2015-2016学年广东省深圳市宝安区高一(下)期末数学试卷

合集下载

2015-2016学年度第一学期期末测试(数学)

2015-2016学年度第一学期期末测试(数学)

2015~2016学年度第一学期期末测试七 年 级 数 学本卷分值 100分,考试时间120分钟.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.34-的相反数是A .43-B .43C .34-D .342.单项式225x y-的系数和次数分别是A .-2,2B .2-,3C .25-,2D .25-,33.在下面的四幅图案中,通过平移图案(1)得到的是图案4.下列各组中的两项,不是..同类项的是 A .22x y 与23x y - B .3x 与3xC .232ab c -与32c b aD .1与-18 5.若关于x 的方程710x a +-=解是1x =-,则a 的值等于A .8B .-8C .6D .-6 6.从三个不同方向看一个几何体,得到的三视图 如图所示,则这个几何体是A .圆锥B .圆柱C .棱锥D .球7.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中不正确...的是 A .ab<0 B .a -b >0 C .a +b >0 D .ab <0b 0a(1) A B C D(第6题)(第7题)8. 如图,直线a ,b 被直线c 所截,则下列说法中错误..的是 A .∠1与∠2是邻补角 B .∠1与∠3是对顶角C .∠3与∠4是内错角D .∠2与∠4是同位角 9. 如图,点D 在直线AE 上,量得∠CDE=∠A=∠C ,有以下三个结论:①AB ∥CD ;②AD ∥BC ;③∠B=∠CDA .则正确的结论是A .①②③B .①②C .①D .②③ 10.王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km ,到中午12时,两人又相距36 km .求A 、B 两地间的路程.可设A 、B 两地间的路程为x km ,则下列所列方程中:①363624x x -+=;②36363622x -+=;③36362x -=⨯; ④3636x -=;其中正确的个数为A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.用科学记数法表示9600000为 ▲ .12.点A 、B 在同一条数轴上,其中点A 表示的数为-1,若点B 与点A 之间距离为3,则点B 表示的数为 ▲ . 13.已知2a b -的值是2015,则124a b -+的值等于 ▲ .14.若23(2)0x y -++=,则16xy = ▲ .15.飞机的无风航速为a 千米/小时,风速为20千米/小时.则飞机逆风飞行4小时的行程是 ▲ 千米.16.某服装店以每件180元的价格卖出两件衣服,其中一件 盈利25%,另一件亏损25%,若盈利记为正,亏损记为负,则该店卖这两件衣服总的盈亏金额是 ▲ 元.17.如图,把小河里的水引到田地A 处就作AB ⊥l ,垂足 为B ,沿AB 挖水沟,这条水沟最短的理由是 ▲ . 18. 如图,将三角板与两组对边分别平行的直尺贴在一起, 使三角板的顶点C (AC ⊥BC )落在直尺的一边上,若∠1=24°,则∠2等于 ▲ 度. 19.如图,平面内有公共端点的6条射线OA 、OB 、OC 、 OD 、OE 、OF ,从射线OA 开始按逆时针方向依次在 射线上写上数字1、2、3、4、5、6、7…,则数字 “2016”应在射线 ▲ 上.20.已知线段AB =12㎝,若M 是AB 的三等分点,N 是AM 的中点,则线段BN 的长度为 ▲ ㎝.三、解答题(本大题共8小题,共60分.请在答题卡指定区域.......内作答,解答时应写出文ac1 234 A B C DE(第8题) (第9题)(第17题)(第18题)(第19题)字说明、证明过程或演算步骤) 21.(每小题4分,共16分)计算:(1) (20)(3)(5)(7)-++---+;(2) 111()(12)462+-⨯-;(3) 322(2)(3)(4)2(3)(2)⎡⎤-+-⨯-+--÷-⎣⎦;(4) 471127326631440-+⨯-⨯÷.22.(每小题3分,共6分)(1)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4㎝,求线段CD的长度.(2)如图,货船A 在灯塔O 的北偏东53°35′的方向上,客船B 在灯塔O 的南偏东28°12′的方向上.求∠AOB 的度数.23.(每小题4分,共8分)先化简,再求值:(1)求22113333a abc c a c +--+的值,其中1,2,36abc =-==-;(2)求2211312()()2323x x y x y --+-+的值,其中22,3x y =-=.24.(每小题4分,共8分)解方程: (1)72(33)20x x +-=; (2)121224x x+--=+.25.(本小题6分)如图,AD ∥BC ,∠1=60°,∠B =∠C ,DF 为∠ADC 的平分线. (1)求∠ADC 的度数;(2)试说明DF ∥AB . 解:(1)根据题意完成填空(括号内填写理由): ∵AD ∥BC (已知)∴∠B =∠1( ) 又∵∠B =∠C (已知) ∴ =∠1=60°C D (第22题(2)) A O B 西 东 北南 (第22题(1))又∵AD ∥BC (已知)∴∠ADC +∠C =180°( ) ∴∠ADC = .(2)请你完成第2题的解答过程:26.(本小题4分)列方程解应用题:某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名? 27.(本小题6分)如图:已知AB ∥CD ,∠ABE 与∠CDE 两个角的角平分线相交于点F . (1)如图1,若∠E =78°,则∠BFD = °;(2)如图2,若∠ABM =14∠ABF ,∠CDM =14∠CDF ,则∠M 和∠E 之间的数量关系为 ;(3)如图2,∠ABM =1n ∠MBF ,∠CDM =1n∠MDF ,设∠M =m °,直接用含有n ,m 的代数式表示出∠E = °.28.(本小题6分)如图,在∠AOB 的内部作射线OC ,使∠AOC 与∠AOB 互补.将射线OA ,OC 同时绕点O 分别以每秒12°,每秒8°的速度按逆时针方向旋转,旋转后的射线OA ,OC 分别记为OM ,ON ,设旋转时间为t 秒.已知t <30,∠AOB =114°. (1)求∠AOC 的度数;(2)在旋转的过程中,当射线OM ,ON 重合时,求 t 的值; (3)在旋转的过程中,当∠COM 与∠BON 互余时,求 t 的值.BE DFACBE DFA CM 图1图2CMNB(第27题)。

XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案

XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案

XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。

1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。

$\{1\}$ B。

$\{3,5\}$ C。

$\{1,3,4,5\}$ D。

$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。

$22$ B。

$10$ C。

$8$ D。

$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。

$-\frac{3}{4}$ B。

$-\frac{4}{3}$ C。

$\frac{3}{4}$ D。

$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。

$\frac{\pi}{4}$ B。

$\frac{\pi}{3}$ C。

15—16学年下学期七年级期末考试数学试题(附答案)

15—16学年下学期七年级期末考试数学试题(附答案)

