美国ASTM铜及铜合金牌号成分大全

铜及铜合金牌号对照表

铜及铜合金牌号对照表 CONVERSION TABLE OF GRADES FOR COPPER & ITS ALLOYS

Werkstoffe: Automatenstahl: 11SMn30 11SMnPb30 * 11SMnPb37 * *) auc h 麻省理工学院Zus5atzen 冯Bi und Te (1.0715) (1.0718) (1.0737) Nirosta (INOX): X14CrMoS17 X8CrNiS18-9 (1.4104) (1.4305) 弄乱: CuZn38Pb1,5 CuZn39Pb3 CuZn35Ni2 CuZn40Al2 (2.0371) (2.0401) (2.0540) (2.0550) Neusilber: CuNi7Zn39Pb3Mn2 CuNi12Zn30Pb1 (2.0771) (2.0780) Kupfer: OsnaCu58S OsnaCu58Te (2.1498) (2.1546) 铝: AlMgSiPb AlCu4PbMgMn AlCu6BiPb (3.0615) (3.1645) (3.1655) Titan: 6.Al4V (3.7165) Maschinen: ? 索引Automaten □2 - □60mm ? Tornos-Langdrehautom aten □2 - □26mm ? Esco-Ringdrehautomaten □1 - □9mm ? 索引, Tornos und Esco CNC-Drehautomaten bis □100mm ? Kummer Feinstdrehautomaten ? 6-Spindel-Drehautomaten: 索引bis □32mm (CNC), 可利用的合金从瑞士METALWORKS

硅锰合金的牌号和化学成分

硅锰合金的牌号和化学成分(GB4008) 发表商友:6517 发表时间: 2004年09月15日 10:46 阅读数: 1285 ...牌号................................化学成分% ....................Mn...........Si..........C...............P..............S ....................................................Ⅰ.......Ⅱ.. (Ⅲ) ...................................................不大于 FeMn60Si25.....60.0—70.0....25.0—28.0.....0.5....0.10....0.15....0.25....0. 04 FeMn63Si22.....63.0—70.0....22.0—25.0.....0.7....0.10....0.15....0.25....0. 04 FeMn65Si20.....65.0—70.0....20.0—22.0.....1.2....0.10....0.15....0.20....0. 04 FeMn65Si17.....65.0—70.0....17.0—20.0.....1.8....0.10....0.15....0.20....0. 04

FeMn60Si17.....60.0—70.0....17.0—20.0.....1.8....0.10....0.15....0.20....0. 04 FeMn65Si14.....65.0—70.0....14.0—17.0.....2.5....0.10....0.15....0.20....0. 04 FeMn60Si14.....60.0—70.0....14.0—17.0.....2.5....0.20....0.25....0.30....0. 04 FeMn60Si12.....60.0—70.0....12.0—14.0.....3.0............0.30 FeMn60Si10.....60.0—70.0....10.0—12.0.....3.5............0.35

铜合金化学成分

铜合金化学成分 编制说明 根据中国有色金属工业协会文件《关于下达2009年第一批有色金属国家、行业标准制(修)订项目计划的通知》(中色协综字[2009]165号)的要求,我公司承担了GB/T5231-2001《加工铜及铜合金化学成分和产品形状》的修订工作。该标准主管部门为中国有色金属工业协会,由全国有色金属标准化技术委员会技术归口,计划要求2011年完成修订任务,标准计划编号20091080-T-610。 为保证标准的编制水平,中铝沈阳有色金属加工有限公司成立了标准编制小组,进行了全面的市场调研,并以函件的形式向同行业广泛征询修订意见及相关技术数据,全面准确地了解铜加工行业近几年的发展动态。标准修订过程中经过多次征询意见,2010年2月形成了该标准讨论稿,四月武夷山会议及八月呼和浩特会议两次讨论后,标准稿经过较大调整,于2011年3月形成标准送审稿。 1.我国加工铜及铜合金化学成分标准修订历程及牌号的发展概况。 我国的《铜及铜合金化学成分和产品形状》标准最早是仿效前苏联“ΓΟCΤ”标准形式,制订了YB145~148—65,1971年进行第一次修订为YB145~148-71、1985年第二次修订为GB5231~5235—85,2001年修订为GB/T5231-2001。几次修订后其中元素控制范围水平不低于发达国家水平,但其模式和系列化程度都没有突破性提高。 纳入原国家标准GB/T 5231-2001的变形铜及铜合金牌号一共有111个,其中紫铜9个,黄铜43个,青铜41个,白铜18个。但是各加工企业实际生产的牌号远不止这些,据不完全统计,近10年来申请专利的新型合金就达70余个,而各个公司、院所研究开发的新型铜合金更数倍于此,达1000个以上。随着专业化生产趋势的不断发展,合金系列化程度在迅速提高,铜合金材料的成份细化分类已成必然趋势,为适应下游用户不同生产线工艺条件的要求,个性化,精密化产品越来越多,相比10年前有了很大的变化。 本标准合金牌号达到201个(美国2009年11月18日最新公布合金牌号为397个),基本上纳入了近10年来新开发研制的热点新合金牌号,新增电子铜银合金、引线框架材料、弥散强化铜合金、高强高导铜铬、铜铬锆合金、高速轨道交通接触线及受电弓用铜合金、无铅易切削铜合金系列、海水淡化用铜合金、高耐磨铜合金等。 而且合金系列化程度显著提高,尤其是铜银系合金,铜铬系合金,铜锡系合金、铅黄铜,锌白铜,系列化程度较原国标有大幅度的提高,部分合金系的系列化程度已接近美国ASTM标准。 例如,铅黄铜,为了适应不同用户的车削条件(车速和润滑方法),将铅含量的范围细分,从而衍生出多个新合金牌号。本标准草案新增8个铅黄铜合金牌号,加上原国标中已经纳入的合金牌号11个,共19个合金牌号,含铅量上限最高值4.5,最低下限值0.05,细化程度极高。美国2009年11月18日最新公布

