混凝土第二章

合集下载

第二章粗细骨料

第二章粗细骨料

70-90 - 15-45 - 0-5 0
70-90 - 30-65 -
- 0-5
第二章粗细骨料
24
单粒级石子级配要求
公称粒级
10-20
16单 31.5 粒 20-40 粒 级 31.3-
63 40-80
2.36 (2.5)
4.75 (5)
95100
95100
筛孔尺寸/mm
9.5 (10)
16.0 (15)
普通混凝土的组成材料
❖骨 料 ❖水 ❖ 外加剂
第二章粗细骨料
普通混凝土的组成
水泥
7~15%

14~21%
石子
21~28%
砂子
39~42%
水泥浆
25~40%
骨料
60~75%
为了改善或提高混 凝土的性能
混凝土外加剂
100%体积
新拌混凝土
混凝土中 的第五种
成分
凝结硬化
硬化混凝土
第二章粗细骨料
混凝土的结构
按 天然砂: 海砂— 含贝壳碎片、可溶性盐类等;


山砂— 多棱角,粘聚性比河砂好,含泥土

和有机杂质较多。
类 人工砂:碎石经机械轧碎筛选而成,富棱角,杂质少,
但细粉多。同时加工成本较高。
第二章粗细骨料
10
第二章粗细骨料
二、细骨料的技术性质:
国家标准GB/T 14684-2001《建筑用砂》
A 表观密度、堆积密度、空隙率
4、针、片状颗粒含量
针状颗粒:是指颗粒长度大于该颗粒所在粒级平均粒径2.4倍的颗粒。 片状颗粒:是指颗粒厚度小于该颗粒所在粒级平均粒径0.4倍的颗粒。
第二章粗细骨料

混凝土结构第2章

混凝土结构第2章
设计基准期是指为确定可变作用及与时间有关的
材料性能等取值而选用的时间参数,与结构的设计使
用年限是两个概念,不能混淆。
作用按随空间位置的变异可分为: 固定作用与自
由作用。
作用按结构的反应特点可分为:
(1)静态作用,使结构产生的加速度可以忽略不计的作 用,如自重、一般风荷载、雪荷载等,其作用效应 与结构的动力特性无关;
(2)动态作用,使结构产生的加速度不可忽略不计的作 用,如地震,其作用效应不仅与作用的大小有关, 而且与结构的动力特性(如刚度、质量分布、自振 周期等)有关。
2.2 两类极限状态 2.2.1 建筑结构的功能
结构的可靠性指的是结构在设计使用年限内,在 规定的条件下,完成预定功能的能力。
所谓的预定功能是指建筑结构必须满足安全性、 适用性、耐久性。 安全性:指结构在预定的使用期限内,应能承受正常 施工、正常使用时可能出现的各种荷载、外加变形、 约束变形等的作用。在设计规定的偶然事件发生时及 发生后,仍能保持整体稳定性,不发生倒塌或连续破 坏,应避免个别构件或局部破坏而导致整体破坏。
例题2-1
已知:板宽0.6m,板的计算跨度 l0 3.3m , 板自重:1.62kN / m2 板面25mm水泥砂浆抹面: 0.025 20 0.5kN / m2
板底15mm纸筋石灰粉刷:0.01516 0.24kN / m2
合计:2.36kN / m2
在板宽0.6米内的均布线恒载的标准值为:
gk Gkb 2.36 0.6 1.42kN / m
在板宽0.6米内的均布线活载的标准值为:
qk Qkb 2.0 0.6 1.2kN / m
跨中弯矩设计值:
M
0S
0 ( G
1 8
4.61kN m

