复合函数图像研究及零点个数问题
复合函数零点个数的探究_王跃

] 分析 欲讨论函 数 h( x)= f[ x) -c 的 f( )= c 的 不 同 实 根t 零点 , 先 考 虑 方 程 f( t i∈ i( ,然后考虑方程 f( N+ ) x)=t i 的根 . ,考虑方程 f( )=c. 解 令 f( x)=t t ( ) ) 当c =-2 时 , 方程 f( 1 t =c 有 2 个不相 、 ( , ) , 等的实根t 方程 f( 2t x) =t 1t 2t 1 =- 2 =1 1 有 2 个不相等的实根 , x)=t f( 2 有3个不相等 , 的实根 .根据命题 1 故函数 y = h( x)的零点个 数为 5. ( ) ) 当c=2 时 , 方程 f( 2 t =c 有 2 个不相等 ) , 方程 f( 的 实根t t t 1, t x) =t 3、 4( 3 =- 4 =2 3有
2 等实根 .根据命题 2, 故 f( x x)= a 有 4 个 +2
不相等的实根 ; ) ) ( 当a=8时 , 方程f( 4 t =a 有3 个不相等 , ) , ) 的实根t t t t 0 <t t . 7、 8、 9 ( 7 =-1 8 <1 9 >1
2 2 方 程x x =t x x =t +2 +2 7 有 1 个实根 , 8 有2 2 个不相等的实根 , x x =t +2 9 有2个不相等的 2 实根 .根据命题2, 故f( x x) +2 =a 有5 个不相
2 , ) 分析 令 x 先讨论 f( t +x =t =a 不同 2 的实根t 再研究 x i ∈ N+ )情况 , +x =t i( i 根. 2 解 令x . +x =t
, 故 2 x =t 1 2 有 2 个 不 相 等 的 实 根 .根 据 命 题 2
2 x x)= a 有 6 个不相等的实根 . +2 f( ( ) ) 当a>9时 , 方程f( 6 t =a 有2 个不相等 2 ) , ) 方程x 的 实根t t 0<t t x +2 1 3、 1 4 ( 1 3 <1 1 4 >1 2 x x =t =t +2 1 3 有 2 个不相等的实根 , 1 4 有2 个 2 不相等的 实 根 .根 据 命 题 2, 故 f( x +2 x)= a
2.20复合函数零点问题—利哥

秘籍提示:①先看外层零点,把外层零点一一列出:t1,t2,t3 ;②再在外层函数作直线y =t1,y =t1 ,交点个数即为复合函数零点个数.2.20 抖音直播直播—复合函数零点问题——利哥数学,快乐上分我们来一起看几个题去理解秘籍,如下图,左边为f (x)图像,右边为g(x)图像.【例题1】求 f [f (x)]的零点个数:【解析】先看外层零点,外层函数为f (x),f (x)有两个零点:t1=-2 ,t2= 2 ;在内层函数作直线y =-2 、y = 2 ,如右图,显然四个交点,所以f [f (x)]的零点个数为 4.【例题2】求 f [g(x)]的零点个数:【解析】先看外层零点,外层函数为f (x),f (x)有两个零点:t1=-2 ,t2= 2 ;在内层函数作直线y =-2 、y = 2 ,如右图,显然两个交点,所以f [g(x)]的零点个数为 2.⎨2x ,x ≤ 0 【例题 3】求 g [g (x )]的零点个数:【解析】先看外层零点,外层函数为 g (x ),g (x )有三个零点: t 1 = -1,t 2 = 0 ,t 3 = 1;在内层函数作直线 y = -1、y = 0、y = 1 ,如右图,显然七个交点,所以 f [g (x )]的零点个数为 7.【例题 4】求 g [f (x )]的零点个数:【解析】先看外层零点,外层函数为 g (x ),g (x )有三个零点: t 1 = -1,t 2 = 0 ,t 3 = 1;在内层函数作直线 y = -1、y = 0、y = 1 ,如右图,显然六个交点,所以 f [g (x )]的零点个数为 6.【例题 5】(2019 春•邯郸期末)函数 f (x ) = ⎧| log 2 x | ,x > 0 ,则函数 g (x ) = 3 f 2(x ) - 8 f (x ) + 4 的零点个数是⎩ ( )A .5B .4C .3D .6【解析】令 f (x )= t ,则 g (x ) = 3 f 2 (x ) - 8 f (x ) + 4 ⇒ h (t ) = 3t 2 - 8t + 4 ,外层函数为 h (t ), h (t )有两个零点t 1 = 2 ,t3 2 = 2 ,在内层函数 f (x )作直线 y = 2 、y = 2 ,如图,3显然五个交点,所以 f [g (x )]的零点个数为 5,故选 A .⎩ 4⎨ 现学现卖⎧x2 - 2x + 4, x 0【卖弄 1】(2019 秋•东莞市期末)已知函数 f (x) =⎨⎩lnx, x > 0,若函数 g(x) =f 2 (x) + 3 f (x) +m(m ∈R)有三个零点,则m 的取值范围为( )A.m <94B.m - 28C. -28 m <94D.m > 28【解析】作出f (x) 的图象如图:设t =f (x) ,则由图象知当t 4时,t =f (x) 有两个根,当t < 4 时,t =f (x) 只有一个根,若函数g(x) =f 2 (x) + 3 f (x) +m(m ∈R) 有三个零点,等价为函数g(x) =h(t) =t2 + 3t +m 有两个零点,其中t < 4 或t 4 ,则满足⎧ = 9 - 4m > 0,1 2⎧m <9⎨f (4) = 16 + 12 +m 0⎪,得m - 28 ,故选B .⎪⎩m -28【卖弄2】(2019•山东模拟)已知函数f (x) =| x2 - 4x + 3 |,若方程[ f (x)]2 +bf (x) +c = 0 恰有七个不相同的实根,则实数b 的取值范围是( )A.(-2, 0) B.(-2, -1) C.(0,1) D.(0, 2)【解析】 f (1)=f (3)= 0 ,f (2)= 1 , f (x) 0 ,若方程[ f (x)]2 +bf (x) +c = 0 恰有七个不相同的实根,∴t 2 +bt +c = 0 ,其中一个根为 1,另一个根在(0,1) 内,∴g(t) =t2 +bt +c ,g (1)= 1 +b +c = 0 ,g(-b ) < 0 ,20 <-b< 1,g(0) =c > 0 2方程[ f (x)]2 +bf (x) +c = 0 恰有七个不相同的实根∴c =-1 -b > 0 ,b ≠-2 ,-2 <b < 0 ,即b 的范围为:(-2, -1) ,故选B .得则1【卖弄3】(2019 秋•双流县校级期中)已知函数y =f (x) 和y =g(x) 在[-2 ,2] 的图象如下所示:给出下列四个命题:(1)方程f[g(x)]=0有且仅有6个根;(2)方程g[f(x)]=0有且仅有3个根(3)方程f[f(x)]=0有且仅有5个根;(4)方程g[g(x)]=0有且仅有4个根其中正确命题的个数是( )A.4 B.3 C.2 D.1【解析】(1)正确,(2)错误,(3)(4)正确,故选B.【卖弄 4】已知函数 f (x) =lnx,关于x 的方程 f (x) -x1f (x)=m 有三个不等的实根,则m 的取值范围是( )A.(-∞, e -1)eB.(-∞,1-e)eC.(e -1, +∞)eD.(1-e, +∞)e【解析】 f '(x) =1 -lnx,当0 <x <e 时, f '(x) > 0 ,当x >e 时, f '(x) < 0 ,x2即函数f (x) 在(0, e) 为增函数,在(e, +∞) 为减函数,则 f (x)max =f (e) =1,则f (x) 的图象如图所示:令t =f (x) ,e则 f (x) -1f (x)=m 可变形为t -1-m = 0 ,t即t 2 -mt - 1 = 0 ,设方程t 2 -mt - 1 = 0 有两个根t ,t ,1 2关于 x 的方程 f (x) -1f (x)=m 有三个不等的实根等价于t =f (x) 的图象与直线t =t1 ,t =t2的交点个数之和为 3,由图可知t < 0 <t 1,设g(t) =t2 -mt -1 ,2 1<eg( ) =1-m- 1 > 0 ,解得:m <1-e ,故选B .e e2 e e3 3 ⎨ ⎧| lg (-x ) |, x < 0 【卖弄 5】(2019•全国模拟)定义域为 R 的函数 f (x ) = ⎪ ,若关于 x 的函数 y = 3 f 2 (x ) + 2bf (x ) + 1 ⎨ 1 x⎪1 - ( ) , x 0⎩ 2有 6 个不同的零点,则实数b 的取值范围是()A . (-2, - 3)B . (-2, 0)⎧| lg (-x ) |, x < 0C . (-3, - 3)D . (- , +∞) 【解析】 函数 f (x ) = ⎪ 1,作出它的图象如图所示:⎪1 - ( ) , x 0⎩ 2关于 x 的函数 y = 3 f 2 (x ) + 2bf (x ) + 1有 6 个不同的零点,则令t = f (x ) ,则关于t 的方程3t 2 + 2bt + 1 = 0 在(0,1) 上有 2 个不同解. 