铜合金牌号

铜合金牌号 2010-04-01 14:17:09来源:我的钢铁试用手机平台 黄铜H96.C2100.C21000.H90.C2200.C22000.H85.C2300.C23000.H80.C2400.C24000. H68A.C2680. C26200.H65.C2700.C26800.H62.C2720.C27400. 铅黄铜HPb59-1.C3710.C37800.HPb59-2.C3771.C35300. HPb60-2.C3604.C36000.HPb63-3.C3560.C34500.HPb63-0.1.C34900. 铝黄铜HAi77-2.C6870.C68700. HAi60-1-1.C6782.C67000.HAi59-3-2.C67800.HAi66-6-3-2.C6872. 锡黄铜HSn62-1.HSn70-1AB. 锰黄铜 HMn58-2.C67400.HMn57-3-1. 铁黄铜HFe59-1-1.C6782.C67820. 硅黄铜HSi80-3.C69400. 青铜类: 锡青铜QSn4-3,QSn6.5-0.1.QSn7-0.2.C5212.C52100.QSn6.5-0.4. 铝青铜QAi9-2.C61000.QAi9-4.QAi10-3-1.5. C6161.C61900.QAi10--4-4.C6301.C63000.C63200. 硅青铜QSi3-1.C65500.C65800.QSi1-3.C64700.QSi1.8. 锰青铜QMn5. 锆青铜QZr0.2-0.4. 铬青铜QCr0.5.C18100.C18200.C18400.QCr1-2. 铬锆铜QCr1-0.15.C18150.

常用铜材牌号对照表

各国最常用铜及铜合金牌号对照表 品种分类 中国 (GB) 国际标准 (ISO) 美国 (ASTM) 日本 (JIS) 英国 (BS) 德国 (DIN) 欧洲 (EN) TU2 Cu-OF C10100 C1011 C101 OF-Cu CW008A T2 Cu-FRHC C11000 C1100 C101 E-Cu58 TP2 Cu-DHP C12200 C1220 C106 SF-Cu CW024A 紫铜 (红铜) TP1 Cu-DLP C12000 C1201 SW-Cu CW023A 银铜 TAg0.1 CuAg0.1 C10400 C1040 CuAg0.1 H90 CuZn10 C22000 C2200 CZ101 CuZn10 CW501L H70 CuZn30 C26000 C2600 CZ106 CuZn30 CW505L H68 C26200 C2620 CuZn33 CW506L H65 CuZn35 C27000 C2700 CZ107 CuZn36 CW507L H63 CuZn37 C27200 C2720 CZ108 CuZn37 CW508L 黄铜 H62 CuZn40 C28000 C2800 CZ109 CW509L CuSn4 C51100 C5111 PB101 CuSn4 CW450K QSn4-0.3 CuSn5 C51000 C5101 CuSn5 CW451K QSn6.5-0.1 CuSn6 C51900 C5191 PB103 CuSn6 CW452K QSn8-0.3 CuSn8 C52100 C5210 CuSn8 CW453K 锡青铜 QSn6.5-0.4 BZn18-18 CuNi18Zn20 C75200 C7521 NS106 CuNi18Zn20 CW409J BZn18-26 CuNi18Zn27 C77000 C7701 NS107 CuNi18Zn27 CW410J BZn15-20 C7541 锌白铜 BZn18-10 C7350 QFe0.1 (XYK-1) C19210 KFC 引线框架 QFe2.5 (XYK-4) C19400 C1940 注: 1、铜管的材质必须是TP2 或TU2挤压轧制拉伸铜管。TP2 或TU2均为纯铜,呈紫红色,又称紫铜。TU2为无氧铜,纯度高,主要用作真空器件,TP2为磷脱氧铜,多以管材供应,主要用于冷凝器、蒸发器、换热器、热交换器的零件等。 2、中国紫铜加工材按成分可分为:普通紫铜(T1、T2、T 3、T4)、无氧铜(TU1、TU2和高纯、真空无氧铜)、脱氧铜(TUP 、TUMn )、添加少量合金元素的特种铜(砷铜、碲铜、银铜)四类。

合金管牌号及化学成份表

合金管牌号及化学成份表 标准: GB5310 ——高压锅炉用无缝钢管 GB6479——化肥设备用高压无缝钢管 GB9948——石油裂化用无缝钢管 ASTM A213 ——Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes ASTM A335 ——Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service JIS G3458 ——Alloy Steel Pipes (STPA 12/ 20/ 22/ 23/ 24/ 25/ 26) JIS G3462 ——Alloy Steel for Boiler and Heat Exchanger Tubes (STBA12/ 13/ 20/ 22) JIS G3467 ——Steel Tubes for Fired Heater (STF 410/STFA 12/ 22/ 23/ 24/ 25/ 26) DIN17175-79Ⅲ——Electrical Resistance Or Induction Welded Steel Tubes for Elevated Temperature 主要生产钢管牌号: Cr5Mo (STFA25 STPA25 STBA25 T5 P5) 15CrMo (STFA22 STPA22 STBA22 T12 P12) 1.25Cr0.5Mo (STFA23 STPA23 STBA23 T11 P11)