混凝土结构设计原理课件第二章

混凝土结构设计原理课件第二章

3)轴心抗拉强度
混凝土的轴心抗拉强度可以采用直接轴心受拉的试 验方法来测定,但由于试验比较困难,目前国内外主要 采用圆柱体或立方体的劈裂试验来间接测试混凝土的轴 心抗拉强度。
F

a
2020/2/20


F
劈裂试验
f sp

2F
a2
6 2.1 混凝土的物理力学性能
第二章 钢筋和混凝土的材料性能
压强度fc时,试验机中集聚的弹性应变能大于试件所能吸收的
应变能,会导致试件产生突然脆性破坏,只能测得应力-应变 曲线的上升段。
采用等应变速度加载,或在试件旁附设高弹性元件与试件 一同受压,以吸收试验机内集聚的应变能,可以测得应力-应 变曲线的下降段。
2020/2/20
8 2.1 混凝土的物理力学性能
上。e ×10-3
6
8
10 2.21 混凝土的物理力学性能
第二章 钢筋和混凝土的材料性能
强度等级越高,线弹性段 越长,峰值应变也有所增 大。但高强混凝土中,砂 浆与骨料的粘结很强,密 实性好,微裂缝很少,最 后的破坏往往是骨料破坏, 破坏时脆性越显著,下降 段越陡。
不同强度混凝土的应力-应变关系曲线
式中: k1为棱柱体强度与立方体强度之比,对不大
于C50级的混凝土取76,对C80取0.82,其间按线性
插值。k2为高强混凝土的脆性折减系数,对C40取1.0,
对C80取0.87,中间按直线规律变化取值。0.88为考虑 实际构件与试件混凝土强度之间的差异而取用的折减系 数。
2020/2/20
5 2.1 混凝土的物理力学性能
考虑到实际结构构件制作、养护和受力情况,实际 构件强度与试件强度之间存在差异,《规范》基于安全 取偏低值,规定轴心抗压强度标准值和立方体抗压强度 标准值的换算关系为:

结构设计原理 第二章 混凝土 习题及答案

结构设计原理 第二章 混凝土 习题及答案

第二章混凝土结构的设计方法一、填空题1、结构的、、、统称为结构的可靠性。

2、当结构出现或或或状态时即认为其超过了承载力极限状态。

3、当结构出现或或或状态时即认为其超过了正常使用极限状态。

4、结构的可靠度是结构在、、完成的概率。

5、可靠指标 = ,安全等级为二级的构件延性破坏和脆性破坏时的目标可靠指标分别是和。

6、结构功能的极限状态分为和两类。

7、我国规定的设计基准期是年。

8、结构完成预定功能的规定条件是、、。

9、可变荷载的准永久值是指。

10、工程设计时,一般先按极限状态设计结构构件,再按极限状态验算。

二、判断题1、结构的可靠度是指:结构在规定的时间内,在规定的条件下,完成预定功能的概率值。

2、偶然作用发生的概率很小,持续的时间很短,但一旦发生,其量值可能很大。

3、钢筋强度标准值的保证率为97.73%。

HPB235级钢筋设计强度210N/mm2,意味着尚有2.27%的钢筋强度低于210N/mm2。

4、可变荷载准永久值:是正常使用极限状态按长期效应组合设计时采用的可变荷载代表值。

5、结构设计的基准期一般为50年。

即在50年内,结构是可靠的,超过50年结构就失效。

6、构件只要在正常使用中变形及裂缝不超过《规范》规定的允许值,承载力计算就没问题。

7、某结构构件因过度的塑性变形而不适于继续承载,属于正常使用极限状态的问题。

8、请判别以下两种说法的正误:(1)永久作用是一种固定作用;(2)固定作用是一种永久作用。

9、计算构件承载力时,荷载应取设计值。

10、结构使用年限超过设计基准期后,其可靠性减小。

11、正常使用极限状态与承载力极限状态相比,失效概率要小一些。

12、没有绝对安全的结构,因为抗力和荷载效应都是随机的。

13、实用设计表达式中的结构重要性系数,在安全等级为二级时,取00.9γ=。

14、在进行正常使用极限状态的验算中,荷载采用标准值。

15、钢筋强度标准值应具有不少于95%的保证率。

16、结构设计的目的不仅要保证结构的可靠性,也要保证结构的经济性。

《混凝土结构设计原理》 教案大纲

《混凝土结构设计原理》 教案大纲

《混凝土结构设计原理》教案大纲第一章:混凝土结构的基本概念1.1 混凝土结构的定义1.2 混凝土结构的分类1.3 混凝土结构的特点及应用范围1.4 混凝土结构设计的基本原则第二章:混凝土的基本性质2.1 混凝土的组成及材料性质2.2 混凝土的力学性能2.3 混凝土的耐久性2.4 混凝土的变形性能第三章:混凝土结构的受力分析3.1 概述3.2 单向板受力分析3.3 双向板受力分析3.4 梁、柱和节点受力分析3.5 框架结构受力分析第四章:混凝土结构的承载力计算4.1 概述4.2 抗拉、抗压承载力计算4.3 抗弯、抗剪承载力计算4.4 疲劳承载力计算4.5 极限状态设计方法第五章:混凝土结构的变形与裂缝控制5.1 混凝土结构的变形控制5.2 混凝土结构的裂缝控制5.3 钢筋的锚固、焊接与连接5.4 混凝土结构的施工缝处理第六章:混凝土结构的稳定性分析6.1 结构稳定性的基本概念6.2 压弯构件的稳定性分析6.3 受拉构件的稳定性分析6.4 钢筋混凝土构件的稳定性分析6.5 稳定性校核与提高稳定性的措施第七章:混凝土结构的抗震设计7.1 抗震设计的基本概念7.2 地震作用及地震反应7.3 抗震设计原则与要求7.4 混凝土结构的抗震设计方法7.5 抗震设计实例分析第八章:混凝土结构的耐久性设计8.1 耐久性的基本概念8.2 混凝土的侵蚀与碳化8.3 钢筋的腐蚀与防护8.4 混凝土结构的耐久性设计方法8.5 耐久性设计实例分析第九章:混凝土结构的设计实例9.1 工业与民用建筑混凝土结构设计实例9.2 桥梁混凝土结构设计实例9.3 港口与水利混凝土结构设计实例9.4 高层建筑混凝土结构设计实例9.5 特殊环境下的混凝土结构设计实例第十章:混凝土结构设计的软件应用10.1 结构设计软件的基本功能10.2 常见结构设计软件介绍10.3 混凝土结构设计软件操作实例10.4 结构设计软件在工程中的应用与优势10.5 结构设计软件的发展趋势与展望重点解析第一章:混凝土结构的基本概念重点:混凝土结构的定义、分类、特点及应用范围。