2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。

专题2.4 提高复习之数列与不等式相结合问题-备战期末考试2015-2016学年高一下学期数学期

专题2.4 提高复习之数列与不等式相结合问题-备战期末考试2015-2016学年高一下学期数学期

1.已知数列{n a }满足:11a =,2210,1n n n a a a +>-= ()*n N ∈,那么使n a <3成立的n 的最大值为( ) A .2 B .3 C .8 D .9 【答案】C 【解析】试题分析:由题知{}2n a 是等差数,221(1)1n a a n n =+-⨯=,3n a <,29n a ∴<,9n ∴<,则n 的最大值为8.故选C.2.已知数列{}n a 的前n 项和n n S n 92-=,第k 项满足1310<<k a ,则=k ( ) A .9 B .10 C .11 D .12 【答案】C 【解析】试题分析:由数列{}n a 的前n 项和n n S n 92-=,可求得通项公式210n a n =-,所以1021013k <-<,解得1011.5k <<,因为*k N ∈,所以11k =,故选C.3.已知数列{}n a 满足134()n n a a n N +++=∈且19a =,其前n 项和为n S ,则满足1|6|125n S n --<的最小正整数n 为( )A. 6B.7C.8D.9 【答案】B4.已知数列{}n a 满足712,83,8n n a n n a a n -⎧⎛⎫-+>⎪ ⎪=⎝⎭⎨⎪≤⎩,若对于任意n N *∈都有1n n a a +>,则实数a 的取值范围是( )A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .11,32⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】D5.已知数列{}n a 的通项公式为327n a n =-,记数列S n 的前n 项和为,则使S 0n ≤成立的n 的最大值为( ) A .4 B .5 C .6 D .8 【答案】C 【解析】 试题分析:123433333,1,3,32175227237247a a a a ==-==-==-==⨯-⨯-⨯-⨯-,531257a ==⨯-6332675a ==⨯-,7332777a ==⨯-,…,所以使0n S ≤成立的n 的最大值为6,故选C.6.已知数列{}n a 是递增数列,且对任意*n N ∈都有2n a n bn =+成立,则实数b 的取值范围是( ) A .7(,)2-+∞ B .(0,)+∞ C .(2,)-+∞ D .(3,)-+∞ 【答案】D 【解析】试题分析:因为*n N ∈,{}n a 递增,所以322b -<,3b >-.故选D . 7.若,a ∈N *,且数列{a n }是递增数列,则a 的值是( )A .4或5B .3或4C .3或2D .1或2 【答案】A8.已知等差数列}{n a 的前n 项和为n S ,满足95S S =,且01>a ,则n S 中最大的是( ) A .6S B .7S C .8S D .15S 【答案】B 【解析】试题分析:由95S S =,得()67897820a a a a a a +++=+=, 由01>a 知,0,087<>a a ,所以7S 最大,故B 正确.9.已知数列{}n a 的前n 项和为n S ,满足515S =-,3172d <<,则当n S 取得最小值时n 的值为( ) A .7 B .8 C .9 D .10 【答案】C 【解析】试题分析:由等差数列求和公式得251551522d d S a ⎛⎫=⨯+-⨯=- ⎪⎝⎭ ,整理得132a d =--,故22215323222222n d d d d d d S n a n n d n n n ⎛⎫⎛⎫⎛⎫=+-=+---=+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,对称轴35=2n d +,因为3172d <<,n Z ∈,故=9n 时取得最小值. 10.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题:①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S ;⑤67a a >其中正确命题的个数是( )A .5B .4C .3D .1 【答案】C11.在数列}{n a 中,12a =,11(1)(1)220()n n n n a a a a n N *++--+-=∈,若5150n a <,则n 的最小值为__________. 【答案】100 【解析】试题分析:令1n n a b -=,则∵11(1)(1)220()n n n n a a a a n N *++--+-=∈,∴11220n n n n b b b b +++-=,∴11112n n b b +-=,∵12a =,∴111b =,∴1111(1)22n n n b +=+-=,∴21n b n =+,∴211n a n -=+,∴211n a n =++,∵5150n a <,∴2511150n +<+,∴99n >,∴n 的最小值为100.所以答案应填:100. 12.数列{}n a 满足141,1211=+=+n n a a a ,记2232221n n a a a a S +⋅⋅⋅+++=,若3012m S S n n ≤-+对任意*∈N n 恒成立,则正整数m 的最小值为_______. 【答案】10 【解析】 试题分析:由1n a +=,得221114n n a a +-=,可知数列21n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为4的等差数列,所以()2111443nn n a =+-⨯=-,则2143n a n =-,22212n nS a a a =+++,考查()()222212*********418589n n n n n n n S S S S a a a n n n ++++++---=--=--+++,又1111082858289n n n n ⎛⎫⎛⎫-+->⎪ ⎪++++⎝⎭⎝⎭,即()()212311*********n n n n S S S S n n n +++---=-->+++,则可知数列{}21n n S S +-是一个递减数列,所以数列{}21n n S S +-的最大项为22313211149545S S a a -=+=+=,又3012m S S n n ≤-+对任意*∈N n 恒成立,所以144530m ≤,即283m ≥,所以m 的最小值是10.13.记数列{a n }的前n 项和为S n ,若不等式222122n n S a ma n+≥对任意等差数列{a n }及任意正整数n 都成立,则实数m 的最大值为____________. 【答案】11014.已知n S 为数列}{n a 的前n 项和,1=1a ,2=(1)n n S n a +,若存在唯一的正整数n 使得不等式2220n n a ta t --≤成立,则实数t 的取值范围为_______.【答案】1(2,1][,1)2-- 【解析】试题分析:由2(1)n n S n a =+得,当2n ≥时有112n n S na --=,所以11222(1)n n n n n a S S n a na --=-=+-,即1(1)n n n a na --=,11n n a na n -=-,又11a =,所以121211n n nn n n a a a a a n a a a a ---=⋅⋅⋅==,所以2220n n a ta t --≤等价于2220n tn t --≤,设22()2f n n tn t =--,由于2(0)20f t =-≤,所以由题意有2222(1)120(2)2220f t t f t t ⎧=--<⎪⎨=--≥⎪⎩,解之得21t -<≤-或112t ≤<,所以应填1(2,1][,1)2--. 15.已知等比数列{}n a 的首项为43,公比为13-,其前n 项和为n S ,若23n nS S N ≤-≤M 对n *∈N 恒成立,则M -N 的最小值为 . 【答案】251216.已知数列{}n a 通项为98.5n n a n -=-,若n a ≤M 恒成立,则M 的最小值为 .【答案】2 【解析】试题分析:根据题意可知M 的最小值为数列的最小项,因为90.518.58.5n n a n n -==---,可知当8n =时取得最小值,而82a =,所以M 的最小值为2.17.已知数列{}n a 的前n 项和为n T ,且点(,)n n T 在函数23122y x x =-上,且423log 0n n a b ++=(n N *∈).(I )求{}n b 的通项公式;(II )数列{}n c 满足n n n c a b =⋅,求数列{}n c 的前n 项和n S ;(III )记数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n B ,设21n n nd b B =⋅,证明:1212n d d d +++<.【答案】(I )n n b 41=;(II )nn n S ⎪⎭⎫⎝⎛+-=4132332;(III )证明见解析.试题解析:(I )由点()n T n ,在函数x x y 21232-=上,得:n n T n 21232-= (ⅰ)当1=n 时,1212311=-==T a . (ⅱ)当2≥n 时,231-=-=-n T T a n n n ,∴23-=n a n . 又∵0log 324=++n n b a , ∴n n n b 414==- (II )∵()nn n n n b a c ⎪⎭⎫⎝⎛-=⋅=4123且n n c c c c S +++=321,∴()nn n S ⎪⎭⎫⎝⎛⨯-++⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯=4123417414411321 ……①()1432412341741441141+⎪⎭⎫⎝⎛⨯-++⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯=n n n S …②由①-②得:()132412341414134143+⎪⎭⎫⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=n n n n S()141412341141116134143+-⎪⎭⎫ ⎝⎛---⎪⎭⎫⎝⎛-+=n n n n S整理得:nn n S ⎪⎭⎫⎝⎛+-=4132332.18.已知各项都是正数的数列{}n a 的前n 项和为n S ,212n n n S a a =+,n N *∈ (1) 求数列{}n a 的通项公式;(2) 设数列{}n b 满足:11b =,12(2)n n n b b a n --=≥,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T ,求证:2n T <; (3) 若(4)n T n λ≤+对任意n N *∈恒成立,求λ的取值范围. 【答案】(1)12n a n =;(2)证明见解析;(3)29≥λ. 【解析】试题分析:(1)本小题是已知n S 与n a 的关系求通项公式的题型,方法是先由11a S =,求出1a ,然后利用当2n ≥时,1n n n a S S -=-得到n a 与1n a -的关系,再求通项;(2)由已知得1n n b b n --=,已知前后项的差,因此可用累加法求得通项,即由121321()()()n n n b b b b b b b b -=+-+-++-得(1)2n n n b +=,从而用裂项求和法求出1{}nb 的前n 项和n T ,并证得题设结论;(3)不等式2(4)1n λn n ≤++恒成立,可变形为2(1)(4)n λn n ≥++,为此只要求得2(1)(4)nn n ++的最大值即可,这可由基本不等式得到结论.试题解析:(1)1n =时,211111122a a a a =+∴= 21112211211121222n n n n n n nn n n n S a a a a a a a S a a+++--⎧=+⎪⎪⇒=-+-⎨⎪=+⎪⎩ 111()()02n n n n a a a a --⇒+--= 1102n n n a a a ->∴-=∴{}n a 是以12为首项,12为公差的等差数列 12n a n ∴=(3)由2(4)1n λn n ≤++得224(1)(4)5n n n n n λ≥=++++, 当且仅当2n =时,245n n++有最大值29,29λ∴≥19.已知正项数列{}n a 的前n 项和为n S ,且()()241n n S a n N *=+∈.(1)求数列{}n a 的通项公式; (2)设n T 为数列12n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,证明:()213n T n N *≤<∈. 【答案】(1)21n a n =-;(2)证明见解析. 【解析】试题分析:(1)已知()241n n S a =+,要求通项公式,可再写一式2n ≥时,()21141n n S a --=+,利用1n n n a S S -=-,把两式相减可得n a 的递推关系,本题可得{}n a 是等差数列,易得通项;(2)要证明题设不等式,必须求得和n T ,由于12211(21)(21)2121n n a a n n n n +==--+-+,即可用裂项相消法求得和n T 1121n =-+,注意到*n N ∈,不等式易得证. 试题解析:(1)1n =时,11a =;2n ≥时,()21141n n S a --=+,又()241n n S a =+,两式相减得()()1120n n n n a a a a --+--=,{}10,2,n n n n a a a a ->∴-=为是以1位首项,2为公差的等差数列,即21n a n =-.20.已知数列{}n a 的前n 项和为n S ,点,n S n n⎛⎫⎪⎝⎭在直线11122y x =+上. (1)求数列{}n a 的通项公式;[来 (2)设()()13211211n n n b a a +=--,求数列{}n b 的前n 项和为n T ,并求使不等式20n kT >对一切*n N ∈都成立的最大正整数k 的值.【答案】(1)5n a n =+;(2)max 19k =. 【解析】试题分析:(1)由题意,得11122n S n n =+,化为211122n S n n =+,利用递推关系即可得出;(2)利用“裂项求和”可得Tn ,再利用数列的单调性、不等式的性质即可得出. 试题解析:(1)由题意,得11122n S n n =+,即211122n S n n =+故当2n ≥时,()()2211111111152222n n n a S S n n n n n -⎛⎫⎡⎤=-=+--+-=+ ⎪⎢⎥⎝⎭⎣⎦ 当n=1时,11615a S ===+, 所以5n a n =+.。