即函数 g (t ) = 3t 2 + 2bt + 1在(0,1) 上有 2 个不同零点,⎧ = 4b 2 - 12 > 0⎪ b ⎪0 < - < 1故有 ⎨ 3 ,求得-2 < b < - ,故选 A .⎪ f (0) = 1 > 0⎪ ⎪⎩ f (1) = 3 + 2b + 1 > 0x。
用复合函数的观点处理几类常见函数问题

即( +1 ) l 2+( , , +0 ) ( 1 + 2 )+m +口 =0 , 整理 得 到 k , m 的关 系 式 m =a k或 m =
2
二 _ a k
0 十 0
,
带 入直线 A B的方 程 为 Y= k x+m=k x+a k
+m + 口 =
中学数 学杂 志
2 0 1 3年 第 1 1 期 例5 ( 武汉市2 0 1 2 届 高三 4月调研 )已知 函数
与 内层 函数 的单 调性 相 同时 , 复合 函数 递 增 , 即当外
层函数与内层函数的单调性相反时, 复合函数递减.
内层 函数 外层 函数 复合 函数
, ( ) l l o g , x . > 0’
1 用复合 函数 的观点 处理 函数值 域 问题
√一 一6 一5的值域为[ 0 , 2 ] .
例2 已知 函数 )=l g [ ( 0 一 1 ) +( Ⅱ+
1 ) +1 ] , 若 )的值 域 为 R, 则 实数 Ⅱ的取值 范 围
是 .
原理分析 复合函数 Y= g ( ) ] , ∈D的值 域 问题 , 令 / / , =g ( ) , ∈ D 称 为 内层 函数 , 则 Y=
意 ; 当 口 ≠ ± 时 , 有 { 2 ≥ m 0 ,
解得 1<口≤÷. 所以0 的取值范围[ 1 , ÷] .
2 用 复合 函数的 观点处 理 函数单 调性 问题
=一 一6 x一5 , 所 以复合 函数 ) , =
= _ 的
值域即为外层函数 Y= √ 的值域.
使Y = ) 的值域为R, 则U =( a 一1 ) 。 +( a+1 )
+1 能取 到 ( 0 , +0 0 )内 的每一个 数值 , 即 U=( a 一 1 ) +( a+1 ) +1 的值域 为 ( 0 , +∞) , 当 a=1 时,
指数型复合函数零点

我们要找出一个指数型复合函数的零点。
首先,我们需要理解什么是零点。
一个函数的零点是指函数值为0的x值。
例如,函数f(x) = x^2 - 4 的零点是x = ±2,因为f(2) = 0 和f(-2) = 0。
对于指数型复合函数,例如f(x) = a^x + b^x,我们可以通过令它等于0来找到零点。
即:a^x + b^x = 0但是,请注意,对于非线性指数函数,我们通常不能直接找到所有零点。
这是因为指数函数是非线性的,所以它的解可能不是简单的x值。
为了找到这个函数的零点,我们可以使用数值方法,例如二分法或牛顿法。
这些方法可以帮助我们在一定的精度范围内找到函数的零点。
为了找到指数型复合函数的零点,我们可以使用二分法或牛顿法等数值方法。
这些方法可以帮助我们在一定的精度范围内找到函数的零点。
例如,对于函数f(x) = a^x + b^x,我们可以使用二分法来找到它的零点。
首先,我们需要选择一个初始区间[a, b],然后反复将区间一分为二,并检查中间点的函数值。
如果中间点的函数值为负,则说明零点在右半部分;如果中间点的函数值为正,则说明零点在左半部分。
通过不断缩小区间,我们可以找到函数的零点。
另一种方法是使用牛顿法。
牛顿法是一种迭代方法,它基于函数的泰勒级数展开来逼近函数的零点。
对于函数f(x) = a^x + b^x,我们可以将其泰勒级数展开并保留前几项,然后将其等于0来求解x。
通过不断迭代,我们可以找到函数的零点。
需要注意的是,对于非线性指数函数,我们可能无法找到所有的零点。
因此,在使用数值方法时,我们需要合理选择初始区间或迭代初值,以确保找到的零点具有一定的精度和可靠性。
1复合函数、零点问题

学之导教育中心教案学生: 康洋 授课时间: 8.15 课时: 4 年级: 高二 教师: 廖课 题 复合函数、零点问题教学构架一、 知识回顾 二、错题再现 三、知识新授 四、小结与预习 教案内容 一、 知识回顾1、必修1函数知识梳理二、错题再现1、已知实数a,b 满足等式11()()23a b ,下列5个关系式正确的有:(1)0<a<b;(2)a<b<0;(3)0<a<b;(4)b<a<0;(5)a=b2、如果函数y=a 2x+2ax-1(a>0,且a ≠1)[-1,1]上的最大值为14,求a 值3、求值(1)(log 43+log 83)(log 32+log 92) (2)本次内容掌握情况 总结教 师 签 字学 生 签 字三、知识新授(一)对数函数的定义:(二)对数函数图象及性质:在同一坐标中画出下列函数的图像:(1)y=log 2x (2)y=log 3x (3)y=log 21x (4)y=log 31x练习:1 求下列函数的定义域(1)y=log 5(1-x) (2)y=log 7x311a>10<a<1 图 像性质 (1)定义域: 值域:(2)过定点: (3)奇偶性:(4)单调性:(4)单调性:(5)当x>0时,y>1;当x<0时,0<y<1 (5)(3)y=)34(lo 5.0-x g (4)y=)31(log 2x -(5)y=log x+1(16-4x) (6) y=)32lg(422---x x x2、比较下列各值的大小(1)log 1.51.6,log 1.51.4 (2) log 1.12.3和log 1.22.2 (3) log 0.30.7和log 2.12.9 (4) 8.2log 7.2log 2121和3、已知集合A={2≤x ≤π},定义在集合A 上的函数y=log a x 的最大值比最小值大1,求a 值4、求211221(log )log 52y x x =-+在区间[2,4]上的最大值和最小值5.求函数y=log a (2-ax-a 2x )的值域。
浅析复合函数零点的个数问题

一类是判断零点个数,另一类是已知零点个数求参
数的取值范围.以下本文通过对典型例题的分析来探究
一下复合函数零点问题中求零点个数和求参数的问题.
1.判断复合函数零点的个数
{ 例1 已知函数犳(狓)=
5 狓-1 -1(狓 ≥0), 则 狓2+4狓+4(狓 <0),
关 于狓的方程犳2(狓)-5犳(狓)+4=0的实数根的个数
零点个数即方程犳(狓)=0的
根个数,也即犳(狓)的图像与
狓 轴 交 点 的 个 数,若 方 程
犳(狓)=0犵(狓)=犺(狓),即
为两函数犵(狓)与犺(狓)图像
图1
交点的个数.该问题只需要确
定零点个数并 不 需 要 求 出 零 点,也 可 画 出 函 数 图 像,
结合图像确定交点的个数,由狋2 -5狋+4=0,得狋=4 或1,所以犳(狓)=4或1,由函数图像犳(狓)分别与狔= 1、狔=4有4个交点和3个交点,所以犳(狓)=1、犳(狓) =4分别有4个根和3个根,所以方程犳2(狓)-5犳(狓) +4=0共有7个根.
图2 图3
2.已知复合函数的零点个数求参数的取值范围 例2 已 知 函 数 犳(狓)的 图 像,若 函 数 犵(狓)= [犳(狓)]2 -犽犳(狓)+1恰有4个零点,则实数犽 的取值 范围是( ).
( ) A.(-
∞,-2)∪
(2,+
∞)
8 B.e2
,2
( ) 4
C.e2
若犳(狓)=1,当狓 ≥0时,即5 狓-1 -1=1,解得
狓=1±log52,当狓 <0时,即狓2+4狓+3=0,解得狓
=-1或 -3.
若犳(狓)=4,当狓 ≥0时,即5 狓-1 -1=4,解得
零点问题的类型及解决方法

题型 一 : 函数 零 点 所 在 区 间 的 判 断— — 利 用 零 点 存 在 性 定 理 判 断零 点所 在 区 间
利用零点存在性定理 时 , 函数y ) 在 区间[ a , b ] 上 的图像 必须是连续 曲线 , 并且 在 区间端 点的 函数值符 号
证明: 曲 线 证明: 曲
厂 ( c ) = ( c — a ) ( c — b ) > 0 , 且厂 ( ) 是二次函数 , 所以函数 ) = ( — a ) ( — b ) + ( — b ) ( — c ) + ( — a ) ( — c )的两个零 点分另 U
位于 区间( a , b ) 、 ( b , c ) . 点 评 :运 用 零 点 存 在 性 定 理 判 断零 点 所 在 区 间 , 必
y = ÷ + 1 有唯一的公共点.