第二章 混凝土结构的基本计算原则

第二章 混凝土结构的基本计算原则

第二章 混凝土结构的基本计算原则第一节 概术结构设计的基本任和是正确合理地处理结构安全可靠与经济合理这一对矛盾。

总的来说,钢筯混凝土结构构件的基本计算方法按其发展先后,有下列几种:容许应力计算方法,破损阶段计算方法,极限状态计算方法。

材料的容许应力,是由材料的极限强度(混凝土)或者流限(钢筯)除以安全系数K 而得到的。

该法的主要优点是可沿用弹性匀质材料的《材料力学》概念计算,计算比较方便。

缺点是安全系数的确定比较主观。

这种方法的计算准则是:结构的最大内力不应大于结构的承载能力,其设计表达式为 K M M P /其中P M 是截面所能承受的破损内力。

K 是安全系数。

定值观点下的安全系数是人们对许多未知的无法了解和控制的因素的估计,以及对安全度的期望而经验地加以确定的。

它并不能从定量上度量结构的可靠程度,其要本原因在于它不能作为度理设计变量变异性的尺度。

第二节 几个基本概念结构上的作用可分为直接作用和间接作用。

按时间变异的特点,可以分为 永久作用,可变作用,偶然作用。

结构抗力的广义概念是指结构构件承受作的效应的各种能力。

对结构构件的变菜效应,相应地有结构的刚度,刚度也是一种广义的抗力。

第三节 概率极限状态设计方法安全,适用,耐久 总 为结构的可靠性。

结构的极限状态及分类:(1)承载能力极限状态 这种极限状态对应于结构或结构构件达到最大承载能力,或达到不适于继续承载的变用。

当结构或构件出现下列状态之一时,即可认为超过了承载能力极限状态:1 整个结构或构件的一部分作为刚体失去平衡。

2因其材料强度被超过而破坏(包括疲劳破坏),或因过度塑性变形而不适于继椟 承载。

3结构转变为机动体系。

4结构或构件丧失稳定性。

(2)正常使用极限状态 这种极限状态对应于结构或结构构件达到正常使用或耐久性能的某项规定限值1影响正常使用和外观变形。

2影响正常使用或耐久性能的局部受到损坏3造成不舒或对设备发生影响过大的振动。

其实可以理解为结构或结构构件使用功能的破坏或受损害 ,或结构质量的恶化。

混凝土设计原理第2章答案

混凝土设计原理第2章答案

思 考 题-答案2.1 混凝土的立方体抗压强度标准值f cu ,k 、轴心抗压强度标准值f ck 和轴心抗拉强度标准值f tk 是如何确定的?答:混凝土的立方体抗压强度标准值f cu,k 的确定:以标准方法制作的边长150mm 的立方体试块,在标准条件下(温度20±2℃,相对湿度不低于95%)养护28d ,按标准试验方法加载至破坏,测得的具有95%以上保证率的抗压强度作为混凝土立方体抗压强度的标准值,用f cu,k 表示,单位为N/mm 2。

轴心抗压强度标准值f ck 的确定:是根据150mm×150mm×300mm 的棱柱体标准试件,在与立方体标准试件相同的养护条件下,按照棱柱体试件试验测得的具有95%保证率的抗压强度确定的。

具体按下式计算:k cu,c2c1ck 88.0f f αα=式中 αc1-棱柱体强度与立方体强度之比值,当混凝土强度等级≤C50时取αc1=0。

76, C80取αc1=0。

82,其间按线性内插法确定。

αc2-混凝土的脆性折减系数,当混凝土强度等级≤C40时取αc2=1。

0, C80取αc2=0。

87,其间按线性内插法确定。

轴心抗拉强度标准值f tk 的确定:可采用轴心抗拉试验(试件尺寸100mm×100mm×500mm)直接测试或通过圆柱体(或立方体)的劈裂试验间接测试,测得的具有95%保证率的轴心抗拉强度确定的。

具体按下式计算:()c245.00.55k cu,tk 645.11395.088.0αδ-⨯=f f2。

2 混凝土的强度等级是如何划分的?我国《规范》GB50010规定的混凝土强度等级有哪些?对于同一强度等级的混凝土,试比较立方体抗压强度、轴心抗压强度和轴心抗拉强度的大小并说明理由.答:混凝土的强度等级是依据立方体抗压强度标准值f cu,k 确定的。

我国《规范》GB50010规定的混凝土强度等级有:C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75和C80,共14个等级。