钛及钛合金牌号和化学成分汇总

(2009/11/30 15:05) 《钛及钛合金牌号和化学成分》(引用地址:未提供) ★阿里同摘目录:行业知识 小浏览字体:大中《钛及钛合金牌号和化学成分》 目前,金属钛生产的工业方法是可劳尔法,产品为海绵钛。制取钛材传统的工艺是将海绵钛经熔铸成锭,再加工而成钛材。按此,从采矿到制成钛材的工艺过程的主要步骤为: 钛矿->采矿->选矿->太精矿->富集->富钛料->氯化->粗TiCI4->精制->纯TiCI4->镁还原->海绵钛->熔铸->钛锭->加工->钛材或钛部件上述步骤中如果采矿得到的是金红石,则不必经过富集,可以直接进行氯化制取粗TiCI4。另外,熔铸作业应属冶金工艺,但有时也归入加工工艺。 上述工艺过程中的加工过程是指塑性加工和铸造而言。塑性加工方 法又包括锻造、挤压、轧制、拉伸等。它可将钛锭加工成各种尺寸的饼材、环材、板材、管材、棒材、型材等制品,也可用铸造方法制 成各种形状的零件、部件。. 钛和钛合金塑性加工具有变形抗力大;常温塑性差、屈服极限和强度极限比值咼、回弹大、对缺口敏感、变形过程易与模具粘结、加热时又易吸咐有害气体等特点,塑性加工较钢、铜困难。

故钛和钛合金的加工工艺必须考虑它们的这些特点 钛采用塑性加工,加土尺寸不受限制,又能够大批量生产,但成材率低,加工过程中产生大量废屑残料。钛材生产的原则流程如图1—1。 针对钛塑性加工的上述缺点,近年来发展了钛的粉末冶金工艺。钛的粉末冶金流程与普通粉末冶金相同,只是烧结必须要在真空下进行。它适用乎生产大批量、小尺寸的零件,特别适用于生产复杂的零部件。这种方法几乎无须再经过加工处理,成材率高,既可充分利用钛废料作原料,又可以降低生产成本,但不能生产大尺寸的钛件。钛的粉末冶金工艺流程为:钛粉(或钛合金粉)->筛分->混合->压制成形->烧结->辅助加工->钛制品。 钛材生产的原则流程 钛材除了纯钛外,目前世界上已经生产出近30 种牌号的钛合金。 使用最广泛的钛合金是Ti-6AI-4V, Ti-5AI— 2.5Sn等 医用钛标准(2008/05/29 23:54) 外科植入物用钛及钛合金加工材执行标准GB/T 13810—1997 1 范围本标准规定了外科植入物用钛及钛合金加工材的技术要求、试验方法、检验规则标志、包装、运输、储存。

各国最常用铜及铜合金牌号对照表

中国国际标准美国日本英国德国欧洲(GB)(ISO)(ASTM)(JIS)(BS)(DIN)(EN)紫铜TU2Cu-OF C10100C1011C101OF-Cu CW008A (红铜) T2Cu-FRHC C11000C1100C101E-Cu58TP2Cu-DHP C12200C1220C106 SF-Cu CW024A TP1Cu-DLP C12000C1201SW-Cu CW023A 银铜 TAg0.1CuAg0.1C10400C1040CuAg0.1H90CuZn10C22000C2200CZ101CuZn10CW501L H70CuZn30C26000C2600CZ106CuZn30CW505L H68C26200C2620CuZn33CW506L H65CuZn35C27000C2700CZ107CuZn36CW507L H63CuZn37C27200C2720CZ108CuZn37CW508L H62CuZn40C28000C2800CZ109CW509L CuSn4C51100C5111PB101CuSn4CW450K CuSn5C51000C5101CuSn5CW451K QSn6.5-0.1CuSn6C51900C5191PB103 CuSn6CW452K QSn8-0.3CuSn8 C52100C5210 CuSn8 CW453K QSn6.5-0.4BZn18-18 CuNi18Zn20C75200C7521NS106CuNi18Zn20CW409J BZn18-26CuNi18Zn27C77000 C7701NS107 CuNi18Zn27CW410J BZn15-20C7541BZn18-10C7350 QFe0.1(XYK-1)QFe2.5(XYK-4) C19400 C1940 各国最常用铜及铜合金牌号对照表 发布日期:2009-09-28 C19210KFC 品种分类黄铜 锡青铜 QSn4-0.3 锌白铜 引线框架

铜牌号及标准

各国铜牌号及标准对照表 中国德国欧洲国际标准美国日本GB DIN EN ISO UNS JIS KRUZZEICHEN NUMBER Symbol Number Symbol Number Number TU2 OF-Cu 2.0040 Cu-OFE CW009A Cu-OF C10100 C1011 - SE-Cu 2.0070 Cu-HCP CW021A - C10300 - - SE-Cu 2.0070 Cu-PHC CW020A - C10300 - T2 E-Cu58 2.0065 Cu-ETP CW004A Cu-ETP C11000 C1100 TP2 SF-Cu 2.0090 Cu-DHP CW024A Cu-DHP C12200 C1220 - SF-Cu 2.0090 Cu-DHP CW024A Cu-DHP C12200 C1220 - SF-Cu 2.0090 Cu-DHP CW024A Cu-DLP C12200 C1220 TP1 SW-Cu 2.0076 Cu-DLP CW023A Cu-DLP C12000 C1201 H96 CuZn5 2.0220 CuZn5 CE500L CuZn5 C21000 C2100 H90 CuZn10 2.0230 CuZn10 CW501L CuZn10 C22000 C2200 H85 CuZn15 2.0240 CuZn15 CW502L CuZn15 C23000 C2300 H80 CuZn20 2.0250 CuZn20 CW503L CuZn20 C24000 C2400 H70 CuZn30 2.0265 CuZn30 CW505L CuZn30 C26000 C2600 H68 CuZn33 2.0280 CuZn33 CW506L CuZn35 C26800 C2680 H65 CuZn36 2.0335 CuZn36 CW507L CuZn35 C27000 C2700 H63 CuZn37 2.0321 CuZn37 CW508L CuZn37 C27200 C2720 HPb63-3 CuZn36Pb1.5 2.0331 CuZn35Pb1 CW600N CuZn35Pb1 C34000 C3501 HPb63-3 CuZn36Pb1.5 2.0331 CuZn35Pb2 CW601N CuZn34Pb2 C34200 - H62 CuZn40 2.0360 CuZn40 CW509N CuZn40 C28000 C3712 H60 CuZn38Pb1.5 2.0371 CuZn38Pb2 CW608N CuZn37Pb2 C35000 -