广东省深圳市高级中学2015-2016学年高一上学期期中考试数学试卷Word版含答案

广东省深圳市高级中学2015-2016学年高一上学期期中考试数学试卷Word版含答案

深圳市高级中学2015-2016学年第一学期期中测试高一数学命题人:程正科 审题人:范铯本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷为1-12题,共60分;第Ⅱ卷为13-22题,共90分。

全卷共计150分。

考试时间为120分钟。

注意事项:1.答题前,考生务必将自己的姓名、准考证号、考试科目填涂在答题卡相应的位置。

2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动用橡皮擦干净后,再涂其它答案。

全部答案在答题卡上完成,答在本试题上无效。

3、考试结束,监考人员将答题卡按座位号、页码顺序收回。

第Ⅰ卷(本卷共60分)一.选择题:本大题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}|24x A x =≤,集合{}|lg(1)B x y x ==-,则AB 等于( ) (A )(1,2) (B ) (1,2] (C ) [1,2)(D )[1,2]2.函数()()2log 31xf x =-的定义域为( )(A )[)1,+∞ (B )()1,+∞ (C )[)0,+∞ (D ) ()0,+∞ 3.已知函数⎩⎨⎧≤>=0,20,log )(3x x x x f x,则))91((f f =( ) (A )12 (B )14 (C )16 (D )184.已知f (x )=(a -1)x 2+3ax +7为偶函数,则f (x )在区间(-5,7)上为 ( )(A )先递增再递减 (B )先递减再递增 (C )增函数 (D ) 减函数5.三个数a =0.42,b =log 20.4,c =20.4之间的大小关系是( )(A )a c b << (B )a b c << (C )b a c << (D )b c a <<6.若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,得数据如下:(789( ) (A )12(B )12-(C )2 (D )2-10.函数()f x 是R 上的偶函数,在[0,)+∞上是减函数,若(ln )(1),f x f >则x 的取值范围是 ()(A )(0,1)(,)e +∞ (B )1(0,)(1,)e -+∞ (C )1(,1)e - (D ) 1(,)e e -11.已知函数53()28f x ax bx x =++-且10)2(=-f ,那么=)2(f ( )(A )26- (B )26 (C )10- (D )10 12.已知函数2()2f x x x =-,()2(0)g x ax a =+>,且对任意的1[1,2]x ∈-,都存在2[1,2]x ∈-,使21()()f xg x =,则实数a 的取值范围是( )(A )[3,+∞) (B )(0,3] (C )⎣⎡⎦⎤12,3 (D )⎝⎛⎦⎤0,12第Ⅱ卷(本卷共计90分)二.填空题:本大题共四小题,每小题5分。