结构设计原理-第二章-混凝土-习题及答案

结构设计原理-第二章-混凝土-习题及答案

第二章混凝土结构的设计方法一、填空题1、结构的、、、统称为结构的可靠性。

2、当结构出现或或或状态时即认为其超过了承载力极限状态。

3、当结构出现或或或状态时即认为其超过了正常使用极限状态。

4、结构的可靠度是结构在、、完成的概率。

5、可靠指标 = ,安全等级为二级的构件延性破坏和脆性破坏时的目标可靠指标分别是和。

6、结构功能的极限状态分为和两类。

7、我国规定的设计基准期是年。

8、结构完成预定功能的规定条件是、、。

9、可变荷载的准永久值是指。

10、工程设计时,一般先按极限状态设计结构构件,再按极限状态验算。

二、判断题1、结构的可靠度是指:结构在规定的时间内,在规定的条件下,完成预定功能的概率值。

2、偶然作用发生的概率很小,持续的时间很短,但一旦发生,其量值可能很大。

3、钢筋强度标准值的保证率为97.73%。

HPB235级钢筋设计强度210N/mm2,意味着尚有2.27%的钢筋强度低于210N/mm2。

4、可变荷载准永久值:是正常使用极限状态按长期效应组合设计时采用的可变荷载代表值。

5、结构设计的基准期一般为50年。

即在50年内,结构是可靠的,超过50年结构就失效。

6、构件只要在正常使用中变形及裂缝不超过《标准》规定的允许值,承载力计算就没问题。

7、某结构构件因过度的塑性变形而不适于继续承载,属于正常使用极限状态的问题。

8、请判别以下两种说法的正误:(1)永久作用是一种固定作用;(2)固定作用是一种永久作用。

9、计算构件承载力时,荷载应取设计值。

10、结构使用年限超过设计基准期后,其可靠性减小。

11、正常使用极限状态与承载力极限状态相比,失效概率要小一些。

12、没有绝对安全的结构,因为抗力和荷载效应都是随机的。

13、实用设计表达式中的结构重要性系数,在安全等级为二级时,取00.9γ=。

14、在进行正常使用极限状态的验算中,荷载采用标准值。

15、钢筋强度标准值应具有不少于95%的保证率。

16、结构设计的目的不仅要保证结构的可靠性,也要保证结构的经济性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章混凝土结构材料的物理力学性能2.1 混凝土的物理力学性能2.1.1混凝土的组成结构通常把混凝土的结构分为三种类型:A.微观结构:也即水泥石结构,包括水泥凝胶、晶体骨架、未水化完的水泥颗粒和凝胶孔组成。

B.亚微观结构:即混凝土中的水泥砂浆结构。

C.宏观结构:即砂浆和粗骨料两组分体系。

注意:1.骨料的分布及骨料与基相之间在界面的结合强度是影响混凝土强度的重要因素;2.在荷载的作用下,微裂缝的扩展对混凝土的力学性能有着极为重要的影响。

2.1.2单轴应力状态下的混凝土强度混凝土结构中,主要是利用它的抗压强度。

因此抗压强度是混凝土力学性能中最主要和最基本的指标。

混凝土的强度等级是用抗压强度来划分的(1)单向受力状态下混凝土的强度1)立方体抗压强度:边长为150mm的混凝土立方体试件,在标准条件下(温度为20±3℃,湿度≥90%)养护28天,用标准试验方法(加载速度0.15~0.3N/mm2/s,两端不涂润滑剂)测得的具有95%保证率的抗压强度,用符号C表示。

《规范》根据强度范围,从C15~C80共划分为14个强度等级,级差为5N/mm2。

2)轴心抗压强度按标准方法制作的150mm ×l50mm ×300mm 的棱柱体试件,在温度为20土3℃和相对湿度为90%以上的条件下养护28d ,用标准试验方法测得的具有95%保证率的抗压强度。

对于同一混凝土,棱柱体抗压强度小于立方体抗压强度。

考虑到实际结构构件制作、养护和受力情况,实际构件强度与试件强度之间存在差异,《规范》基于安全取偏低值,规定轴心抗压强度标准值和立方体抗压强度标准值的换算关系为:kcu ck f k k f ,2188.0⋅⋅=式中:k 1为棱柱体强度与立方体强度之比,对不大于C50级的混凝土取0.76,对C80取0.82,其间按线性插值。

k 2为高强混凝土的脆性折减系数,对C40取1.0,对C80取0.87,中间按直线规律变化取值。

0.88为考虑实际构件与试件混凝土强度之间的差异而取用的折减系数。

kcu ck f k k f ,2188.0⋅⋅=f cu,k 立方体强度标准值即为混凝土强度等级f cu 。

3)轴心抗拉强度混凝土的轴心抗拉强度可以采用直接轴心受拉的试验方法来测定,但由于试验比较困难,目前国内外主要采用圆柱体或立方体的劈裂试验来间接测试混凝土的轴心抗拉强度。

劈拉试验F a F拉压压22aF f sp ⋅=π第二章钢筋和混凝土的材料性能《混凝土结构设计规范》规定轴心抗拉强度标准值与立方体抗压强度标准值的换算关系为:()0.450.55,20.880.3951 1.645tk cu k f f δα=⨯⨯-⨯混凝土轴心抗拉强度与立方体抗压强度的关系在平面应力状态下,当两方向应力均为压应力时,抗压强度相互提高,最大可增加27%,而当一方向为压应力,另一方向为拉应力时,强度相互降低。