点评 : 本 题 要 证 明指 数 函数 与 二 次 函数 的 交 点 个 数
令 厂 ( ) : ( ÷ ) , g ( ) : + 3 ’ 从
而将原题转化成 函数 ) , y = g ( x ) 的交点个数 , 如 图1 所示. 由图可知原方程有 两个解 .
点评 : 将 函 数 的 零 点 问题 转 化 为 两 个 函数 图像 的 交
Hale Waihona Puke 羔问题 来 解 决. 确 定 零 点 个 数.
高 中 版中 敷- ?
研 究
考试
备考指南
2 0 1 4年 3月
题型 四、 复 合 函 数 的 零 点 个 数 问题 — — 通 过 换 元 转 化 为 两 个 函数 图 像 交 点 的个 数
图1
-
问题 , 可把函数交点问题转化为函数零点问题 . 利用函
复合函数的零点问题

3.已知函数值求自变量的步骤:若已知函数值求 x 的解,则遵循“由外到内”的顺序,一层层拆解直到求出
x 的值.例如:已知 f x 2x , g x x2 2x ,若 g f x 0 ,求 x .
时,显然只有一个交点,所以 ,只需要对数从点 B,点C下
面穿过就有 4 个零点,所以
解得 ,选 D.
【点睛】对于求不同类的两个函数构成的方程,我们常把方程变形为f(x)=g(x),然后根据 y=f(x)与 y
=g(x)的两个图像交点个数来判断原方程根的个数.如本题把方程
变形为
,再画出两个函数的图像,根据两个图像有 4 个交点,求出参数 a 的范围.
c (a,b) ,使 f (c) 0 .
②如果函数 f x 在区间a,b 上的图象是连续不断的曲线,并且有 f (a) · f (b) 0 ,那么,函数 f x 在
--
--
区间 (a, b) 内不一定没有零点.
③如果函数 f x 在区间a,b 上的图象是连续不断的曲线,那么当函数 f x 在区间 (a, b) 内有零点时不
1.复合函数定义:设 y f t ,t g x ,且函数 g x 的值域为 f t 定义域的子集,那么 y 通过 t 的联系
而得到自变量 x 的函数,称 y 是 x 的复合函数,记为 y f g x .
2.复合函数函数值计算的步骤:求 y g f x 函数值遵循“由内到外”的顺序,一层层求出函数值.
③由函数 y f (x) 在闭区间a,b 上有零点不一定能推出 f (a) · f (b) 0 ,如图所示.所以 f (a) · f (b) 0 是 y f (x) 在闭区间a,b 上有零点的充分不必要条件.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合函数图像研究零点
例1、求方程02324=+-x x 实数解的个数为个。
例2、已知函数
则下列关于函数的零点个数的判断
正确的是( )
A. 当
时,有3个零点;当时,有2个零点 B. 当时,有4个零点;当时,有1个零点 C. 无论为何值,均有2个零点D. 无论为何值,均有4个零点
例3、已知函数f (x )=⎩⎪⎨⎪⎧
|ln x |,x >0x 2+4x +1,x ≤0
,若关于x 的方程f 2(x )-bf (x )+c =0(b ,c ∈R )有8个不同的实数根,则b +c 的取值范围为( )
A .(-∞,3)
B .(0,3]
C .[0,3]
D .(0,3)
例4、已知函数c bx ax x x f +++=23)(有两个极值点21,x x ,若211)(x x x f <=,则关
于x 的方程0)(2)(32=++b x af x f 的不同实根个数为。
及时训练
1、已知函数和在的图象如下所示:
给出下列四个命题:
①方程有且仅有6个根 ②方程有且仅有3个根 ③方程有且仅有5个根 ④方程有且仅有4个根 其中正确的命题是 .(将所有正确的命题序号填在横线上).
