SPSS统计分析非参数检验
SPSS应用之非参数检验

SPSS应⽤之⾮参数检验统计学的假设检验可以分为参数检验和⾮参数检验,参数检验是根据⼀些假设条件推算⽽来,当这些假设条件⽆法满⾜的时候,参数检验的效能会⼤打折扣,甚⾄出现错误的结果,⽽⾮参数检验通常是没有假设条件的,因此应⽤范围⽐参数检验要⼴。
⾮参数检验在不做任何假设的情况下,最⼤限度的使⽤样本信息,利⽤统计学、数学的⽅法和技巧构造统计量并加以检验,在某些情况下,⾮参数检验⽐参数检验拥有更⾼的效能,尽管如此,我们也不能⼀味的使⽤⾮参数检验,毕竟参数检验更加严谨,通常都是在数据不符合参数检验的条件是,才使⽤⾮参数检验,因此,对于数据的前期观察是⾮常重要的。
⾮参数检验⽅法⾮常多,但是绝⼤部分⾮参数检验⽅法都是基于秩和结来构造统计量的,中⾮参数检验是⼀个独⽴的过程,也保留了旧对话框,新对话框按照样本情况分类,根据样本情况来选择⽅法,并且更倾向于⾃动化分析,旧对话框的分类则不是很明确,分我们按照新对话框来进⾏介绍分析—⾮参数检验—单样本⼀、单样本1.⼆项式检验⼆项式检验也称为⼆项分布检验,⽤来检验样本是否来⾃⼆项分布,也就是检查样本的观测值的频数与某⼀特定⼆项分布下的期望频数是否⼀致。
不仅可以针对于⼆分类变量,对于连续变量也可以当做⼆分类变量来处理,例如成绩的及格与否,产品的合格与否等。
本例中是想检验三门学科的及格率是否都在95%以上2.卡⽅检验卡⽅检验是最常⽤的多分类⾮参数检验,卡⽅统计量也⼴泛被其他检验所引⽤,卡⽅检验依据卡⽅分布,主要包括适应性检验和独⽴性检验,适应性检验⽤于检验实际观察频数与期望频数是否⼀致,独⽴性检验⽤于检验两组或多组计数资料是否相互独⽴。
3.K-S检验全称为Kolmogorov-Smirnow检验,在探索性中,也曾出现过⽤它来检验是否服从正态分布。
该检验属于⾮参数检验,⽤来检验某⼀单样本是否服从某⼀理论分布。
4.Wilcoxon符号秩检验该检验将符号和秩相结合,效能⽐单纯的符号检验和秩和检验都⾼,因此⽐较常⽤5.游程检验我们知道样本的随机性很重要,⽽游程检验就是⽤来检验样本数据是否是随机抽取的。
SPSS非参数检验之一卡方检验

SPSS非参数检验之一卡方检验一、卡方检验的概念和原理卡方检验是一种常用的非参数检验方法,用于检验两个或多个分类变量之间的关联性。
它利用实际观察频数与理论频数之间的差异,来判断两个变量是否独立。
卡方检验的原理基于卡方分布,在理论上,如果两个变量是独立的,那么它们的观测频数应该等于理论频数。
卡方检验通过计算卡方值来度量观察频数与理论频数之间的差异程度,进而判断两个变量是否独立。
卡方值的计算公式为:卡方值=Σ((观察频数-理论频数)²/理论频数)其中,观察频数为实际观察到的频数,理论频数为理论上计算得到的频数。
二、卡方检验的步骤卡方检验的步骤包括以下几个方面:1.建立假设:首先需要建立原假设和备择假设。
原假设(H0)是两个变量之间独立,备择假设(H1)是两个变量之间存在关联。
2.计算理论频数:根据原假设和已知数据,计算出各组的理论频数。
3.计算卡方值:利用卡方值的计算公式,计算观察频数与理论频数之间的差异。
4.计算自由度:自由度的计算公式为自由度=(行数-1)*(列数-1)。
5.查表或计算P值:根据卡方值和自由度,在卡方分布表中查找对应的临界值,或者利用计算机软件计算P值。
6.判断结果:判断P值与显著性水平的关系,如果P值小于显著性水平,则拒绝原假设,认为两个变量存在关联;如果P值大于显著性水平,则接受原假设,认为两个变量是独立的。
三、卡方检验在SPSS中的应用在SPSS软件中,进行卡方检验的操作相对简单。
下面以一个具体的案例来说明:假设我们有一份数据,包括了男性和女性在健康习惯(吸烟和不吸烟)方面的调查结果。
我们想要检验性别与吸烟习惯之间是否存在关联。
1.打开SPSS软件,导入数据。
2.选择"分析"菜单,点击"拟合度优度检验"。
3.在弹出的对话框中,将两个变量(性别和吸烟习惯)拖入"因子"栏目中。
4.点击"统计"按钮,勾选"卡方拟合度"。
SPSS非参数检验—两独立样本检验_案例解析