当压应力不太高时,其存在可提高混凝土的抗剪强度,拉应力的存在会降低混凝土的抗剪强度。

剪应力的存在降低混凝土的抗压和抗拉强度。

侧向压应力的存在可提高混凝土的抗压强度,关系为:式中——被约束混凝土的轴心抗压强度;——非约束混凝土的轴心抗压强度;——侧向约束压应力。

侧向压应力的存在还可提高混凝土的延性。

(4.57.0)ccc l f f f ''=+:ccf 'c f 'l f (3)复合受力状态下混凝土的强度实际结构中,混凝土很少处于单向受力状态。

更多的是处于双向或三向受力状态。

◆双轴应力状态双向受压强度大于单向受压强度,最大受压强度发生在两个压应力之比为0.3~0.6之间,约(1.25~1.60 )f c。

双轴受压状态下混凝土的应力-应变关系与单轴受压曲线相似,但峰值应变均超过单轴受压时的峰值应变。

实际结构中,混凝土很少处于单向受力状态。

更多的是处于双向或三向受力状态。

◆双轴应力状态在一轴受压一轴受拉状态下,任意应力比情况下均不超过其相应单轴强度。

并且抗压强度或抗拉强度均随另一方向拉应力或压应力的增加而减小。

构件受剪或受扭时常遇到剪应力t 和正应力s 共同作用下的复合受力情况。

混凝土的抗剪强度:随拉应力增大而减小随压应力增大而增大当压应力在0.6f左右时,抗剪强度达到最大,c压应力继续增大,则由于内裂缝发展明显,抗剪强度将随压应力的增大而减小。

◆三轴应力状态三轴应力状态有多种组合,实际工程遇到较多的螺旋箍筋柱和钢管混凝土柱中的混凝土为三向受压状态。

三向受压试验一般采用圆柱体在等侧压条件进行。

由试验得到的经验公式为:式中——被约束混凝土的轴心抗压强度;——非约束混凝土的轴心抗压强度;——侧向约束压应力。

侧向压应力的存在还可提高混凝土的延性。

(4.57.0)ccc l f f f ''=+:ccf 'c f 'l f2.1.4混凝土的变形1、单轴受压应力-应变关系混凝土单轴受力时的应力-应变关系反映了混凝土受力全过程的重要力学特征,是分析混凝土构件应力、建立承载力和变形计算理论的必要依据,也是利用计算机进行非线性分析的基础。

混凝土单轴受压应力-应变关系曲线,常采用棱柱体试件来测定。

在普通试验机上采用等应力速度加载,达到轴心抗压时,试验机中集聚的弹性应变能大于试件所能吸收的应强度fc变能,会导致试件产生突然脆性破坏,只能测得应力-应变曲线的上升段。

采用等应变速度加载,或在试件旁附设高弹性元件与试件一同受压,以吸收试验机内集聚的应变能,可以测得应力-应变曲线的下降段。

2468102030s (MPa)e ×10-3BACED点以前,微裂缝没有明显发展,混凝土的变形主要弹性变形,应力-应变关系近似直线。

A 点应力随混凝土强度的提高而增加,对普通强度混凝土s A 约为(0.3~0.4)f c ,对高强混凝土s A 可达(0.5~0.7)f c 。

A 点以后,由于微裂缝处的应力集中,裂缝开始有所延伸发展,产生部分塑性变形,应变增长开始加快,应力-应变曲线逐渐偏离直线。

微裂缝的发展导致混凝土的横向变形增加。

但该阶段微裂缝的发展是稳定的。

混凝土在结硬过程中,由于水泥石的收缩、骨料下沉以及温度变化等原因,在骨料和水泥石的界面上形成很多微裂缝,成为混凝土中的薄弱部位。

混凝土的最终破坏就是由于这些微裂缝的发展造成的。

达到B 点,内部一些微裂缝相互连通,裂缝发展已不稳定,横向变形突然增大,体积应变开始由压缩转为增加。

在此应力的长期作用下,裂缝会持续发展最终导致破坏。

取B 点的应力作为混凝土的长期抗压强度。

普通强度混凝土s B 约为0.8f c ,高强强度混凝土s B 可达0.95f c 以上。

达到C 点f c ,内部微裂缝连通形成破坏面,应变增长速度明显加快,C 点的纵向应变值称为峰值应变e 0,约为0.002。

纵向应变发展达到D 点,内部裂缝在试件表面出现第一条可见平行于受力方向的纵向裂缝。

随应变增长,试件上相继出现多条不连续的纵向裂缝,横向变形急剧发展,承载力明显下降,混凝土骨料与砂浆的粘结不断遭到破,裂缝连通形成斜向破坏面。

E 点的应变e = (2~3)e 0,应力s = (0.4~0.6)f c 。

强度等级越高,线弹性段越长,峰值应变也有所增大。

但高强混凝土中,砂浆与骨料的粘结很强,密实性好,微裂缝很少,最后的破坏往往是骨料破坏,破坏时脆性越显著,下降段越陡。

不同强度混凝土的应力-应变关系曲线◆Hognestad 建议的应力-应变曲线u u c c f f e e e e e e e s e e e e e e s ≤≤⎪⎪⎭⎫⎝⎛---=≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=0000200 15.010 200.0020.0038f c0.15f c see 0e u◆《规范》应力-应变关系上升段:])1(1[0nc c c f e e s --=0e e ≤下降段:cc f =s u e e e ≤<055010)50(0033.010)50(5.0002.0)50(6012--⨯--=⨯-+=--=cu u cu cu f f f n e e 《规范》混凝土应力-应变曲线参数f cu ≤C50C60C70C80n2 1.83 1.67 1.5e 00.0020.002050.00210.00215e u0.00330.00320.00310.0030.0010.0020.0030.00410203040506070C80C60C40C20se2、混凝土的变形模量弹性模量αtg E c =变形模量1αtg E c='切线模量αtg E c=''◆弹性模量测定方法se0.5f c5~10次)N/mm (74.342.21025cuc f E +=2.1.5混凝土的收缩和徐变1、混凝土的收缩混凝土在空气中硬化时体积会缩小,这种现象称为混凝土的收缩。

收缩是混凝土在不受外力情况下体积变化产生的变形。

当这种自发的变形受到外部(支座)或内部(钢筋)的约束时,将使混凝土中产生拉应力,甚至引起混凝土的开裂。

混凝土收缩会使预应力混凝土构件产生预应力损失。

◆影响因素混凝土的收缩受结构周围的温度、湿度、构件断面形状及尺寸、配合比、骨料性质、水泥性质、混凝土浇筑质量及养护条件等许多因素有关。

(1)水泥的品种:水泥强度等级越高,制成的混凝土收缩越大。

(2)水泥的用量:水泥用量多、水灰比越大,收缩越大。

(3)骨料的性质:骨料弹性模量高、级配好,收缩就小。

(4)养护条件:干燥失水及高温环境,收缩大。

(5)混凝土制作方法:混凝土越密实,收缩越小。

(6)使用环境:使用环境温度、湿度越大,收缩越小。

(7)构件的体积与表面积比值:比值大时,收缩小。

2、混凝土的徐变混凝土在荷载的长期作用下,其变形随时间而不断增长的现象称为徐变。

徐变对混凝土结构和构件的工作性能有很大影响。

由于混凝土的徐变,会使构件的变形增加,在钢筋混凝土截面中引起应力重分布,在预应力混凝土结构中会造成预应力的损失。

混凝土的徐变特性主要与时间参数有关。

在应力(≤0.5f c )作用瞬间,首先产生瞬时弹性应变e el (= s i /E c (t 0),t 0加荷时的龄期)。

随荷载作用时间的延续,变形不断增长,前4个月徐变增长较快,6个月可达最终徐变的(70~80)%,以后增长逐渐缓慢,2~3年后趋于稳定。

记(t-t)时间后的总应变为e c(t,t0),此时混凝土的收缩应变为esh(t,t0),则徐变为,e cr (t,t0)=e c(t,t0)-e c(t0)-e sh(t,t0)=e c(t,t0)-e el-e sh(t,t0)如在时间t 卸载,则会产生瞬时弹性恢复应变e el '。

相关文档
最新文档