2、定义在()+∞,0上的单调函数函数)(x f ,对任意(),,0+∞∈x 都有[]4log )(3=-x x f f ,则函数21)()(x
x f x g -=的零点所在区间是( ) A 、⎪⎭⎫ ⎝⎛41,0 B 、⎪⎭⎫ ⎝⎛21,41 C 、⎪⎭⎫ ⎝⎛43,21 D 、⎪
⎭⎫ ⎝⎛1,43
)(x f y =)(x g y =]2,2[
-0)]([=x g f 0)]([=x f g 0)]([=x f f 0)]([=x g g
3、设函数⎩
⎨⎧-≥=0,20,)(2 x x x x x f 则关于x 的方程[]0)(=+k x f f 的根的情况,下列说法正确的有。
①存在实数k ,使得方程恰有一个实根 ②存在实数k ,使得方程恰有两个实根 ③存在实数k ,使得方程恰有三个实根 ④存在实数k ,使得方程恰有四个实根
4、函数)0()(2≠++=a c bx ax x f 的图像关于a
b x 2-
=对称。
据此可推测,对于任意非零实数p n m c b a ,,,,,,关于x 的方程[]0)()(2=++p x nf x f m 的解集不可能是( ) A. B C D
5、已知函数⎩⎨⎧=≠-=1,01
,1lg )(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同
实数解的充要条件是( )
A 、00><c b 且
B 、00<>c b 且
C 、00=<c b 且
D 、00=≥c b 且
{}1,2{}1,4{}1,2,3,4{}1,4,16,64
6、已知函数12lg )(+-=x x f ,则关于x 的方程0))()(2)((=--a x f x f 有8个不同的实数解,则a 的取值范围为。
7、7、已知函数⎪⎩
⎪⎨⎧=≠+=0,00,1)(x x x
x x f 则关于x 的方程0)()(2=++c x bf x f 有5个不同实数解的充要条件是( )
A 、02>-<c b 且
B 、02<->c b 且
C 、02=-<c b 且
D 、02=-≥c b 且
8、已知函数⎪⎩
⎪⎨⎧=≠-=1,01,11)(x x x x f 则关于x 的方程0)()(2=++c x bf x f 有3个不同实数
解321,,x x x ,则=++2
32221x x x 。
9、已知函数⎪⎩
⎪⎨⎧=≠-=2,02,21)(x x x x f 则关于x 的方程0)()(2=++c x bf x f 有5个不同实数
解54321,,,,x x x x x ,则=++++)(54321x x x x x f ( )
A 、
41 B 、81 C 、121 D 、16
1
10、已知函数⎪⎩
⎪⎨⎧=≠-=3,03,31)(x x x x f 若关于x 的方程0)()(2=++c x bf x f 有5个不同实
数解,则实数b 的取值范围为( )
A 、()1,0
B 、()1,-∞-
C 、()+∞,1
D 、()()1,22,---∞-
11、设函数⎪⎩⎪⎨⎧>+-≤=0
,120,2)(2x x x x x f x ,若关于x 的方程0)()(2=-x af x f 有4个不同实数解,则实数a 的取值范围为。
12、已知函数⎪⎩⎪⎨⎧=≠-=1
,01,1lg )(x x x x f ,则关于x 的方程04)()1(2)(2=++-a x f a x f 有8个不同实数解,则实数a 的取值范围为。
13、已知函数)(x f 是定义在R 上的偶函数,当0≥x 时,⎪⎪⎩⎪⎪⎨⎧>+≤≤=)2(,1)2
1()20(,165)(2x x x x f x ,则关于x 的方程0)()(2=++b x af x f ,R b a ∈,有且仅有6个不同的实数根,则实数a 的取值范围为( )
A 、⎪⎭⎫ ⎝⎛--
49,25 B 、⎪⎭⎫ ⎝⎛--1,49 C 、⎪⎭⎫ ⎝⎛--49,25 ⎪⎭⎫ ⎝⎛--1,49 D 、⎪⎭
⎫ ⎝⎛--1,25
14、已知函数⎪⎩
⎪⎨⎧=≠-=2,12,21)(x x x x f 则关于x 的方程0)()(2=++c x bf x f 有5个不同实数解,则实数b 的取值范围为。
15、已知函数⎪⎩⎪⎨⎧≥-<-=1
,21,12)(x x x x f x 则关于x 的方程01)(2)(22=++x bf x f 有6个不同实数解,则实数b 的取值范围为。
16、已知函数13)(23+-=x x x f ,⎪⎩
⎪⎨⎧≤++->+-=0,1)3(0,1)2
1()(22x x x x x g ,则方程[]0)(=-a x f g ,(a 为实数)的实数根最多有个。