高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题

高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题

某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。

高一数学2015-2016下期中考试试卷

贵安新区第三高级中学2015-2016学年度第二学期半期考试题卷高一 数 学 (出题人:赵继银 审题人:张正兴) 一、选择题(本大题共12个小题,每小题5分,共60分) 1.不等式x 2-2x -5>2x 的解集是( )A .{x |x ≥5或x ≤-1}B .{x |x >5或x <-1}C .{x |-1<x <5}D .{x |-1≤x ≤5}2.某几何体的三视图,如图所示,则这个几何体是()A .三棱锥B .三棱柱C .四棱锥D .四棱柱3.在△ABC 中,若AB =3-1,BC =3+1,AC =6,则B 等于( ) A .30° B .45° C .60°D .120°4.在△ABC 中,A =45°,AC =4,AB =2,那么cos B =( ) A.31010 B .-31010 C.55 D .-555.等差数列{a n }中,a 5=33,a 45=153,则201是该数列的第( )项( ) A .60 B .61 C .62 D .636.在△ABC 中,b =3,c =3,B =30°,则a 的值为( ) A. 3 B .23 C.3或2 3 D .27.数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1 B.56 C.16 D.130 8.(x -2y +1)(x +y-3)<0表示的平面区域为( )9.已知某几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )A .12 cm 3B .13 cm 3C .16 cm 3D .112 cm 310.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( )A .30°或150°B .15°或75°C .30°D .15°11.若x 、y 满足条件⎩⎪⎨⎪⎧x ≥y x +y ≤1y ≥-1,则z =-2x +y 的最大值为( )A .1B .-12 C .2 D .-512.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A .500π3 cm 3B .866π3 cm 3C .1372π3 cm 3D .2048π3 cm 3 二、填空题(每题5分)13.若0<x <1,则x (1-x )的最大值为________.14.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=__________. 15.已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则a 2等于__________.16.不等式(m +1)x 2+(m 2-2m -3)x -m +3>0恒成立,则m 的取值范围是__________. 三、简答题(共70分)17.(本题满分10分) 求函数y =-x 2-3x +4x的定义域.18.(本题满分12分)一个直角三角形三边长a 、b 、c 成等差数列,面积为12,求该三角形的周长.19.(本题满分12分)设x 1、x 2是关于x 的一元二次方程x 2-2kx +1-k 2=0的两个实根,求x 21+x 22的最小值.20.(本题满分12分)在△ABC 中,∠BAC =120°,AB =3,BC =7,求: (1)AC 的长; (2)△ABC 的面积.21.(本题满分12分) 设S n 为等比数列{a n }的前n 项和,已知S 4=1,S 8=17,求S n .22. (本题满分12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.贵安新区第三高级中学2015-2016第二学期半期考试试卷答案 高一 数 学一、选择题(本大题共12个小题,每小题5分,共60分) 选择题答案:1——5BBCDB 6——10CBCCA 11——12AA 1.不等式x 2-2x -5>2x 的解集是( )A .{x |x ≥5或x ≤-1}B .{x |x >5或x <-1}C .{x |-1<x <5}D .{x |-1≤x ≤5} [答案] B[解析] 不等式化为x 2-4x -5>0, ∴(x -5)(x +1)>0,∴x <-1或x >5.2.某几何体的三视图,如图所示,则这个几何体是()A .三棱锥B .三棱柱C .四棱锥D .四棱柱[答案] B3.在△ABC 中,若AB =3-1,BC =3+1,AC =6,则B 等于( ) A .30° B .45° C .60° D .120°[答案] C[解析] cos B =AB 2+BC 2-AC 22AB ·BC =12,∴B =60°.4.在△ABC 中,A =45°,AC =4,AB =2,那么cos B =( )A.31010 B .-31010 C.55 D .-55[答案] D[解析] BC 2=AC 2+AB 2-2AC ·AB cos A=16+2-82cos45°=10,∴BC =10, cos B =AB 2+BC 2-AC 22AB ·BC=-55.5.等差数列{a n }中,a 5=33,a 45=153,则201是该数列的第( )项( ) A .60 B .61 C .62 D .63[答案] B[解析] 设公差为d ,由题意,得⎩⎨⎧a 1+4d =33a 1+44d =153,解得⎩⎨⎧a 1=21d =3.∴a n =a 1+(n -1)d =21+3(n -1)=3n +18. 令201=3n +18,∴n =61.6.在△ABC 中,b =3,c =3,B =30°,则a 的值为( ) A. 3 B .2 3 C.3或2 3 D .2 [答案] C[解析] ∵sin C =sin B b ·c =32,∴C =60°或C =120°, ∴A =30°或A =90°,当A =30°时,a =b =3;当A =90°时,a =b 2+c 2=2 3.故选C.7.数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1 B.56 C.16 D.130[答案] B[解析] a n =1n (n +1)=1n -1n +1,∴S 5=1-12+12-13+13-14+14-15+15-16=1-16=56. 8.(x -2y +1)(x +y -3)<0表示的平面区域为()[答案] C[解析] 将点(0,0)代入不等式中,不等式成立,否定A 、B ,将(0,4)点代入不等式中,不等式成立,否定D ,故选C.9.已知某几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A .12 cm3 B .13 cm 3 C .16 cm 3 D .112 cm 3[答案] C[解析] 根据三视图可知原几何体是三棱锥, V =13Sh =13×12×1×1×1=16(cm 3).10.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( ) A .30°或150° B .15°或75° C .30° D .15° [答案] A[解析] 由题意:sin B +cos B =62.两边平方得sin2B =12,设顶角为A ,则A =180°-2B .∴sin A =sin(180°-2B )=sin2B =12,∴A =30°或150°.11.若x 、y 满足条件⎩⎨⎧x ≥yx +y ≤1y ≥-1,则z =-2x +y 的最大值为( )A .1B .-12C .2D .-5[答案] A[解析] 作出可行域如下图,当直线y =2x +z 平移到经过可行域上点A (1,-1)时,z 取最大值,∴z max =1.12.(2013·全国Ⅰ·理科)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为()A .500π3 cm 3 B .866π3 cm 3 C .1372π3cm 3D .2048π3 cm 3[答案] A[解析] 设球的半径为R ,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R -2,则R 2=(R -2)2+42,解得R =5.∴球的体积为4π×533=5003cm 3.二、填空题(每题5分)13.若0<x <1,则x (1-x )的最大值为________. [答案] 14[解析] ∵0<x <1,∴1-x >0, ∴x (1-x )≤[x +(1-x )2]2=14, 等号在x =1-x ,即x =12时成立,∴所求最大值为14.14.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=__________.A .58B .88C .143D .176[答案] B[解析] 本题主要考查等差数列的性质及求和公式.由条件知a 4+a 8=a 1+a 11=16,S 11=11(a 1+a 11)2=11×162=88.15.已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则a 2等于__________.[解析] S 1=2a 1-2=a 1,∴a 1=2,S 2=2a 2-2=a 1+a 2,∴a 2=4.16.不等式(m +1)x 2+(m 2-2m -3)x -m +3>0恒成立,则m 的取值范围是__________. [答案] [-1,1)∪(1,3)[解析] m +1=0时,m =-1,不等式化为:4>0恒成立;m +1≠0时,要使不等式恒成立须⎩⎨⎧m +1>0△<0,即⎩⎨⎧m +1>0(m 2-2m -3)2-4(m +1)(-m +3)<0 , ∴-1<m <3且m ≠1. 综上得-1≤m <3且m ≠1. 三、简答题17.(本题满分10分) 求函数y =-x 2-3x +4x的定义域解:要使函数有意义,则需⎩⎪⎨⎪⎧-x 2-3x +4≥0x ≠0,解得-4≤x ≤1且x ≠0,故定义域为[-4,0)∪(0,1]18.一个直角三角形三边长a 、b 、c 成等差数列,面积为12,求该三角形的周长. [答案] 12 2[解析] 由条件知b 一定不是斜边,设c 为斜边,则⎩⎪⎨⎪⎧2b =a +c12ab =12a 2+b 2=c 2,解得b =42,a =32,c =52,∴a +b +c =12 2.19.(本题满分12分)设x 1、x 2是关于x 的一元二次方程x 2-2kx +1-k 2=0的两个实根,求x 21+x 22的最小值.[解析] 由题意,得x 1+x 2=2k ,x 1x 2=1-k 2.Δ=4k 2-4(1-k 2)≥0, ∴k 2≥12.∴x 21+x 22=(x 1+x 2)2-2x 1x 2=4k 2-2(1-k 2) =6k 2-2≥6×12-2=1.∴x 21+x 22的最小值为1.20.(本题满分12分)在△ABC 中,∠BAC =120°,AB =3,BC =7,求: (1)AC 的长; (2)△ABC 的面积.[解析] (1)由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC , ∴49=9+AC 2+3AC ,解之得AC =5(AC =-8舍去).(2)△ABC 的面积S =12AB ·AC ·sin ∠BAC =12×3×5×sin120°=1534.21.(本题满分12分) 设S n 为等比数列{a n }的前n 项和,已知S 4=1,S 8=17,求S n .[解析] 设{a n }公比为q ,由S 4=1,S 8=17,知q ≠1,∴⎩⎪⎨⎪⎧a 1(1-q 4)1-q=1a 1(1-q 8)1-q =17,两式相除并化简,得q 4+1=17,即q 4=16. ∴q =±2,∴当q =2时,a 1=115,S n =115(1-2n )1-2=115(2n-1);当q =-2时,a 1=-15,S n =-15[1-(-2)n ]1+2=115[(-2)n -1].22. (本题满分12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.[解析] (1)设{a n }的公差为d ,由题意,a 211=a 1a 13,即 (a 1+10d )2=a 1(a 1+12d ). 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列.从而 S n =n2(a 1+a 3n -2) =n2(-6n +56) =-3n 2+28n .。