SPSS非参数检验—两独立样本检验_案例解析非参数检验是一种在统计学中常用于比较两个或多个独立样本的方法。
与参数检验不同,非参数检验不需要对数据的分布进行假设,并且适用于非正态分布的数据。
SPSS(统计软件包for社会科学)是一个广泛使用的统计分析软件,它提供了许多非参数检验的功能。
本文将以一个案例为例,解析如何使用SPSS进行两独立样本的非参数检验。
案例描述:一家公司正在评估一个新的培训课程对员工的绩效是否有显著影响。
为了评估培训课程的效果,研究人员随机选择了两组员工,一组接受了培训课程(实验组),另一组没有接受培训课程(对照组)。
研究人员想要比较两组员工在绩效上的差异。
步骤一:导入数据首先,将实验组和对照组的数据分别导入SPSS中。
假设每个样本中有n个观测值。
在SPSS中,每一组数据应该是一个独立的变量(或列),并且每个观测值应该占据矩阵中的一个单元格。
步骤二:选择非参数检验方法在SPSS中,可以使用Mann-Whitney U检验来比较两组独立样本的绩效差异。
该检验的原假设是两组样本来自同一个总体,备择假设是两组样本来自不同的总体。
步骤三:运行非参数检验在SPSS的菜单栏中,依次选择"分析" - "非参数检验" - "独立样本检验(Mann-Whitney U)"。
将实验组和对照组的变量分别输入到"因子1"和"因子2"中。
在"可选"选项中,可以选择在报告中包含各种统计量。
步骤四:解读结果SPSS将输出很多统计信息,包括推断统计、置信区间、效应大小等。
其中,最重要的是U值和显著性。
U值是用来检验两组样本是否来自同一个总体的统计量,显著性则是用来判断差异是否显著。
如果显著性小于0.05,则可以拒绝原假设,认为两组样本在绩效上存在显著差异。
总结:通过上述步骤,我们可以利用SPSS进行两独立样本的非参数检验。
SPSS的非参数检验

02
SPSS非参数检验概述
定义与特点
定义
非参数检验是在统计分析中,相对于参数检验的一种统计方法。 它不需要对总体分布做严格假定,只关注数据本身的特点,因此 具有更广泛的适用范围。
特点
非参数检验对总体分布的假设较少,强调从数据本身获取信息, 具有灵活性、稳健性和适用范围广等优点。
局限性
计算量大
对于大规模数据集,非参数检验的计算量可 能较大,需要较长的计算时间。
对数据要求高
非参数检验要求数据具有可比性,对于不可 比的数据集可能无法得出正确的结论。
解释性较差
非参数检验的结果通常较为简单,对于深入 的统计分析可能不够满足。
对异常值敏感
非参数检验对异常值较为敏感,可能导致结 果的偏差。
THANK YOU
感谢聆听
常用非参数检验方法
独立样本非参数检验
用于比较两个独立样本的差异 ,如Mann-Whitney U 检验 、Kruskal-Wallis H 检验等。
相关样本非参数检验
用于比较相关样本或配对样本 的关联性,如Wilcoxon signed-rank 检验、Kendall's tau-b 检验等。
等级排序非参数检验
案例二:两个相关样本的非参数检验
总结词
适用于两个相关样本的比较,如同一班级内不同时间点的成绩比较。
描述
使用SPSS中的两个相关样本的非参数检验,如Wilcoxon匹配对检验,可以比较两个相关样本的总体分布是否相 同。
案例二:两个相关样本的非参数检验
01
步骤
02
1. 打开SPSS软件,输入数据。
SPSS教程-非参数检验

一般用来对两个独立样本的均数、中位数、离 散趋势、偏度等进行差异比较检验。
两个样本是否独立,主要看在一个总体中抽取 样本对另外一个总体中抽取样本有无影响。
Mann-Whitney检验
=0.18576
计算表
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
单样本K-S检验
利用样本数据推断样本来自的总体是否服从某一理论 分布,是一种拟合优度的检验方法,适用于探索连续 型随机变量的分布
步骤
计算各样本观测值在理论分布中出现的理论累计概率值F(x) 计算各样本观测值的实际累计概率值S(x) 计算理论累计概率值与实际累计概率值的差D(x) 计算差值序列中最大绝对差值D