钛及钛合金牌号和化学成分

钛及钛合金牌号和化学 成分 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

《钛及钛合金牌号和化学成分》 (2009/11/30 15:05) (引用地址:未提供) 目录: 浏览字体: 《钛及钛合金牌号和化学成分》 目前,金属钛生产的工业方法是可劳尔法,产品为海绵钛。制取钛材传统的工艺是将海绵钛经熔铸成锭,再加工而成钛材。按此,从采矿到制成钛材的工艺过程的主要步骤为: 钛矿->采矿->选矿->太精矿->富集->富钛料->氯化->粗TiCl4->精制->纯TiCl4->镁还原->海绵钛->熔铸->钛锭->加工->钛材或钛部件上述步骤中如果采矿得到的是金红石,则不必经过富集,可以直接进行氯化制取粗TiCI4。另外,熔铸作业应属冶金工艺,但有时也归入加工工艺。 上述工艺过程中的加工过程是指塑性加工和铸造而言。塑性加工方法又包括锻造、挤压、轧制、拉伸等。它可将钛锭加工成各种尺寸的饼材、环材、板材、管材、棒材、型材等制品,也可用铸造方法制成各种形状的零件、部件。

钛和钛合金塑性加工具有变形抗力大;常温塑性差、屈服极限和强度极限比值高、回弹大、对缺口敏感、变形过程易与模具粘结、加热时又易吸咐有害气体等特点,塑性加工较钢、铜困难。 故钛和钛合金的加工工艺必须考虑它们的这些特点。 钛采用塑性加工,加土尺寸不受限制,又能够大批量生产,但成材率低,加工过程中产生大量废屑残料。钛材生产的原则流程如图1—1。 针对钛塑性加工的上述缺点,近年来发展了钛的粉末冶金工艺。钛的粉末冶金流程与普通粉末冶金相同,只是烧结必须要在真空下进行。它适用乎生产大批量、小尺寸的零件,特别适用于生产复杂的零部件。这种方法几乎无须再经过加工处理,成材率高,既可充分利用钛废料作原料,又可以降低生产成本,但不能生产大尺寸的钛件。钛的粉末冶金工艺流程为:钛粉(或钛合金粉)->筛分->混合->压制成形->烧结->辅助加工->钛制品。 钛材生产的原则流程 钛材除了纯钛外,目前世界上已经生产出近30种牌号的钛合金。使用最广泛的钛合金是Ti-6Al-4V,Ti-5Al—2.5Sn等 医用钛标准 (2008/05/29 23:54) 外科植入物用钛及钛合金加工材执行标准

美标铜及铜合金牌号的表示方法

美标铜及铜合金牌号的表示方法 美国铜及铜合金牌号的表示方法以铜的英文(copper)的大写首个字母加5位数字表达。铜及铜合金的5位数字编号范围为:加工纯铜--C10000~C15999 加工铜合金--C16000~C79999 铸造纯铜--C80000~C81199 铸造铜合金--C81300~C99999

合金的编号应遵循的规定是: ①铜:金属铜的含量≥99.3%; ②高铜合金:又称低合金化铜,是指含有一种或几种微量合金元素以获得某些特殊性能的铜合金。对加工产品,其铜含量为99.3%~96%,且不能划归任何铜合金组的。而对铸造产品,其铜含量应大于94%,而为获得某些特性可以加入银。 ③黄铜:以锌作为主要合金元素的铜合金,但可以含有Fe、Al、Ni、Si等。加工黄铜有3组:Cu-Sn合金;Cu-Zn-Pb合金即铅黄铜;Cu-Zn-Sn合金即锡黄铜。铸造黄铜有4组:Cu-Sn-Zn合金即锡黄铜;高强度黄色黄铜又称“锰黄铜”;高强度黄色铅黄铜;Cu-Zn-Si合金。 ④青铜:以锌或镍为主要合金元素的铜合金。加工青铜分4组:Cu-Sn-P合金;Cu-Sn-Pb-P合金;Cu-Al合金;Cu-Si合金。铸造青铜有4组:Cu-Sn合金;Cu-Sn-Pb合金;Cu-Sn-Ni合金;Cu-Al合金。 ⑤铜-镍合金:以镍作为主要合金元素的铜合金。也可以含或不含其他的合金元素。 ⑥铜-镍-锌合金:主要合金元素为Ni及Zn的铜合金,又称镍银。也可以含或不含其他的合金元素。 ⑦铜-铅合金:铅含量等于或大于20%的铸造铜合金。一般还含有少量的Ag,但不含Sn或Zn。 ⑧特种铜合金:化学成分不可归于上述各种范围的铜合金。

国家标准《铜及铜合金牌号表示方法》编制说明

国家标准《铜及铜合金牌号表示方法》 (预审稿)编制说明 一、工作简况 早在一九七六年,冶金部标准所曾制订了GB/T 340-1976 《有色金属及合金产品牌号表示方法》标准。随着GB/T 16474-1996《变形铝及铝合金牌号表示方法》、GB/T 18035-2000《贵金属及其合金牌号表示方法》等标准的实施,该标准即被废止,铜及铜合金牌号等于是按照约定俗成的方式进行标示,无方法标准可循。因此,制订本标准显得尤为迫切。 根据中铝洛阳铜业有限公司的立项申请,中国有色金属工业协会以中色协综字[2010]015号文件《关于下达2009年第二批有色金属国家、行业标准制(修)订项目计划的通知》下达了标准制定任务,其中附件1《2009年第二批有色金属国家标准项目计划表》序号第3项(项目序号为20091865-T-610)《铜及铜合金牌号表示方法》国家标准由中铝洛阳铜业有限公司负责起草制定。 标准制定计划任务正式下达后,由中铝洛铜相关部门组织成立了标准起草小组,进行了任务落实,拟定该标准制定的工作计划、进度和要求。 经过标准编制组及有关人员的共同努力,通过对国内外现状及发展趋势的分析,并结合国内的实际情况,牌号表示方法部分参照了已作废的国家标准GB/T 340-1976 《有色金属及合金产品牌号表示方法》,代号表示方法部分修改采用了美国ASTM E527-2003《金属及合金编号规定(UNS)》进行了制订。 二、编制原则 目前,国内外的一些重要的领域对材料的牌号基本都制订有相关标准。不同国家、不同领域,产品牌号的表示方法差别很大。就铜产品而言,在我国应用最多的国家级标准有以下九类: 1、中国(GB); 2、国际标准(ISO); 3、美国材料与试验协会标准(ASTM); 4、日本国工业标准(JIS); 5、俄罗斯标准(ΓOCT); 6、英国国家标准(BS); 7、德国国家标准(DIN);