2015~2016学年第一学期期末高一数学试题与答案


(D)12
C
A
B
( ) ( ) (12)定义在 R 上的奇函数 f (x)满足 f (x)=f (x+3),当 x∈ 0,23
时,f (x)=sin πx,且 f
3 2
=0,则
函数 f (x)在区间[-6,6]上的零点个数是
(A)18
(B)17
(C)9
(D)8
高一数学试卷 A 卷 第 1 页(共 4 页)
(A) 2
(B)
3
(C)
6
(D)1π2
( ) (10)已知函数
f
(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
2
)的部分图象如图所示,且
f
(0)=f
3

则 (A)f (x)的最小正周期为 2π (B)f (x)的图象关于直线 x=56π对称
y 2
5
[ ] (C)f (x)在区间 0,4 上是增函数
(A){3,4} (B){2,4} (C){0,3,4} (D){0,2,4}
(2)sin 660=
(A)
1 2
(B)-
1 2
(C)
3 2
(3)下列函数中与函数 y=x 为同一函数的是
(A)y= x2
(B)y=lg 10x (C)y=xx2
(4)函数
f
(x)=
2 x
-log3
x
的零点所在的一个区间是
(Ⅰ)若 λ=3,试用→ CA ,→ CB 表示→ CP ; (Ⅱ)若|→ CA |=4,|→ CB |=2,且→ CP ·→ AB =-6,求 λ 的值.
B P
C
A
得分 评卷人
(20)(本小题满分 12 分) 已知函数 f (x)=l-og(2xx+,1)2+4p,xx≥<11,,且 f [f ( 2)]=47.

深圳市宝安区西乡中学2015-2016学年高二上学期期中数学试卷(理科) 含解析

2015-2016学年广东省深圳市宝安区西乡中学高二(上)期中数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如果在△ABC中,a=3,,c=2,那么B等于()A.B.C.D.2.在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.3.△ABC中,角A,B,C所对的边分别为a,b,c若<cosA,则△ABC为( )A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形4.若实数x,y满足不等式组:,则该约束条件所围成的平面区域的面积是()A.3 B.C.2 D.5.不等式≤0的解集为()A.{x|x<1或x≥3} B.{x|1≤x≤3}C.{x|1<x≤3} D.{x|1<x<3}6.设函数则不等式f(x)>f(1)的解集是()A.(﹣3,1)∪(3,+∞)B.(﹣3,1)∪(2,+∞)C.(﹣1,1)∪(3,+∞) D.(﹣∞,﹣3)∪(1,3)7.等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于( )A.8 B.10 C.12 D.148.已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7 B.5 C.﹣5 D.﹣79.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=( )A.B. C.D.10.已知数列{a n},如果a1,a2﹣a1,a3﹣a2,…,a n﹣a n﹣1,…,是首项为1,公比为的等比数列,则a n=( )A.(1﹣)B.(1﹣)C.(1﹣)D.(1﹣)11.数列{a n}是由正数组成的等比数列,且公比不为1,则a1+a8与a4+a5的大小关系为( ) A.a1+a8>a4+a5B.a1+a8<a4+a5C.a1+a8=a4+a5D.与公比的值有关12.若集合A={x|ax2﹣ax+1<0}=∅,则实数a的值的集合是( )A.{a|0<a<4} B.{a|0≤a<4} C.{a|0<a≤4} D.{a|0≤a≤4}二、填空题:本大题共4小题,每小题5分13.在△ABC中,已知•=tanA,当A=时,△ABC的面积为__________.14.若变量x、y满足约束条件,且z=2x+y的最大值和最小值分别为M和m,则M ﹣m=__________.15.等比数列{a n}中,S n表示前n顶和,a3=2S2+1,a4=2S3+1,则公比q为__________.16.若关于x的不等式mx2+2mx﹣4<2x2+4x时对任意实数l均成立,则实数m的取值范围是__________.三.解答题:解答应写出文字说明,证明过程或演算步骤。

人教版数学高一下册期末测试精选(含答案)2


B.若 , ,则
C.若 // , m ,则 m / /
D.若 m , ,n / / ,则 m n
【来源】广西梧州市 2019-2020 学年高一上学期期末数学试题 【答案】C
16.已知圆 x a2 y2 1 与圆 x2 y b2 1外切,则( ).
A. a2 b2 4
32.已知点 A(2, a) ,圆 C : (x 1)2 y2 5
(1)若过点 A 只能作一条圆 C 的切线,求实数 a 的值及切线方程; (2)设直线 l 过点 A 但不过原点,且在两坐标轴上的截距相等,若直线 l 被圆 C 截得
的弦长为 2 3 ,求实数 a 的值.
【来源】江西省宜春市上高县上高二中 2019-2020 学年高二上学期第三次月考数学(理) 试题
【答案】B
7.如图,四边形 ABCD 和 ADEF 均为正方形,它们所在的平面互相垂直,动点 M 在 线段 AE 上,设直线 CM 与 BF 所成的角为 ,则 的取值范围为( )
A.
0,
3
B.
0,
π 3
C.
0,
2
D.
0,
2
【来源】四川省乐山市 2019-2020 学年高二上学期期末数学(文)试题
6
a
1 3
,则
cos
2 3
2a
()
A. 7 9
B. 1 3
1
C.
3
7
D.
9
【来源】河北省石家庄市第二中学 2018-2019 学年高二第二学期期末考试数学(理)试

【答案】A
13.已知圆 C 被两直线 x y 1 0 , x y 3 0 分成面积相等的四部分,且截 x 轴
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一(下)数学试卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)直线x﹣y﹣1=0的倾斜角为()A.B.C.D.2.(5分)如图,在正方体ABCD﹣A1B1C1D1中,二面角D1﹣AB﹣D的大小是()A.B.C.D.3.(5分)如图是一个算法的流程图.若输入x的值为2,则输出y的值是()A.0 B.﹣1 C.﹣2 D.﹣34.(5分)将参加夏令营的600名学生编号为:001,002,…600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8,B.25,17,8 C.25,16,9 D.24,17,95.(5分)由一组样本数据(x1,y1),(x2,y2),(x3,y3)…(x n,y n)得到的回归直线方程,那么,下面说法不正确的是()A.直线必经过点;B.直线至少经过(x1,y1),(x2,y2),(x3,y3)…(x n,y n)中的一个点;C.直线的斜率为;D.直线和各点(x1,y1),(x2,y2),(x3,y3)…(x n,y n)的偏差是坐标平面上的所有直线与这些点的偏差中最小值6.(5分)点(4,0)关于直线5x+4y+21=0的对称点是()A.(﹣6,8)B.(﹣8,﹣6)C.(6,8) D.(﹣6,﹣8)7.(5分)甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是()A.B.C.D.8.(5分)圆x2+y2=1上的点到直线3x+4y﹣25=0的距离的最小值是()A.6 B.4 C.5 D.19.(5分)已知某车间加工零件的个数x与所花费时间y(h)之间的线性回归方程为=0.01x+0.5,则加工600个零件大约需要的时间为()A.6.5h B.5.5h C.3.5h D.0.5h10.(5分)若某空间几何体的三视图如图所示,则该几何体的体积是()A.2 B.1 C.D.11.(5分)设l,m是两条不同的直线,α,β是两个不重合的平面,给出下列四个命题:①若α∥β,l⊥α,则l⊥β;②若l∥m,l⊂α,m⊂β,则α∥β;③若m⊥α,l⊥m,则l∥α;④若α⊥β,l⊂α,m⊂β,则l⊥m.其中真命题的序号为()A.②③B.①C.③④D.①④③12.(5分)若直线l:x+y﹣2=0与圆C:x2+y2﹣2x﹣6y+2=0交于A、B两点,则△ABC的面积为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.(5分)三张卡片上分别写上字母E、E、B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为.14.(5分)已知,α是第四象限角,且tan(α+β)=1,则tanβ的值为.15.(5分)在平面直角坐标系xOy中,圆C的方程为(x﹣1)2+y2=4,P为圆C 上一点.若存在一个定圆M,过P作圆M的两条切线PA,PB,切点分别为A,B,当P在圆C上运动时,使得∠APB恒为60°,则圆M的方程为.16.(5分)在平面直角坐标系xOy中,已知圆C:x2+y2﹣(6﹣2m)x﹣4my+5m2﹣6m=0,直线l经过点(1,﹣1),若对任意的实数m,直线l被圆C截得的弦长都是定值,则直线l的方程为.三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤.17.(10分)如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)79.5~89.5这一组的频数、频率分别是少(2)估计这次环保知识竞赛的及格率(60分及以上为及格)18.(12分)如图,二面角α﹣l﹣β的大小是60°,线段AB⊂α.B∈l,AB与l 所成的角为30°.求直线AB与平面β所成的角的正弦值.19.(12分)袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(I)求n的值;(II)从袋子中不放回地随机抽取两个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取两个实数x,y,求事件“x2+y2>(a﹣b)2恒成立”的概率.20.(12分)如图的茎叶图记录了甲、乙两代表队各10名同学在一次英语听力比赛中的成绩(单位:分),已知甲代表队数据的中位数为76,乙代表队数据的平均数是75.(1)求x,y的值;(2)若分别从甲、乙两队随机各抽取1名成绩不低于80分的学生,求抽到的学生中,甲队学生成绩不低于乙队学生成绩的概率;(3)判断甲、乙两队谁的成绩更稳定,并说明理由(方差较小者稳定).21.(12分)如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,PA=PB=PC,M、N分别为AB、BC的中点.(1)求证:AC∥平面PMN;(2)求证:MN⊥BC.22.(12分)在平面直角坐标系xOy中,已知经过原点O的直线l与圆C:x2+y2﹣4x﹣1=0交于A,B两点.(1)若直线m:ax﹣2y+a+2=0(a>0)与圆C相切,切点为B,求直线l的方程;(2)若OB=2OA,求直线l的方程;(3)若圆C与x轴的正半轴的交点为D,设直线L的斜率k,令kt=1,设△ABD 面积为f(t),求f(t)2015-2016学年广东省深圳市宝安区高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2016春•宝安区期末)直线x﹣y﹣1=0的倾斜角为()A.B.C.D.【分析】把直线方程化为斜截式,求出直线的斜率,由斜率公式求出直线的倾斜角.【解答】解:由x﹣y﹣1=0得,y=x﹣1,∴斜率k=,则tan,∴直线x﹣y﹣1=0的倾斜角为,故选:B.【点评】本题考查了由直线方程求直线倾斜角,以及斜率公式,属于基础题.2.(5分)(2016春•宝安区期末)如图,在正方体ABCD﹣A1B1C1D1中,二面角D1﹣AB﹣D的大小是()A.B.C.D.【分析】由AB⊥AD,AB⊥AD1,知∠D1AD是二面角的平面角,由此能求出二面角D1﹣AB﹣D的大小.【解答】解:∵AB⊥平面ADD1A1,∴AB⊥AD,AB⊥AD1,∴∠D1AD是二面角D1﹣AB﹣D的平面角,∵AD=DD1,AD⊥DD1,∴∠D1AD=.∴二面角D1﹣AB﹣D的大小是.故选:A.【点评】本题考查二面角的大小的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.3.(5分)(2015•淄博三模)如图是一个算法的流程图.若输入x的值为2,则输出y的值是()A.0 B.﹣1 C.﹣2 D.﹣3【分析】利用循环结构,直到条件不满足退出,即可得到结论.【解答】解:执行一次循环,y=0,x=0;执行第二次循环,y=﹣1,x=﹣2;执行第三次循环,y=﹣2,满足条件,退出循环故选C【点评】本题考查循环结构,考查学生的计算能力,属于基础题.4.(5分)(2010•湖北)将参加夏令营的600名学生编号为:001,002,…600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8,B.25,17,8 C.25,16,9 D.24,17,9【分析】根据系统抽样的方法的要求,先随机抽取第一数,再确定间隔.【解答】解:依题意可知,在随机抽样中,首次抽到003号,以后每隔12个号抽到一个人,则分别是003、015、027、039构成以3为首项,12为公差的等差数列,故可分别求出在001到300中有25人,在301至495号中共有17人,则496到600中有8人.故选B【点评】本题主要考查系统抽样方法.5.(5分)(2009•武汉模拟)由一组样本数据(x1,y1),(x2,y2),(x3,y3)…(x n,y n)得到的回归直线方程,那么,下面说法不正确的是()A.直线必经过点;B.直线至少经过(x1,y1),(x2,y2),(x3,y3)…(x n,y n)中的一个点;C.直线的斜率为;D.直线和各点(x1,y1),(x2,y2),(x3,y3)…(x n,y n)的偏差是坐标平面上的所有直线与这些点的偏差中最小值【分析】线性回归直线一定经过样本中心点,线性回归直线不一定经过样本数据中的一个点,这是最能体现这组数据的变化趋势的直线,但并不一定在直线上,根据最小二乘法和线性回归直线的意义判断后面两个命题.【解答】解:线性回归直线一定经过样本中心点,故A正确,线性回归直线不一定经过样本数据中的一个点,这是最能体现这组数据的变化趋势的直线,但并不一定在直线上,故B不正确,根据最小二乘法知C正确,根据线性回归直线的意义知D正确,故选B.【点评】本题考查线性回归方程,考查样本中心点,考查最小二乘法,考查线性回归直线的意义,考查与线性回归方程有关的概念,本题是一个基础题.6.(5分)(1991•湖南、云南、海南)点(4,0)关于直线5x+4y+21=0的对称点是()A.(﹣6,8)B.(﹣8,﹣6)C.(6,8) D.(﹣6,﹣8)【分析】设出对称点的坐标,利用对称点的连线被对称轴垂直平分,建立方程组,即可求得结论.【解答】解:设点M的坐标为(a,b),则∴a=﹣6,b=﹣8∴M(﹣6,﹣8),故选D.【点评】本题考查直线中的对称问题,考查学生的计算能力,属于基础题.7.(5分)(2010•安徽)甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是()A.B.C.D.【分析】由题意知本题是一个古典概型,本题所包含的总事件数正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件.4组邻边和对角线中两条直线相互垂直的情况有5种包括10个基本事件,根据古典概型公式得到结果.【解答】解:正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件.4组邻边和对角线中两条直线相互垂直的情况有5种包括10个基本事件,所以概率P==,故选C.【点评】对于几何中的概率问题,关键是正确理解几何图形,分类得出基本事件数,然后得所求事件的基本事件数,进而利用概率公式求概率.8.(5分)(1993•全国)圆x2+y2=1上的点到直线3x+4y﹣25=0的距离的最小值是()A.6 B.4 C.5 D.1【分析】先求圆心到直线的距离,再减去半径即可.【解答】解:圆的圆心坐标(0,0),到直线3x+4y﹣25=0的距离是,所以圆x2+y2=1上的点到直线3x+4y﹣25=0的距离的最小值是5﹣1=4故选B.【点评】本题考查直线和圆的位置关系,数形结合的思想,是基础题.9.(5分)(2016春•宝安区期末)已知某车间加工零件的个数x与所花费时间y(h)之间的线性回归方程为=0.01x+0.5,则加工600个零件大约需要的时间为()A.6.5h B.5.5h C.3.5h D.0.5h【分析】直接利用回归直线方程求解即可.【解答】解:某车间加工零件的个数x与所花费时间y(h)之间的线性回归方程为=0.01x+0.5,则加工600个零件大约需要的时间为:y=0.01×600+0.5=6.5(h).故选:A.【点评】本题考查回归直线方程的应用,基本知识的考查.10.(5分)(2010•陕西)若某空间几何体的三视图如图所示,则该几何体的体积是()A.2 B.1 C.D.【分析】由题意可知图形的形状,求解即可.【解答】解:本题考查立体图形三视图及体积公式如图,该立体图形为直三棱柱所以其体积为.【点评】本题考查立体图形三视图及体积公式,是基础题.11.(5分)(2016春•宝安区期末)设l,m是两条不同的直线,α,β是两个不重合的平面,给出下列四个命题:①若α∥β,l⊥α,则l⊥β;②若l∥m,l⊂α,m⊂β,则α∥β;③若m⊥α,l⊥m,则l∥α;④若α⊥β,l⊂α,m⊂β,则l⊥m.其中真命题的序号为()A.②③B.①C.③④D.①④③【分析】①根据一条直线与两个平行平面中的一个垂直,那么它与另一个平面垂直,即可判断正误;②根据两个平面平行的判断方法即可判断正误;③根据直线与平面平行的判断方法,得出命题错误;④根据两个平面垂直的性质定理,即可判断命题错误.【解答】解:对于①,当α∥β时,若l⊥α,则l⊥β,理由是如果一条直线与两个平行平面中的一个垂直,那么它与另一个平面垂直,∴①正确;对于②,当l∥m,l⊂α,m⊂β时,α∥β或α与β相交,∴②错误;对于③,当m⊥α,l⊥m时,l∥α或l⊂α,∴③错误;对于④,当α⊥β,l⊂α,m⊂β时,l⊥m或l与m不垂直,∴④错误.综上,正确的命题是①.故选:B.【点评】本题考查了空间中的平行与垂直关系的应用问题,也考查了几何符号语言与空间想象能力的应用问题.12.(5分)(2016春•宝安区期末)若直线l:x+y﹣2=0与圆C:x2+y2﹣2x﹣6y+2=0交于A、B两点,则△ABC的面积为()A.B.C.D.【分析】求出圆心和半径,再求得弦心距d和弦长AB,即可得△ABC的面积为•AB•d的值.【解答】解:直线l:x+y﹣2=0与圆C:x2+y2﹣2x﹣6y+2=0交于A、B两点,则圆C的圆心为(1,3),半径为r=×=2,弦心距为d==,弦长AB=2=2×=2,所以△ABC的面积为S=•AB•d=×2×=2.△ABC故选:A.【点评】本题主要考查了直线和圆相交的性质,点到直线的距离公式,弦长公式的应用问题,是基础题目.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.(5分)(2010•辽宁)三张卡片上分别写上字母E、E、B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为.【分析】由题意知本题是一个古典概型,试验包含的所有事件可以列举出三张卡片随机地排成一行,而满足条件的只有一种,根据概率公式得到结果.【解答】解:由题意知本题是一个古典概型,∵试验包含的所有事件可以列举出三张卡片随机地排成一行,共有三种情况:BEE,EBE,EEB,而满足条件的只有一种,∴概率为:.故答案为:【点评】字母排列问题是概率中经常出现的题目,一般可以列举出要求的事件,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的可以借助于排列数和组合数来表示.14.(5分)(2016•亳州校级模拟)已知,α是第四象限角,且tan(α+β)=1,则t anβ的值为﹣3.【分析】由条件利用同角三角函数的基本关系求得tanα 的值,再利用两角和的正切公式求得tanβ的值.【解答】解:∵已知,α是第四象限角,∴sinα=﹣=﹣,∴tanα==﹣2,再根据tan(α+β)===1,求得tanβ=﹣3,故答案为:﹣3.【点评】本题主要考查同角三角函数的基本关系,两角和的正切公式的应用,属于基础题.15.(5分)(2014•南京三模)在平面直角坐标系xOy中,圆C的方程为(x﹣1)2+y2=4,P为圆C上一点.若存在一个定圆M,过P作圆M的两条切线PA,PB,切点分别为A,B,当P在圆C上运动时,使得∠APB恒为60°,则圆M的方程为(x﹣1)2+y2=1.【分析】先设点P的坐标为(x,y),则可得|PO|,根据∠APB=60°可得∠AP0=30°,判断出|PO|=2|OB|,把|PO|代入整理后即可得到答案.【解答】解:∵在平面直角坐标系xOy中,圆C的方程为(x﹣1)2+y2=4,P为圆C上一点.存在一个定圆M,过P作圆M的两条切线PA,PB,切点分别为A,B,当P在圆C上运动时,使得∠APB恒为60°,∴存在一个定圆M,圆心与圆C的方程为(x﹣1)2+y2=4,的圆心重合,如图:|PC|=2,当R M=1时,∠APM=30°,∠MPB=30°;此时∠APB=60°,圆M的方程为(x﹣1)2+y2=1.故答案为:(x﹣1)2+y2=1.【点评】本题考查轨迹方程的求法,圆的标准方程的求法,考查计算能力.16.(5分)(2016春•宝安区期末)在平面直角坐标系xOy中,已知圆C:x2+y2﹣(6﹣2m)x﹣4my+5m2﹣6m=0,直线l经过点(1,﹣1),若对任意的实数m,直线l被圆C截得的弦长都是定值,则直线l的方程为2x+y﹣1=0.【分析】先将圆的方程化为标准式,求出圆心和半径,通过分析可以看出,圆心在一条直线m上,半径是定值3,所以直线l∥m,才能满足截得的弦长是定值.【解答】解:将圆C:x2+y2﹣(6﹣2m)x﹣4my+5m2﹣6m=0化为标准式得[x﹣(3﹣m)]2+(y﹣2m)2=9,∴圆心C(3﹣m,2m),半径r=3,令,消去m得2x+y﹣6=0,所以圆心在直线2x+y﹣6=0上,又∵直线l经过点(1,﹣1),若对任意的实数m,直线l被圆C截得的弦长都是定值,∴直线l与圆心所在直线平行,∴设l方程为2x+y+C=0,将(1,﹣1)代入得C=﹣1,∴直线l的方程为2x+y﹣1=0.故答案为:2x+y﹣1=0.【点评】有关直线与圆的位置关系的问题,一般采用几何法,即先求出圆心与半径,然后画出图象,利用点到圆心的距离,半径,弦长等的关系解决问题.三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤.17.(10分)(2015•漳州模拟)如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)79.5~89.5这一组的频数、频率分别是少(2)估计这次环保知识竞赛的及格率(60分及以上为及格)【分析】(1)先求频率,再求频数;(2)将各个小矩形的面积求积即可.【解答】解:(1)频率=(89.5﹣79.5)×0.025=0.25;频数=60×0.25=15.(2)这次环保知识竞赛的及格率为:10×0.016+10×0.03+10×0.025+10×0.003=0.74.【点评】考查了频率分布直方图中的数字特征.18.(12分)(2016春•宝安区期末)如图,二面角α﹣l﹣β的大小是60°,线段AB⊂α.B∈l,AB与l所成的角为30°.求直线AB与平面β所成的角的正弦值.【分析】根据线面角的定义得到∠ABC为AB与平面β所成的角,结合三角形的边角关系进行求解.【解答】解:过点A作平面β的垂线,垂足为C,在β内过C作l的垂线.垂足为D连结AD,有三垂线定理可知AD⊥l,故∠ADC为二面角α﹣l﹣β的平面角,为60°又由已知,∠ABD=30°连结CB,则∠ABC为AB与平面β所成的角,设AD=2,则AC=,CD=1AB==4∴sin∠ABC=.【点评】本题主要考查线面角的求解,根据线面角的定义作出对应的平面角是解决本题的关键.考查学生的转化能力.19.(12分)(2014•市中区校级二模)袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(I)求n的值;(II)从袋子中不放回地随机抽取两个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取两个实数x,y,求事件“x2+y2>(a﹣b)2恒成立”的概率.【分析】(Ⅰ)利用从袋子中随机抽取1个小球,取到标号是2的小球的概率是,确定n的值.(Ⅱ)①从袋子中不放回地随机抽取2个球,共有基本事件12个,其中“a+b=2”为事件A的基本事件有4个,故可求概率.②记“x2+y2>(a﹣b)2恒成立”为事件B,则事件B等价于“x2+y2>4恒成立,(x,y)可以看成平面中的点,确定全部结果所构成的区域,事件B构成的区域,利用几何概型可求得结论.【解答】解:(Ⅰ)根据从袋子随机抽取1个小球,取到标号为2的小球的概率是可得,解得n=2.(Ⅱ)①从袋子中不放回地随机抽取2个球,共有基本事件12个,其中“a+b=2”为事件A的基本事件有4个,则P(A)=.②记“x2+y2>(a﹣b)2恒成立”为事件B,则事件B等价于“x2+y2>4恒成立,(x,y)可以看成平面中的点,则全部结果所构成的区域为Ω={(x,y)|0≤x≤2,0≤y≤2,x,y∈R},而事件B构成的区域B={(x,y)|x2+y2>4,(x,y)∈Ω},所以P(B)=1﹣.【点评】本题考查等可能事件的概率,考查几何概型,解题的关键是确定其测度.20.(12分)(2016秋•安庆期末)如图的茎叶图记录了甲、乙两代表队各10名同学在一次英语听力比赛中的成绩(单位:分),已知甲代表队数据的中位数为76,乙代表队数据的平均数是75.(1)求x,y的值;(2)若分别从甲、乙两队随机各抽取1名成绩不低于80分的学生,求抽到的学生中,甲队学生成绩不低于乙队学生成绩的概率;(3)判断甲、乙两队谁的成绩更稳定,并说明理由(方差较小者稳定).【分析】(1)按大小数列排列得出x值,运用平均数公式求解y,(2)判断甲乙两队各随机抽取一名,种数为3×4=12,列举得出甲队学生成绩不低于乙队学生成绩的有80,80;82,80;88,80;88,86;88,88.种数为3+1+1=5,运用古典概率求解.(3)求解甲的平均数,方差,一点平均数,方差,比较方差越小者越稳定,越大,波动性越大.得出结论:甲队的方差小于乙队的方差,所以甲队成绩较为稳定.【解答】解:(1)因为甲代表队的中位数为76,其中已知高于76的有77,80,82,88,低于76的有71,71,65,64,所以x=6,因为乙代表队的平均数为75,其中超过75的差值为5,11,13,14,和为43,少于75的差值为3,5,7,7,19,和为41,所以y=3,(2)甲队中成绩不低于80的有80,82,88;乙队中成绩不低于80的有80,86,88,89,甲乙两队各随机抽取一名,种数为3×4=12,其中甲队学生成绩不低于乙队学生成绩的有80,80;82,80;88,80;88,86;88,88.种数为3+1+1=5,所以甲队学生成绩不低于乙队学生成绩的概率为p=,(3)因为甲的平均数为:=(64+65+71+71+76+76+77+80+82+88)=75,=[(64﹣75)2+(65﹣75)2+2×(71﹣75)2+2×(76﹣75)所以甲的方差S2甲2+(77﹣75)2+(80﹣75)2+(82﹣75)2+(88﹣75)2]=50.2,=[(56﹣75)2+2×(68﹣75)2+(70﹣75)2+(72﹣75)2+又乙的方差S2乙(73﹣75)2+(80﹣75)2+(86﹣75)2+(88﹣75)2+(89﹣75)2]=100.8,因为甲队的方差小于乙队的方差,所以甲队成绩较为稳定.【点评】本题考察了茎叶图的运用,求解方差,进行数据的分析解决实际问题,考察了计算能力,准确度.21.(12分)(2016春•宝安区期末)如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,PA=PB=PC,M、N分别为AB、BC的中点.(1)求证:AC∥平面PMN;(2)求证:MN⊥BC.【分析】(1)由已知可证MN∥AC,根据直线与平面平行的判定定理即可证明AC∥平面PMN.(2)易证明PM⊥AB,PN⊥BC,由平面PAB⊥平面ABC,可证PM⊥BC,从而证明BC⊥平面PMN,MN⊂平面PMN,即可得证.【解答】证明:(1)因为M、N分别为AB、BC的中点,所以MN∥AC…(3分)又因为MN⊂平面PMN,AC⊄平面PMN,所以AC∥平面PMN…(7分)(2)因为PA=PB=PC,M、N分别为AB、BC的中点,所以PM⊥AB,PN⊥BC,又因为平面PAB⊥平面ABC,PM⊂平面PAB,平面PAB∩平面ABC=AB,所以PM⊥平面ABC…(10分)又BC⊂平面ABC,所以PM⊥BC,所以BC⊥平面PMN,因为MN⊂平面PMN,所以MN⊥BC…(14分)【点评】本题主要考查了直线与平面平行的判定,直线与平面垂直的性质,考查了空间想象能力和推理论证能力,属于中档题.22.(12分)(2016春•宝安区期末)在平面直角坐标系xOy中,已知经过原点O 的直线l与圆C:x2+y2﹣4x﹣1=0交于A,B两点.(1)若直线m:ax﹣2y+a+2=0(a>0)与圆C相切,切点为B,求直线l的方程;(2)若OB=2OA,求直线l的方程;(3)若圆C与x轴的正半轴的交点为D,设直线L的斜率k,令kt=1,设△ABD 面积为f(t),求f(t)【分析】(1)由直线与圆相切,得圆心到直线的距离d=r,列出方程求出a的值,从而求出直线l的方程;(2)利用AB的中点M,结合OB=2OA,设出所求直线的方程,利用圆心到直线l的距离d和勾股定理,可以求出l的方程;(3)设A,B两点的纵坐标分别为y1,y2,求出点D的坐标,写出△ABD的面积f(t),利用直线AB的方程与圆的方程联立,结合根与系数的关系,即可求出f (t)的解析式.【解答】解:(1)由直线m:ax﹣2y+a+2=0(a>0)与圆C:x2+y2﹣4x﹣1=0相切,得圆心C(2,0)到直线的距离d=r=,即,化简得:a2+3a﹣4=0,解得a=1或a=﹣4,由于a>0,故a=1;由直线m与圆解得切点B(1,2),得l:y=2x;(3分)(2)取AB的中点M,则AM=AB,又,所以,设:OM=x,圆心到直线l的距离为d,由勾股定理得:x2+d2=4,9x2+d2=5,解得,设所求直线的方程为y=kx,,解得,直线;(8分)(3)如图:设A,B两点的纵坐标分别为y1,y2,易知,,易知|y1|+|y2|=|y1﹣y2|,设AB的方程为x=ty,由,消元得(t2+1)y2﹣4ty﹣1=0,=,则.(12分)【点评】本题考查了直线与圆的方程的应用问题,也考查了函数与方程思想的综合应用问题,是中档题.。

相关文档
最新文档