针麻效果
(1) Ⅰ Ⅱ Ⅲ Ⅳ
表
肺癌 (2) 10 17 19 4
三种病人肺切除术的针麻效果比较肺化脓症Fra bibliotek肺结核
(3)
(4)
24
48
41
65
33
36
7
8
合计 (5) 82 123 88 19
SPSS基本操作
与例7的操作相同
随机区组设计资料的秩和检验
M检验(Friedman法)法计算步骤
将每个区组的数据由小到大分别编秩 计算各处理组的秩和Ri 求平均秩:R=1/2b(k+1) 计算各处理组的( Ri-R) 求M 查M界值表,F近似法
参数统计(parametric statistics) : 在 统计推断 中,若样本所来自的总体分布为已知的函数形式 (正态/近似正态分布),但其中的参数未知,统 计推断的目的就是对这些未知参数进行估计/检验, 这类统计推断方法称参数统计。
非参数检验-SPSS

非参数检验-SPSS什么是非参数检验?非参数检验是一种统计假设检验方法,它不依赖于总体的任何假设条件,如总体分布的正态性、方差的同一性等。
与参数检验相比,非参数检验更加灵活,能够适应更多的数据情况。
为什么需要非参数检验?当我们的数据不满足正态分布等假设条件时,就需要使用非参数检验。
此外,非参数检验还有以下优点:1.不需要知道总体分布的具体形态,从而更加适用于实际情况2.对于离群值和极端值并不敏感3.数据缺失并不会影响检验结果SPSS中的非参数检验现在我们来介绍SPSS中的非参数检验。
1. Wilcoxon符号秩检验Wilcoxon符号秩检验旨在检验两组配对样本的中位数差异是否为零。
它的原假设是两组样本中位数相同。
首先,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“数据”-“配对样本T检验”-“Wilcoxon符号秩检验”。
接下来,我们需要在弹出的对话框中选择配对变量,然后点击“OK”即可得到检验结果。
2. Mann-Whitney U检验Mann-Whitney U检验是一种非参数检验方法,用于检验两组独立样本的中位数是否相同。
它的原假设是两组样本中位数相同。
要进行Mann-Whitney U检验,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“分析”-“非参数检验”-“2独立样本”。
接着,在弹出的对话框中选择两组样本的变量,并设置分析的方法为“Mann-Whitney U检验”。
最后点击“OK”即可得到检验结果。
3. Kruskal-Wallis检验Kruskal-Wallis检验是一种非参数检验方法,用于检验多个独立样本的中位数是否相同。
它的原假设是多组样本中位数相同。
要进行Kruskal-Wallis检验,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“分析”-“非参数检验”-“Kruskal-Wallis检验”。
接着,在弹出的对话框中选择多组样本的变量,并点击“OK”即可得到检验结果。
spss使用教程非参数检验

SPSS二项分布检验就是根据收集到的样本 数据,推断总体分布是否服从某个指定的二项 分布。其零假设是H0:样本来自的总体与所指 定的某个二项分布不存在显著的差异。
第24页/共152页
SPSS中的二项分布检验,在样本小于或等 于30时,按照计算二项分布概率的公式进行计 算;样本数大于30时,计算的是Z统计量,认 为在零假设下,Z统计量服从正态分布。Z统计 量的计算公式如下
人数 2 4 7 16 20 25 24 22 16 2 6 1
第49页/共152页
实现步骤
图10-12 在菜单中选择“1-Sample K-S”命令
第50页/共152页
图10-13 “One-Sample Kolmogorov-Smirnov Test”对话框
第51页/共152页
图10-14 “One-Sample K-S:Options”对话框
第28页/共152页
表10-2
35名婴儿的性别