《加工铜及铜合金牌号和化学成分》

《加工铜及铜合金牌号和化学成分》(送审稿) 编制说明 根据中国有色金属工业协会文件《关于下达2009年第一批有色金属国家、行业标准制(修)订项目计划的通知》(中色协综字[2009]165号)的要求,我公司承担了GB/T5231-2001《加工铜及铜合金化学成分和产品形状》的修订工作。该标准主管部门为中国有色金属工业协会,由全国有色金属标准化技术委员会技术归口,计划要求2011年完成修订任务,标准计划编号20091080-T-610。 为保证标准的编制水平,中铝沈阳有色金属加工有限公司成立了标准编制小组,进行了全面的市场调研,并以函件的形式向同行业广泛征询修订意见及相关技术数据,全面准确地了解铜加工行业近几年的发展动态。标准修订过程中经过多次征询意见,2010年2月形成了该标准讨论稿,四月武夷山会议及八月呼和浩特会议两次讨论后,标准稿经过较大调整,于2011年3月形成标准送审稿。 1.我国加工铜及铜合金化学成分标准修订历程及牌号的发展概况。 我国的《铜及铜合金化学成分和产品形状》标准最早是仿效前苏联“ΓΟCΤ”标准形式,制订了YB145~148—65,1971年进行第一次修订为YB145~148-71、1985年第二次修订为GB5231~5235—85,2001年修订为GB/T5231-2001。几次修订后其中元素控制范围水平不低于发达国家水平,但其模式和系列化程度都没有突破性提高。 纳入原国家标准GB/T 5231-2001的变形铜及铜合金牌号一共有111个,其中紫铜9个,黄铜43个,青铜41个,白铜18个。但是各加工企业实际生产的牌号远不止这些,据不完全统计,近10年来申请专利的新型合金就达70余个,而各个公司、院所研究开发的新型铜合金更数倍于此,达1000个以上。随着专业化生产趋势的不断发展,合金系列化程度在迅速提高,铜合金材料的成份细化分类已成必然趋势,为适应下游用户不同生产线工艺条件的要求,个性化,精密化产品越来越多,相比10年前有了很大的变化。 本标准合金牌号达到201个(美国2009年11月18日最新公布合金牌号为397个),基本上纳入了近10年来新开发研制的热点新合金牌号,新增电子铜银合金、引线框架材料、弥散强化铜合金、高强高导铜铬、铜铬锆合金、高速轨道交通接触线及受电弓用铜合金、无铅易切削铜合金系列、海水淡化用铜合金、高耐磨铜合金等。 而且合金系列化程度显著提高,尤其是铜银系合金,铜铬系合金,铜锡系合金、铅黄铜,锌白铜,系列化程度较原国标有大幅度的提高,部分合金系的系列化程度已接近美国ASTM标准。 例如,铅黄铜,为了适应不同用户的车削条件(车速和润滑方法),将铅含量的范围细分,从而衍生出多个新合金牌号。本标准草案新增8个铅黄铜合金牌号,加上原国标中已经纳入的合金牌号11个,共19个合金牌号,含铅量上限最高值4.5,最低下限值0.05,细化程度极高。美国2009年11月18日最新公布

钛及钛合金牌号和化学成分

《钛及钛合金牌号和化学成分》(2009/11/30 15:05) (引用地址:未提供) 目录:行业知识 浏览字体:大中小 《钛及钛合金牌号和化学成分》 目前,金属钛生产的工业方法是可劳尔法,产品为海绵钛。制取钛材传统的工艺是将海绵钛经熔铸成锭,再加工而成钛材。按此,从采矿到制成钛材的工艺过程的主要步骤为: 钛矿->采矿->选矿->太精矿->富集->富钛料->氯化->粗 TiCl4->精制->纯TiCl4->镁还原->海绵钛->熔铸->钛锭->加工->钛材或钛部件上述步骤中如果采矿得到的是金红石,则不必经过富集,可以直接进行氯化制取粗TiCI4。另外,熔铸作业应属冶金工艺,但有时也归入加工工艺。 上述工艺过程中的加工过程是指塑性加工和铸造而言。塑性加工方法又包括锻造、挤压、轧制、拉伸等。它可将钛锭加工成各种尺寸的饼材、环材、板材、管材、棒材、型材等制品,也可用铸造方法制成各种形状的零件、部件。

钛和钛合金塑性加工具有变形抗力大;常温塑性差、屈服极限和强度极限比值高、回弹大、对缺口敏感、变形过程易与模具粘结、加热时又易吸咐有害气体等特点,塑性加工较钢、铜困难。 故钛和钛合金的加工工艺必须考虑它们的这些特点。 钛采用塑性加工,加土尺寸不受限制,又能够大批量生产,但成材率低,加工过程中产生大量废屑残料。钛材生产的原则流程如图1—1。 针对钛塑性加工的上述缺点,近年来发展了钛的粉末冶金工艺。钛的粉末冶金流程与普通粉末冶金相同,只是烧结必须要在真空下进行。它适用乎生产大批量、小尺寸的零件,特别适用于生产复杂的零部件。这种方法几乎无须再经过加工处理,成材率高,既可充分利用钛废料作原料,又可以降低生产成本,但不能生产大尺寸的钛件。钛的粉末冶金工艺流程为:钛粉(或钛合金粉)->筛分->混合->压制成形->烧结->辅助加工->钛制品。

