准方程为 。
16、(2014新课标1)4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,
则点F 到C 的一条渐近线的距离为A B .3
C D .3m
17、(2014新课标1)10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF =
A .
72 B .5
2
C .3
D .2
18、(2013课标全国Ⅰ)(4)已知双曲线C :22
22=1x y a b
-(a >0,b >0)的离心率
C 的渐近线方程为( ).
A .y =14x ±
B .y =13x ±
C .y =1
2x
± D .y =±x
19、(2013课标全国Ⅰ,理10)已知椭圆E :22
22=1x y a b
+(a >b >0)的右焦点为
F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).
A .22=14536x y +
B .22=13627x y +
C .22=12718x y +
D .22
=1189x y +
20、(2012课标全国Ⅰ)(4)设12,F F 是椭圆22
22:1(0)x y E a b a b
+=>>的左、右焦
点,P 为 直线32
a
x =
上的一点,21F PF ∆是底角为30的等腰三角形,则 E 的离心率为 (A)
12 (B) 23 (C) 34 (D) 45
21、(2012课标全国Ⅰ)(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于,A B 两点,
||AB =,则C 的
实轴长为
(A
(B
)(C )4 (D )8
22、(2011课标全国Ⅰ)(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )
(A
(B
(C )2 (D )3
23、(2017北京)(9)若双曲线2
2
1y x m
-=则实数m =_________.。