婴儿
Sex
婴儿
Sex
婴儿
Sex
1
1
13
1
25
1
2
0
14
1
26
1
3
1
15
1
27
0
4
1
16
1
28
0
5
1
17
0
29
0
6
1
18
0
30
0
7
0
19
0
31
1
8
0
20
0
32
0
9
0
21
0
33
0
10
第6章 SPSS非参数检验讲解

在【定义二分法】选项组中可以定义二元变量。 Step04:指定检验概率值
在【检验比例】选项组中可以指定二项分布的检验概率值。 系统默认的检验概率值是0.5,这意味着要检验的二项是服从均 匀分布的。如果所要检验的二项分布不是同概率分布,参数框中 要键入第一组序列的随机性,而不管这个序列是 怎样产生的;此外还可用来判断两个总体的分布是否相同,从而 检验出它们的位置中心有无显著差异。
3.软件使用方法
SPSS中利用游程数构造Z统计量,利用Z统计量的分布来检验 序列是否具有随机性。软件将自动计算出Z统计量的取值及对应 的概率P值。如果概率P值小于或等于用户设定的显著性水平,则 拒绝零假设,认为变量不具有随机性;相反的,如果概率P值大 于显著性水平,则认为变量出现是随机的。
在【期望全距】选项组中可以确定检验值的范围,对应有 两个单选项。 Step04:选择期望值
在【期望值】选项组中可以指定期望值 ,对应有两个单选 项。
Step05:选择计算精确概率
单击【精确】按钮,弹出【精确检验】对话框,该对话框用于选 择计算概率P值的方法 。
Step06:其他选项选择 单击【选项】按钮,弹出【选项】对话框,该对话框用于指定输 出内容和关于缺失值的处理方法
3.软件使用方法
SPSS会自动计算出χ2统计量及对应的相伴概率P值。
Step01:打开主菜单
选择菜单栏中的【分析】 →【非参数检验】→【旧对话框】→ 【卡方】命令,弹出【卡方检验】对话框。
Step02:选择检验变量
在【卡方检验】对话框左侧的候选变量列表框中选择一个 或几个变量,将其添加至【检验变量列表】列表框中,表示需 要进行进行卡方检验的变量。 Step03:确定检验范围
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2 单样本的非参数检验 5.2.2 卡方检验
1.卡方检验的概念
也称卡方拟合优度检验,它是K.Pearson给出的一种最 常用的非参数检验方法,用于检验观测数据是否与某种概率 分布的理论数值相符合,进而推断观测数据是否是来自于该 分布的样本的问题。
H0
5.2 单样本的非参数检验 5.2.1 基本概念及统计原理
(1)“目标”选项卡:用于设置非参数检验的目标,每个 不同的选项对应于“设置”选项卡上不同的默认配置,如 下图所示。
H0
5.2 单样本的非参数检验 5.2.1 基本概念及统计原理
(2)“字段”选项卡:用于设定待检验变量。
H0
5.2 单样本的非参数检验 5.2.1 基本概念及统计原理
5.2.2 卡方检验
第4步 单因素的非参数检验设置:选择菜单“分析→非参数 检验→单样本”,在“目标”选项卡选择“自定义分析”; 在“字段”选项卡中选择“使用定制字段分配”,并将“工 作日”字段选入“检验字段”;“设置”选项卡中选择“自 定义检验”,并选中“比较观察可能性和假设可能性(卡方 检验)”,“检验选项”及“用户缺失值”保持默认选项。
非参数检验包括单样本(O)、独立样本(I)、相关样
本(R)的非参数检验。
5.1 参数检验及非参数检验的区别
1.参数检验和非参数检验的区别
参数检验和非参数检验最本质的区别是:参数检验需要 事先确定或假定总体的分布,非参数检验则不需要假定总体 的分布,而是直接用样本来推断总体的分布。 除此之外,二者之间还可以从很多方面来区分。 ➢研究的对象和目标不同。
”。 ➢第2步 选择检验统计量:卡方分布选择的是Pearson卡方统
计量。已证明,当n充分大时,它近似地服从自由度为k-1的
卡方分布。
➢第3步 计算检验统计量的观测值和概率p值。
➢第4步 给出显著性水平,作出决策。
5.2 单样本的非参数检验
5.2.2 卡方检验