各个国家铝合金牌号对照表

各个国家变形铝及铝合金牌号对表 中国(GB) 国际 (ISO) 美国 (AA) 日本 (JIS) 原苏联 (ΓOCT) 德国 (DIN) 英国 (BS) 法国 (NF) LG5 1199 1N99 AB000 Al99.98R S1 LG2 1090 1N90 AB1 Al99.9 LG1 Al99.8 1080 A1080 AB2 Al99.8 1A L1 Al99.7 1070 A1070 A00 Al99.7 1070A L2 1060 A1060 A0 L3 Al99.5 1050 A1 Al99.5 1B 1050A L5-1 Al99.0 1100 A1100 A2 Al99.0 3L54 1100 L5 1200 A1200 Al99 1C 1200 LF2 AlMg2.5 5052 A5052 AMr AlMg2.5 N4 5052 LF3 AlMg3 5154 A5154 AMr3 AlMg3 N5 LF4 AlMg4.5Mn0.7 5038 A5038 AMr4 AlMg4.5Mn N8 5083 LF5-1 AlMg5 5056 A5056 AlMg5 N6 LF5 AlMg5Mn0.4 5456 Amr5 N61 LF21 AlMn1Cu 3003 A3003 AMu AlMnCu N3 3003 LD2 6165 A6165 AB LD7 AlCu2MgNi 2618 2N01 AK4 H16 2618A LD9 2018 A2018 AK2 LD10 AlCu4SiMg 2014 A2014 AK8 AlCuSiMg 2014 LD11 4032 A4032 AK9 38S 4032 LD30 AlMg1SiCu 6061 A6061 AΠ33 AlMg1SiCu H20 6061 LD31 AlMg0.7Si 6063 A6063 AΠ31 AlMgSi0.5 H19 LY1 AlCu2.5Mg 2217 A2217 AΠ18 AlCu2.5Mg0.5 3L86 LY11 AlCu4MgSi 2017 A2017 AΠ1 AlCuMg1 H15 2017A LY12 AlCu4Mg1 2024 A2024 AΠ16 AlCuMg2 GB-24S 2024 LC3 AlZn7MgCu 7174 B94 LC9 AlZn5.5MgCu 7075 A7075 AlZnMgCu1.5 L95 7075 LC10 7079 7N11 AlZnMgCu0.5 LT1 AlSi5 4043 A4043 AK AlSi5 N21 LT17 AlSi12 4047 A4047 AlSi12 N2 LB1 7072 A7072 SlZn1

铜合金分类与化学成分汇总

铜合金分类与化学成分 一、黄铜 黄铜是铜与锌的合金。最简单的黄铜是铜——锌二元合金,称为简单黄铜或普通黄铜。改变黄铜中锌的含量可以得到不同机械性能的黄铜。黄铜中锌的含量越高,其强度也较高,塑性稍低。工业中采用的黄铜含锌量不超过45%,含锌量再高将会产生脆性,使合金性能变坏。 为了改善黄铜的某种性能,在一元黄铜的基础上加入其它合金元素的黄铜称为特殊黄铜。常用的合金元素有硅、铝、锡、铅、锰、铁与镍等。在黄铜中加铝能提高黄铜的屈服强度和抗腐蚀性,稍降低塑性。含铝小于4%的黄铜具有良好的加工、铸造等综合性能。在黄铜中加1%的锡能显著改善黄铜的抗海水和海洋大气腐蚀的能力,因此称为“海军黄铜”。锡还能改善黄铜的切削加工性能。黄铜加铅的主要目的是改善切削加工性和提高耐磨性,铅对黄铜的强度影响不大。锰黄铜具有良好的机械性能、热稳定性和抗蚀性;在锰黄铜中加铝,还可以改善它的性能,得到表面光洁的铸件。黄铜可分为铸造和压力加工两类产品。常用加工黄铜的化学成分,见表1。 表1 常用加工黄铜的化学成分

二、青铜 青铜是历史上应用最早的一种合金,原指铜锡合金,因颜色呈青灰色,故称青铜。为了改善合金的工艺性能和机械性能,大部分青铜内还加入其它合金元素,如铅、锌、磷等。由于锡是一种稀缺元素,所以工业上还使用许多不含锡的无锡青铜,它们不仅价格便宜,还具有所需要的特种性能。无锡青铜主要有铝青铜、铍青铜、锰青铜、硅青铜等。此外还有成份较为复杂的三元或四元青铜。现在除黄铜和白铜(铜镍合金)以外的铜合金均称为青铜。 锡青铜有较高的机械性能,较好的耐蚀性、减摩性和好的铸造性能;对过热和气体的敏感性小,焊接性能好,无铁磁性,收缩系数小。锡青铜在大气、海水、淡水和蒸汽中的抗蚀性都比黄铜高。铝青铜有比锡青铜高的机械性能和耐磨、耐蚀、耐寒、耐热、无铁磁性,有良好的流动性,无偏析倾向,可得到致密的铸件。在铝青铜中加入铁、镍和锰等元素,可进一步改善合金的各种性能。 青铜也分为压力加工和铸造产品两大类,常用加工青铜的化学成分见表2。 表2常用加工青铜的化学成分

铜合金的牌号和应用

根据黄铜中所含合金元素种类的不同,黄铜分为普通黄铜和特殊黄铜两种。压力加工用的黄铜称为变形黄铜。 黄铜是以锌为主要合金元素的铜合金。按照化学成分,黄铜分为普通铜和特殊黄铜两种。 (1)普通黄铜普通黄铜是铜锌二元合金。由于塑性好,适于制造板材、棒材、线材、管材及深冲零件,如冷凝管、散热管及机械、电器零件等。铜的平均含量为62%和59%的黄铜也可进行铸造,称为铸造黄铜。 (2)特殊黄铜为了获得更高的强度、抗蚀性和良好的铸造性能,在铜锌合金中加入铝、硅、锰、铅、锡等元素,就形成了特殊黄铜。如铅黄铜、锡黄铜、铝黄铜、硅黄铜、锰黄铜等。 铅黄铜的切削性能优良,耐磨性好,广泛用于制造钟表零件,经铸造制作轴瓦和衬套。锡黄铜的耐腐蚀性能好,广泛用于制造海船零件。铝黄铜中的铝能提高黄铜的强度和硬度,提高在大气中的抗蚀性,铝黄铜用于制造耐蚀零件。 硅黄铜中的硅能提高铜的力学性能、耐磨性的耐蚀性,硅黄铜主要用于制造海船零件及化工机械零件。 铅黄铜的用途:铅黄铜具有优良切削性能、耐磨性能和高强度,主要用于机械工程中各种连接件、阀门、阀杆轴承。铅黄铜最广泛的用途还是用于切削加工和深加工的各种零部件。 铅黄铜产品的牌号,特点以及应用见下表:

铜的牌号与应用 1H59普通黄铜;价格最便宜,强度、硬度高而塑性差,但在热态下仍能很好地承受压力加工,耐蚀性一般,其他性能和H62相近。用于一般机器零件、焊接件、热冲及热扎零件。 2H62普通黄铜;有良好的力学性能,热态下塑性好,冷态下塑性也可以,切削性好,易钎焊和焊接,耐蚀,但易产生腐蚀破裂。此外价格便宜,是应用惯犯的一个普通黄铜品种。用于各种深引伸和弯折制造的受礼零件,如销钉、铆钉、垫圈、螺母、导管、气压表弹簧、筛网、散热器零件等。

铬铁的牌号和化学成分

铬铁的牌号和化学成分(GB/T5683-1987) 时间: 来源:作者:点击:

(1)用途适用于炼钢中作为合金加入剂。 (2)牌号和化学成分见表2—12。 铬铁的牌号和化学成分 注:1.供方应分析每批高碳铬铁锰含量。 2.铬铁以质量分数50%含铬量作为基准量考核单位。 3.每批铬铁必须测定铬、硅、碳、磷含量。在供方能保证符合本标准规定时,其他元素可以不测定(但吹氧法转炉生产中,低碳铬铁应分析硫含量)。 4.铬铁应成块状,每块质量不得大于15kg,尺寸小于20mm×20rran铬铁块的数量,不超过铬铁总质量的5%。 1.1.2 需方对化学成分有特殊要求时,由供需双方另行商定。 1.2 物理状态 1.2.1 铬铁应呈块状,每块重量不得大于15kg,尺寸小于20×20mm铬铁块的重量不超过铬铁总重量的5%。 1.2.2 需方对粒度有特殊要求时,由供需双方另行商定。 1.2.3 铬铁的内部及其表面不得有肉眼显见的非金属夹杂物,但铸锭表面涂料不净时,允许其少量存在。 2 试验方法 2.1 取样 化学分析用试样的采取按GB 4010一83《铁合金化学分析用试样采取法》进行。

2.2 制样 化学分析用试佯的制取按GB 4332—84《铁合金化学分析用试样制取法》进行。 2.3 化学分析 铬铁的化学分析方法按GB 5687.1—5687.4—85《铬铁化学分析方法》的有关规定进行。 3 检验规则 3.1 质量检查和验收 产品的质量检查和验收应符合GB 3650一83《铁合金验收、包装、储运、标志和质量证明书的一般规定》的要求。 3.2 组批 同牌号、同组级的铬铁合金归为一批交货,每批铬含量的波动范围不大于5%。 4 包装、储运、标志和质量证明书 产品的包装、储运、标志和质量证明书应符合GB 3650一83的要求。

铜和铜合金的化学成分

铜和铜合金的化学成分:紫铜,黄铜,白铜,青铜,无氧铜 一、纯铜 纯铜是玫瑰红色金属,表面形成氧化铜膜后呈紫色,故工业纯铜常称紫铜或电解铜。密度为8-9g/cm3,熔点1083°C。纯铜导电性很好,大量用于制造电线、电缆、电刷等;导热性好,常用来制造须防磁性干扰的磁学仪器、仪表,如罗盘、航空仪表等;塑性极好,易于热压和冷压力加工,可制成管、棒、线、条、带、板、箔等铜材。纯铜产品有冶炼品及加工品两种。分别见表1和表2。 表1 冶炼铜的牌号、成分及用途 表2 加工铜的组别、牌号及成分 二、铜合金 (1)黄铜 黄铜是铜与锌的合金。最简单的黄铜是铜——锌二元合金,称为简单黄铜或普通黄铜。改变黄铜中锌的含量可以得到不同机械性能的黄铜。黄铜中锌的含量越高,其强度也较高,塑性稍低。工业中采用的黄铜含锌量不超过45%,含锌量再高将会产生脆性,使合金性能变坏。 为了改善黄铜的某种性能,在一元黄铜的基础上加入其它合金元素的黄铜称为特殊黄铜。常用的合金元素有硅、铝、锡、铅、锰、铁与镍等。在黄铜中加铝能提高黄铜的屈服强度和抗腐蚀性,稍降低塑性。含铝小于4%的黄铜具有良好的加工、铸造等综合性能。在黄铜中加1%的锡能显著改善黄铜的抗海水和海洋大气腐蚀的能力,因此称为“海军黄铜”。锡还能改善黄铜的切削加工性能。黄铜加铅的主要目的是改善切削加工性和提高耐磨性,铅对黄铜的强度影响不大。锰黄铜具有良好的机械性能、热稳定性和抗蚀性;在锰黄铜中加铝,还可以改善它的性能,得到表面光洁的铸件。黄铜可分为铸造和压力加工两类产品。常用加工黄铜的化学成分,见表3。 表3 常用加工黄铜的化学成分

(2)青铜 青铜是历史上应用最早的一种合金,原指铜锡合金,因颜色呈青灰色,故称青铜。为了改善合金的工艺性能和机械性能,大部分青铜内还加入其它合金元素,如铅、锌、磷等。由于锡是一种稀缺元素,所以工业上还使用许多不含锡的无锡青铜,它们不仅价格便宜,还具有所需要的特种性能。无锡青铜主要有铝青铜、铍青铜、锰青铜、硅青铜等。此外还有成份较为复杂的三元或四元青铜。现在除黄铜和白铜(铜镍合金)以外的铜合金均称为青铜。 锡青铜有较高的机械性能,较好的耐蚀性、减摩性和好的铸造性能;对过热和气体的敏感性小,焊接性能好,无铁磁性,收缩系数小。锡青铜在大气、海水、淡水和蒸汽中的抗蚀性都比黄铜高。铝青铜有比锡青铜高的机械性能和耐磨、耐蚀、耐寒、耐热、无铁磁性,有良好的流动性,无偏析倾向,可得到致密的铸件。在铝青铜中加入铁、镍和锰等元素,可进一步改善合金的各种性能。 青铜也分为压力加工和铸造产品两大类。常用加工青铜的化学成分见表4 表4 常用加工青铜的化学成分

各国硬质合金牌号近似对照

各国硬质合金牌号近似对照

常用的硬质合金以 WC为主要成分,根据是否加入其它碳化物而分为以下几类: ( 1)钨钴类( WC+Co)硬质合金( YG) 它由 WC和 Co组成,具有较高的抗弯强度的韧性,导热性好,但耐热性和耐磨性较差,主要用于加工铸铁和有色金属。细晶粒的 YG类硬质合金(如 YG3X、 YG6X),在含钴量相同时,其硬度耐磨性比 YG3、 YG6高,强度和韧性稍差,适用于加工硬铸铁、奥氏体不锈钢、耐热合金、硬青铜等。 ( 2)钨钛钴类( WC+TiC+Co)硬质合金( YT) 由于 TiC的硬度和熔点均比 WC高,所以和 YG相比,其硬度、耐磨性、红硬性增大,粘结温度高,抗氧化能力强,而且在高温下会生成 TiO 2,可减少粘结。但导热性能较差,抗弯强度低,所以它适用于加工钢材等韧性材料。 (3) 钨钽钴类( WC+TaC+Co)硬质合金( YA) 在 YG类硬质合金的基础上添加 TaC(NbC),提高了常温、高温硬度与强度、抗热冲击性和耐磨性,可用于加工铸铁和不锈钢。 ( 4)钨钛钽钴类( WC+TiC+TaC+Co) )硬质合金 (YW) 在 YT类硬质合金的基础上添加 TaC(NbC),提高了抗弯强度、冲击韧性、高温硬度、抗氧能力和耐磨性。既可以加工钢,又可加工铸铁及有色金属。因此常称为通用硬质合金(又称为万能硬质合金)。目前主要用于加工耐热钢、高锰钢、不锈钢等难加工材料。 硬质合金和其他硬质材料 编辑:刘钰 - 来自:青岛美华精密工具有限公司 硬质合金和碳-氮化合物--尽管高速钢对于如钻孔、拉削这样的应用仍然非常重要,但大多数的金属切削都是通过硬质合金工具完成的。对于那些非常难于加工的材料,硬质合金现在正逐渐由碳氮化合物、陶瓷制品和超硬材料所替代。渗碳的(或烧结的)硬质合金和碳氮化合物,被世界上大多数一致认为是硬金属,是一系列通过粉末冶金技术制成的非常硬的、耐火、耐磨的合金。微小的硬质合金或者氮化物颗粒在处于烧结温度液体时被金属粘结剂“胶结”。个体硬金属的成分和属性与那些黄铜和高速钢是不同的。 所有的硬金属都是金属陶瓷,是由陶瓷颗粒和金属粘结剂化合而成。很不巧的是(由于错误翻译)陶瓷一词在含义上要么已经指所有带有碳化钛(TiC)基的硬金属或者简单地称其为渗钛碳氮化合物。尽管除了碳之外再没有其他任何一种单一的元素出现在所有的硬金属中,但真正的术语却是“碳化钨”。早期效果较好的品质都是基于碳基础之上,而且在今天也是也是应用最广泛的,如表1所示。 由于非常硬的硬质合金颗粒,特别是碳化钨在富铁基质的出现使得高速钢具有优异的加工能力。从纯碳化钨中制造切削刀具的现代制造方法是基于这项知识之上的。早期的硬质合金在用于工业用途时过于脆弱,但是不久发现将碳化钨粉末与大约10%的金属,如铁、镍或钴,允许压坯在大约1500℃下烧结,在这个过程中生成的产品具有低孔隙率、非常高的硬度,而且相当大的强度。这些性质的组合使得材料理想的适合用来作为切削金属的加工刀具。 用于切削刀具的硬质合金是在1927年被引入商业领域的,尽管重大的发现是在德国,许多后期的开发却是在美国、奥地利、瑞典和其他国家进行的。近年来在硬质合金切削工具中出现了两次“革命”,一次由美国领导,另一次由欧洲领导。它们的变化是由铜焊接硬质合金嵌入变成夹具嵌入,以及涂敷技术的迅速发展。 铜焊接的工具具有这样的优势:它们可以不断地进行重新研磨,直到基本没有硬质合

相关文档
最新文档