4.卡方检验SPSS实例分析
【例5-1】 某公司质检负责人欲了解企业一年内出现的次品 数是否均匀分布在一周的五个工作日中,随机抽取了90件次 品的原始记录,其结果如下表,问该企业一周内出现的次品 数是否均匀分布在一周的五个工作日中?( 0.05)
采用卡方统计量,典型的卡方统计量是Pearson卡方统计量,
其公式为:
2 k (ni npi )2
i1 npi
H0
5.2 单样本的非参数检验 5.2.2 卡方检验
3.分析步骤
➢第1 步 提出零假设:卡方检验的零假设H0是“总体服从某 种理论分布”,其对立假设H1是“总体不服从某种理论分布
第五章
非参数检验
主要内容
5.1 参数检验与非参数检验的比较 5.2单样本的非参数检验
非参数检验
非参数检验是在总体分布未知的情况下,利用样本数据 对总体分布形态等进行推断的方法,在推断过程中不涉及有 关总体分布的参数,而是检验总体某些有关的性质,如总体 的分布位置、分布形状之间的比较等。
与参数检验的原理相同,非参数检验过程也是先根据问 题提出原假设,然后利用统计学原理构造出适当的统计量, 最后利用样本数据计算统计量的概率P值,与显著性水平进 行比较,得出拒绝或者接受原假设的结论。
第5步 卡方检验的选项设置:打开“卡方检验选项”对话框 ,选择” 所有类别概率相等(V)“选项。
5.2 单样本的非参数检验
5.2.2 卡方检验
第6步 运行结果及分析:
➢卡方检验的假设检验数据摘要
给出了卡方检验 的原假设为“工作日的 类别以相同的概率发 生”,其相伴概率值Sig. = 0.014 < 0.05,说明应 拒绝原假设,因此图512的“决策者”给出 “拒绝原假设”的决策, 认为工作日的类别是以 不同概率发生的,即认 为该企业一周内出现的 次品数不是均匀分布在 一周的五个工作日中。
工作日 次品数
1 2 34 5 25 15 8 16 26
5.2 单样本的非参数检验
5.2.2 卡方检验
第1步 分析:由于考虑的是次品是否服从均匀分布的问题, 故用卡方检验。
第2步 数据组织:建立SPSS数据文件,建立两个变量:“工 作日”、“次品数”,录入相应数据,保存为文件data54.sav。
5.1 参数检验及非参数检验的区别
3 非参数检验的缺点 (1)二者效率有差距。 (2)当样本容量较大时,非参数检验的计算比较复 杂、困难。 (3)参数检验与非参数检验有各自特点,并非所有 的参数检验都可转化为非参数检验。
主要内容
5.1参数检验与非参数检验比较 5.2单样本的非参数检验
H0
5.2 单2.2 卡方检验
1.卡方检验的概念
也称卡方拟合优度检验,它是K.Pearson给出的一种最 常用的非参数检验方法,用于检验观测数据是否与某种概率 分布的理论数值相符合,进而推断观测数据是否是来自于该 分布的样本的问题。
2.统计原理
为检验实际分布是否与理论分布(期望分布一致),可
➢研究的统计量有所不同。
5.1 参数检验及非参数检验的区别
2非参数检验的优点 (1)它对总体分布一般不做过多的限制,任何分布 都可以用非参数检验进行研究,其应用范围大于参 数检验。 (2)由于非参数检验不依赖于总体分布形态,因而 它天然具有稳健特性。 (3)对资料的测量水平 要求不高。 (4)非参数检验 比较直观,容易理解。
第3步 “次品数”字段加权处理:通过分析“工作日”及“ 次品数”两个字段的含义及度量标准,确定“工作日”为被 分析字段,而“次品数”表示各工作日出现的频数,所以应 该对“次品数”进行加权处理。执行“数据”→“加权个案 ”,打开“加权个案”对话框,按图5-10所示进行设置。
5.2 单样本的非参数检验
5.2.1 基本概念及统计原理
单样本非参数检验使用一个或多个非参数检验方法 来识别单个总体的分布情况,不需要待检验的数据呈正态 分布。
SPSS的单样本非参数检验方法包括卡方检验、二项 分布检验、游程检验、K-S检验及Wilcoxon符号检验五种。
在SPSS 23中,所有单样本的非参数检验有一些共同 的设置。单样本非参数检验的对话框有三个选项卡,分别 为“目标”、“字段”和“设置”,具体设置如下: