RNA Purification-问题解答
rna干扰常见问题解答

rna干扰常见问题解答RNA干扰常见问题解答SiRNA导入细胞有以下几种方法:化学转染技术、电穿孔法、磷酸钙共沉淀技术、显微注射和载体导入技术。
选择时应该依据实验条件考虑以下因素:细胞对转入方式的承受能力、细胞对病毒侵染的易感性、细胞的生长特性等。
其中,化学转染技术是目前最为常用的方法,由于电转的方法对细胞损伤比较大,一般不建议选择电转。
针对最常见的化学转染技术,有几种常见的问题以及解决方法。
一、哪种转染试剂效果好?在选择转染试剂时,一般要考虑的是结合特定的细胞株,而不是被导入细胞中的物质。
选择细胞毒性小,转染效率高的转染试剂。
脂质体试剂的毒性较大,建议选择非脂质体的转染试剂,如BIODAI的RFect系列纳米材料转染试剂。
二、转染后出现细胞死亡是什么原因?如何优化转染条件?转染后细胞死亡,原因也是多样的,如脂质体毒性,转染浓度过高,转染前的细胞状态不佳等都可能导致转染后细胞死亡的情况发生,这种情况下就需要适当优化转染条件;在优化转染条件时需要考虑以下因素:转染试剂和细胞特有的自身条件。
例如:siRNA与转染试剂的比例、转染时间、细胞传代数和细胞密度等。
一般说,转染试剂毒性小,转染时所需的细胞密度就小,如RFect系列siRNA转染试剂一般要求30-50%细胞密度,而lipo2000转染时所需的细胞密度一般在70%左右。
如果经优化后细胞死亡仍很多,应及时考虑更换转染试剂。
三、如何优化siRNA与转染试剂的比例?SiRNA的量与转染试剂的比例需要进行优化,一般选择24孔板进行优化,比较节省各种试剂。
可以在10-100nM之间设定几个siRNA的浓度水平,如30nM,50nM,80nM,100nM。
转染试剂根据说明书推荐的剂量上下浮动各3个浓度。
之后siRNA的量与转染试剂的量进行两两组合,从中选择转染效率最高的组合用于接下来的实验。
如果通过荧光显微镜观察荧光判断转染效率的话,siRNA的最低终浓度不要低于10nM,一般推荐的siRNA终浓度多在50-100nM。
RNA提取常见问题、原因分析及其对策

RNA提取常见问题、原因分析及其对策一、RNA提取的通用方法异硫氰酸胍/苯酚法(即TriZol类试剂)细胞在变性剂异硫氰酸胍的作用下被裂解,同时核蛋白体上的蛋白变性,核酸释放;释放出来的DNA和RNA由于在特定pH下溶解度的不同而分别位于整个体系中的中间相和水相,从而得以分离;有机溶剂抽提,沉淀,得到纯净RNA。
步骤:材料准备:尽量新鲜。
裂解变性:异硫氰酸胍(亚硫氢胍,巯基乙醇,N-月桂肌氨酸等)。
使细胞及核蛋白复合物变性,释放RNA,有效抑制核酸酶。
纯化分离:苯酚,氯仿,异戊醇。
苯酚/氯仿可抽提去除杂物。
洗涤:70%乙醇。
沉淀:异丙醇、无水乙醇。
乙酸钠(pH4.0):维持变性的细胞裂解液的pH值,沉淀RNA。
此外还常用氯化锂选择沉淀RNA。
二、影响RNA提取的因素由于RNA样品易受环境因素特别是RNA酶的影响而降解,提取高质量的RNA样品在生命科研中具有相当的挑战性。
RNA提取对样品的新鲜性要求非常高,获取样品后最好立即提取RNA,若无条件立即实验,应于-80℃或液氮中保存样品,提取时取出样品后立即在低温下研磨裂解细胞,以防RNA降解。
1.材料:新鲜,切忌使用反复冻融的材料,如若材料来源困难,且实验需要一定的时间间隔。
可以先将材料贮存在TRIzol或样品贮存液中,于-70℃或-20℃保存如要多次提取,请分成多份保存,液氮长期保存,-70℃短期保存。
2.样品破碎及裂解:根据不同材料选择不同的处理方法:培养细胞:通常可直接加裂解液裂解酵母和细菌:一般TRIzol可直接裂解,对一些特殊的材料可先用酶或者机械方法破壁动植物组织:先液氮研磨和匀浆,后加裂解液裂解。
期间动作快速,样品保持冷冻,样品量适当,保证充分裂解为减少DNA污染,可适当加大裂解液的用量3.纯化:在使用氯仿抽提纯化时,一定要充分混匀,且动作快速;经典的纯化方法,如LiCl 沉淀等,虽然经济,但操作时间长,易造成RNA 降解;柱离心式纯化方法:抽提速度快,能有效去除影响RNA 后续酶反应的杂质,是目前较为理想的选择。
rna-ip条件 -回复

rna-ip条件-回复RNA IP (RNA Immunoprecipitation) 是一种分子生物学实验技术,旨在研究RNA分子与相关蛋白之间的相互作用。
通过使用RNA抗体,研究人员可以选择性地富集RNA结合蛋白,并进一步分析它们的相互作用及功能。
本文将一步一步地回答有关RNA IP的主题,包括技术原理、实验步骤、数据分析以及该技术的应用领域和挑战。
第一步:技术原理RNA IP的原理基于免疫沉淀技术,其中使用一种RNA特异性抗体与细胞/组织中的靶RNA结合。
为了实现这一目标,首先需要将细胞/组织中的蛋白质与RNA一起交联。
然后使用具有对RNA特异性的抗体,将抗体与交联后的RNA蛋白复合物结合。
免疫反应完成后,通过洗涤步骤去除非特异性结合的物质,最终可以纯化蛋白- RNA复合物。
第二步:实验步骤RNA IP的实验步骤如下:1.细胞/组织交联:使用适当的交联剂,如形醛或二硫化羟亚胺,将目标细胞/组织中的RNA与蛋白质交联。
2.细胞/组织裂解:使用细胞裂解缓冲液或组织断裂器将细胞/组织裂解,并释放RNA蛋白复合物。
3.免疫沉淀:将交联后的产物与特异性抗体结合,并通过抗体的亲和力选择性地富集RNA结合蛋白。
4.洗涤:通过多次洗涤步骤去除非特异性结合物,以提高样品纯度。
5.洗脱:将富集的RNA蛋白复合物从抗体上洗脱,以进一步分析。
第三步:数据分析分析RNA IP实验结果通常涉及以下步骤:1.蛋白质鉴定:通过质谱分析等技术鉴定与RNA结合的蛋白质,并确定其功能。
2.RNA测序:通过测序技术对富集的RNA进行分析,以确定与RNA 结合的蛋白质及其作用位点。
3.功能鉴定:利用基因表达谱分析等方法确定RNA结合蛋白对基因转录和翻译的调控作用。
第四步:应用领域RNA IP在许多生物学研究领域中发挥着重要作用,如:1.转录调控研究:通过分析转录因子与RNA的相互作用,可以揭示转录调控机制。
2.病理学研究:通过在疾病标本中应用RNA IP,可以鉴定与疾病进展和治疗相关的RNA结合蛋白。
RNA提取常见问题分析与解答

1、RNA降解A、新鲜细胞:如果试剂没有问题,且外源性污染也可以排除,那么降解几乎都来自裂解液的用量不足。
如果将裂解液直接加入培养皿中裂解细胞,一定要使裂解液能覆盖住细胞。
B、新鲜组织:某些富含内源核酸酶的样品(如肝脏,胸腺等),即使使用电动匀浆器匀浆也不能避免RNA的降解。
更可靠的方法是:在液氮条件下将组织研碎,并且匀浆时使用更多裂解液。
C、冷冻样品:样品取材后应立即置于液氮中速冻,然后移至-70℃冰箱保存。
样品决不能未经液氮速冻而直接保存于-70℃冰箱中。
冷冻样品,即使是冷冻细胞,如果不在液氮条件下研磨碎,而直接加入裂解液中匀浆,RNA也比新鲜样品更容易降解。
样品在与裂解液充分接触前决不能出现融化,所以研磨用具必须预冷,在碾磨过程中要及时补充液氮。
样品研碎后,在液氮刚刚挥发完时,将样品迅速转移到含裂解液的容器中,立即混匀匀浆。
D、外源RNA酶的污染:试剂,器械及实验环境中的RNA酶进入实验系统。
E、内源RNA酶的污染:抑制剂失效或者用量不够,实验样品过多;匀浆时温度过高。
2、OD260/280比值偏低A、蛋白质残留使用酚氯仿抽提,去除残留的蛋白质(但经此步骤操作,约损失40%的RNA)。
B、盐分残留加入2.5倍体积的无水乙醇和终浓度是0.1M的NaCl沉淀RNA,-20℃放置30分钟充分沉淀RNA,然后4℃下10,000×g离心15分钟收集沉淀,溶于DEPC处理过的水中。
C、设备限制测定OD260及OD280数值时,使OD260读数在0.1-0.5之间。
此范围线性最好。
用水稀释样品:测OD值时,对照及样品稀释液请使用10mM Tris,pH7.5。
用水作为稀释液将导致比值偏低。
3、RNA提取得率低A、使用样品过多,超过吸附柱的最大结合量使用过多的样品,将会导致RNA的降解。
B、Wash Buffer中未加入无水乙醇使用前,需在DNA Wash Buffer和DNAse I Stop Buffer 中加入无水乙醇。
关于RNA提取的一些问题

关于RNA提取的一些问题关于RNA提取的一些问题问题:1 RNA提取的时候怎么样有效的避免DNA的污染?2 RNA提取后在-20放置,可保存多久?3 大家用的trizol是自己配的还是买的?答案一:1、在提取过程增加DNase消化步骤。
除使用酶消化外的方法去DNA都不是很彻底。
视后续实验而定。
2、如有条件最好放-80保存。
主要担心是如果提得不纯(有杂质或未完全灭活的RNase)在-20度保存过程中降解。
且这个保存时间跟物种、提取方法等有关。
尝试过有些物种的RNA放-20度保存一个月后出现降解的情况(未知是提得不纯或物种原因)3、实验要求不高可以自己配点Trizol来提,如果重要的实验建议还是购买invitrogen 的。
答案二:我之前提取过RNA,鼠肺组织的,关键是避免污染,所用TRIZOL买的是天根试剂公司的,感觉还可以,当然跟你的提取方法还有所用材料有关。
提完最好放-80保存,可以存放久一点。
至于用DNA酶处理我没有使用,提取质量还可以。
答案三、在提取RNA时最好所用的所有器械都要经过DEPC水过夜处理,实验平台和仪器不能和做NDA的混用,最好要有专用的RNA操作实验平台答案四、动作要快,避免空气中,皮肤中以及呼吸中的RNA酶。
加氯仿时应充分震荡使其充分乳化。
组织样品应保持新鲜。
RNA样品长时间反复使用可以-20保存,但是易降解。
建议分装小管后保存-80。
Trizol试剂购自Takara公司答案五、我们实验室一般都是把提取的RNA逆转成cDNA后,在放在-80°C,这样可以保存的久一点;Trizol是Takara公司的。
答案六、同意5楼观点,逆转录成cDNA再保存方便一点,有条件的话当然是买现成的,RNA酶处理过的枪头,trizol的话目的有二,一是抑制RNA酶的活性,二是使蛋白质变性并溶解,里面成分的量会对效果有影响,而且既然是能使蛋白变性的东西,对人体也是有毒的,所以能买尽量买吧。
RNA提取常见问题分析

RNA提取常见问题分析1 RNA抽提中自备有机溶液的配制及保存问题2总RNA 的非变性电泳检测3 RNA质量检测与鉴定4 关于RNA样品中基因组DNA污染的问题1 RNA抽提中自备有机溶液的配制及保存问题RNA 抽提中涉及的有机试剂包括苯酚、氯仿、异丙醇、乙醇等。
苯酚的使用和保存:苯酚基本已经商品化,选择和保存都不应该有什么问题,4℃避光保存即可;只强调一点:尽管Tris 饱和的苯酚也可以用于RNA 的抽提,但使用水饱和苯酚会更好一些,因为RNA 在pH 7 以上的溶液中,发生降解的机率大大提高。
下面是关于氯仿、异丙醇、乙醇的有关建议。
选择:国内大的化学试剂公司生产或者监制的分析纯级别试剂(AR)就完全可以满足要求。
如国药集团,西陇化工等。
预处理:不需要进行任何的预处理。
绝对不可以高温高压灭菌,这三种试剂的沸点都低于100℃,高温高压可能导致危险。
75% 乙醇的配制一份无菌无酶的水(DEPC水)与 3 份(体积)无水乙醇混匀即成。
不要使用量筒等过渡容器。
事实上,70% - 80% 的乙醇都具有较好的洗涤能力,使用都不会导致片段比较大的核酸的丢失,所以,配制时就不要为了准确而左勾右兑。
75% 乙醇也不可以高温高压灭菌,原因同无水乙醇。
保存:第一,要使用新的未开封的试剂,用后做好标记。
其次,分成相对小一点的包装(50ml –100ml);500ml 的瓶子取液是非常不方便的,移液器的杆子往往都进入了瓶口里,非常容易造成污染。
第三,塑料瓶子密闭性好,装醇类试剂是非常好的选择;但氯仿绝对不要使用塑料瓶子。
第四,盖紧瓶盖,作好标记。
第五,保存于室温。
将有机试剂保存于冰箱的人不在少数,但这么做却是令人奇怪的。
首先,任何挥发性的东西都不保存在冰箱(除非万不得已,如DEPC)。
其次,与外面相比,冰箱除了灰尘少一点外,什么都会比外面多。
第三,在室温打开低温的瓶子,将导致空气大量进入瓶子,增加了污染的风险。
使用:非常幸运的是,有机试剂对菌污染和酶污染似乎有我们想象不到的抑制和灭活作用,所以,使用这些试剂没有特殊的要求,按正常抽提RNA 的要求就完全可以了。
RNA提取常见问题、原因分析及其对策
RNA提取常见问题、原因分析及其对策一、RNA提取的通用方法异硫氰酸胍/苯酚法(即TriZol类试剂)细胞在变性剂异硫氰酸胍的作用下被裂解,同时核蛋白体上的蛋白变性,核酸释放;释放出来的DNA和RNA由于在特定pH下溶解度的不同而分别位于整个体系中的中间相和水相,从而得以分离;有机溶剂抽提,沉淀,得到纯净RNA。
步骤:材料准备:尽量新鲜。
裂解变性:异硫氰酸胍(亚硫氢胍,巯基乙醇,N-月桂肌氨酸等).使细胞及核蛋白复合物变性,释放RNA,有效抑制核酸酶.纯化分离:苯酚,氯仿,异戊醇.苯酚/氯仿可抽提去除杂物.洗涤:70%乙醇.沉淀:异丙醇、无水乙醇。
乙酸钠(pH4.0):维持变性的细胞裂解液的pH值,沉淀RNA。
此外还常用氯化锂选择沉淀RNA.二、影响RNA提取的因素由于RNA样品易受环境因素特别是RNA酶的影响而降解,提取高质量的RNA样品在生命科研中具有相当的挑战性。
RNA提取对样品的新鲜性要求非常高,获取样品后最好立即提取RNA,若无条件立即实验,应于—80℃或液氮中保存样品,提取时取出样品后立即在低温下研磨裂解细胞,以防RNA降解。
1。
材料:新鲜,切忌使用反复冻融的材料,如若材料来源困难,且实验需要一定的时间间隔。
可以先将材料贮存在TRIzol或样品贮存液中,于-70℃或-20℃保存如要多次提取,请分成多份保存,液氮长期保存,-70℃短期保存.2。
样品破碎及裂解:根据不同材料选择不同的处理方法:培养细胞:通常可直接加裂解液裂解酵母和细菌:一般TRIzol可直接裂解,对一些特殊的材料可先用酶或者机械方法破壁动植物组织:先液氮研磨和匀浆,后加裂解液裂解。
期间动作快速,样品保持冷冻,样品量适当,保证充分裂解为减少DNA污染,可适当加大裂解液的用量3.纯化:在使用氯仿抽提纯化时,一定要充分混匀,且动作快速;经典的纯化方法,如LiCl 沉淀等,虽然经济,但操作时间长,易造成RNA 降解;柱离心式纯化方法:抽提速度快,能有效去除影响RNA 后续酶反应的杂质,是目前较为理想的选择。
RNA免疫沉淀(RIP)常见问题解答
RNA免疫沉淀(RIP)常见问题解答1. miRNA是什么?具有什么作用?答:microRNAs(miRNA)是一种内源性非编码小分子RNA,一般具有18到25个核苷酸,其序列在进化上高度保守,通过靶向特定mRNA来调节基因的表达。
miRNA是越来越受关注的转录后调控网络(post-transcriptional control)中重要的调控因子。
首先,miRNA结合到核糖核蛋白(Ribonucleoprotein,RNP)复合物中,形成RNA诱导的沉默复合体(RNA-induced silencing complex, RISC),然后通过不完全的碱基互补靶向到目标mRNA的3’UTR区,再通过引导酶切影响了mRNA的稳定性,或直接阻碍翻译过程,从而介导特异mRNA靶标的转录后基因沉默。
2. RIP技术是什么?答:RIP技术(RNA Binding Protein Immunoprecipitation,RNA结合蛋白免疫沉淀),是研究细胞内RNA与蛋白结合情况的技术,是了解转录后调控网络动态过程的有力工具,能帮助我们发现miRNA的调节靶点。
RIP这种新兴的技术运用针对目标蛋白的抗体把相应的RNA-蛋白复合物沉淀下来,然后经过分离纯化就可以对结合在复合物上的RNA进行分析。
3. RIP技术与ChIP技术有什么区别?答:RIP可以看成是普遍使用的染色质免疫沉淀ChIP技术的类似应用,但由于研究对象是RNA-蛋白复合物而不是DNA-蛋白复合物,RIP实验的优化条件与ChIP实验不太相同(如复合物不需要固定,RIP 反应体系中的试剂和抗体绝对不能含有RNA酶,抗体需经RIP实验验证等等)。
4. RIP试验基本原理答:(1)用抗体或表位标记物捕获细胞核内或细胞质中内源性的RNA结合蛋白。
(2)防止非特异性的RNA的结合。
(3)免疫沉淀把RNA结合蛋白及其结合的RNA一起分离出来。
(4)结合的RNA序列通过microarray(RIP-Chip),定量RT-PCR或高通量测序(RIP-Seq)方法来鉴定。
RNA产品线常见问题汇总
RNA线常见问题汇总Q:1、如何确定研究物种有无参考基因组?A:根据研究物种的拉丁文名,可在Ensembl(/index.html)、JGI(/) NCBI(/)中搜索是否有该物种的基因组信息,也可在其他专门介绍某种物种的网站寻找参考基因组。
一般下载的文件包括:Assembled scaffolds(masked)、Genes、Functional Annotations三种文件;需要下载的文件具体如下:1)序列信息:.fasta文件,用于进行mapping比对。
2)基因注释信息:.gff文件,里面包含基因名字,基因所在位置等信息,用于进行测得序列的基因注释,注释所得基因可以进行下一步表达差异分析。
3)GO注释信息:.txt文件,里面包含基因名字和对应注释信息编号(GO号),有此信息可以不用再重新进行GO注释,直接利用此信息进行GO富集分析。
Q:2、送样要求?A:1)组织样品动物组织:>2g;植物组织:>4g;培养细胞:>1×107个;血液样品:≥2ml(最好是全血)2)真核生物RNA请提供浓度≥200ng/μL,总量≥10μg的RNA(单次建库用量为5μg);OD260/2801.8~2.2之间,OD260/230≥2.0,RIN≥6.5,28S:18S≥1.0,确保RNA无降解;送样时请标记清楚样品编号,管口使用Parafilm膜密封;样品保存期间切忌反复冻融;送样时请使用干冰运输。
3)原核生物RNA请提供浓度≥200ng/μL,总量≥10μg的RNA(单次建库用量为5μg);OD260/280介于1.8~2.2之间,OD260/230≥2.0,RIN≥6.5,23S:16S≥1.0,确保RNA无降解;送样时请标记清楚样品编号,管口使用Parafilm膜密封;样品保存期间切忌反复冻融;送样时请使用干冰运输。
Q:3是否一定要求设置生物学重复,以及重复次数?目前没有生物学重复的实验发文章比较困难,尤其是IF≥5的杂志。
RNA提取常见问题分析
RNA提取常见问题分析1 RNA抽提中自备有机溶液的配制及保存问题2总RNA 的非变性电泳检测3 RNA质量检测与鉴定4 关于RNA样品中基因组DNA污染的问题1 RNA抽提中自备有机溶液的配制及保存问题RNA 抽提中涉及的有机试剂包括苯酚、氯仿、异丙醇、乙醇等。
苯酚的使用和保存:苯酚基本已经商品化,选择和保存都不应该有什么问题,4℃避光保存即可;只强调一点:尽管Tris 饱和的苯酚也可以用于RNA 的抽提,但使用水饱和苯酚会更好一些,因为RNA 在pH 7 以上的溶液中,发生降解的机率大大提高。
下面是关于氯仿、异丙醇、乙醇的有关建议。
选择:国内大的化学试剂公司生产或者监制的分析纯级别试剂(AR)就完全可以满足要求。
如国药集团,西陇化工等。
预处理:不需要进行任何的预处理。
绝对不可以高温高压灭菌,这三种试剂的沸点都低于100℃,高温高压可能导致危险。
75% 乙醇的配制一份无菌无酶的水(DEPC水)与 3 份(体积)无水乙醇混匀即成。
不要使用量筒等过渡容器。
事实上,70% - 80% 的乙醇都具有较好的洗涤能力,使用都不会导致片段比较大的核酸的丢失,所以,配制时就不要为了准确而左勾右兑。
75% 乙醇也不可以高温高压灭菌,原因同无水乙醇。
保存:第一,要使用新的未开封的试剂,用后做好标记。
其次,分成相对小一点的包装(50ml –100ml);500ml 的瓶子取液是非常不方便的,移液器的杆子往往都进入了瓶口里,非常容易造成污染。
第三,塑料瓶子密闭性好,装醇类试剂是非常好的选择;但氯仿绝对不要使用塑料瓶子。
第四,盖紧瓶盖,作好标记。
第五,保存于室温。
将有机试剂保存于冰箱的人不在少数,但这么做却是令人奇怪的。
首先,任何挥发性的东西都不保存在冰箱(除非万不得已,如DEPC)。
其次,与外面相比,冰箱除了灰尘少一点外,什么都会比外面多。
第三,在室温打开低温的瓶子,将导致空气大量进入瓶子,增加了污染的风险。
使用:非常幸运的是,有机试剂对菌污染和酶污染似乎有我们想象不到的抑制和灭活作用,所以,使用这些试剂没有特殊的要求,按正常抽提RNA 的要求就完全可以了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1978RNA PurificationLori A.Martin,Tiffany J.Smith,Dawn Obermoeller,Brian Bruner,Martin Kracklauer,andSubramanian DharmarajSelecting a Purification Strategy .........................198Do Y our Experiments Require T otal RNA or mRNA?.....198Is It Possible to Predict the T otal RNA Yield from a Certain Mass of Tissue or Number of Cells?........201Is There Protein in Y our RNA Preparation,and If So,Should Y ou Be Concerned?....................202Is Y our RNA Physically Intact? Does It Matter?..........202Which T otal RNA Isolation T echnique Is Most Appropriate for Y our Research?.....................203What Protocol Modifications Should Be Used for RNA Isolation from Difficult Tissues?................207Is a One-Step or T wo-Step mRNA-(poly(A) RNA)-Purification Strategy Most Appropriate for Y our Situation?........................................209How Many Rounds of Oligo(dT)–Cellulose Purification Are Required?.........................210Which Oligo(dT)–Cellulose Format Is Most Appropriate?.....................................210Can Oligo(dT)–Cellulose Be Regenerated and Reused?...211Can a Kit Designed to Isolate mRNA Directly from the Biological Sample Purify mRNA from T otal RNA?...212Maximizing the Yield and Quality of an RNA Preparation ...212What Constitutes “RNase-Free T echnique”? (212)Molecular Biology Problem Solver:A Laboratory Guide .Edited by Alan S.GersteinCopyright © 2001 by Wiley-Liss,Inc.ISBNs:0-471-37972-7 (Paper);0-471-22390-5 (Electronic)How Does DEPC Inhibit RNase? (213)How Are DEPC-T reated Solutions Prepared? IsMore DEPC Better? (213)Should Y ou Prepare Reagents with DEPC-T reated Water,or Should Y ou T reat Y our Pre-made Reagents withDEPC? (214)How Do Y ou Minimize RNA Degradation during SampleCollection and Storage? (214)How Do Y ou Minimize RNA Degradation during SampleDisruption? (215)Is There a Safe Place to Pause during an RNAPurification Procedure? (218)What Are the Options to Quantitate Dilute RNASolutions? (218)What Are the Options for Storage of Purified RNA? (219)T roubleshooting (220)A Pellet of Precipitation RNA Is Not Seen at the End ofthe RNA Purification (220)A Pellet Was Generated,but the SpectrophotometerReported a Lower Reading Than Expected,or ZeroAbsorbance (221)RNA Was Prepared in Large Quantity,but it Failedin a Downstream Reaction:RT PCR is anExample (221)My T otal RNA Appeared as a Smear in an EthidumBromide-stained Denaturing Agarose Gel;18S and28S RNA Bands Were not Observed (222)Only a Fraction of the Original RNA Stored at -70°CRemained after Storage for Six Months (222)Bibliography (222)SELECTING A PURIFICA TION STRA TEGYDo Y our Experiments Require T otal RNA or mRNA?One of the first decisions that the researcher has to make whendetecting or quantitating RNA is whether to isolate total RNA orpoly(A)-selected RNA (also commonly referred to as mRNA).This choice is further complicated by the bewildering array ofRNA isolation kits available in the marketplace.In additionthe downstream application influences this choice.The followingsection is a short primer in helping make that decision.From a purely application point of view,total RNA mightsuffice for most applications,and it is frequently the startingmaterial for applications ranging from the detection of an mRNAspecies by Northern hybridization to quantitation of a message by 198Martin et al.RT-PCR.The preference for total RNA reflects the challenge ofpurifying enough poly(A) RNA for the application (mRNAcomprises <5% of cellular RNA),the potential loss of a particu-lar message species during poly(A) purification,and the difficultyin quantitating small amounts of purified poly(A) RNA.If thedata generated with total RNA do not meet your expectations,using poly(A) RNA instead might provide the sensitivity andspecificity that your application requires.The pros and cons witheither choice are discussed below.Your experimental data willprovide the best guidance in deciding whether to use total orpoly(A) RNA.Be flexible and open minded;there are many vari-ables to consider when making this decision.T wo situations where using poly(A) RNA is essential are cDNAlibrary construction,and preparation of labeled cDNA for hybridization to gene arrays.To avoid generating cDNA librarieswith large numbers of ribosomal clones,and nonspecific labeledcDNA it is crucial to start with poly(A) RNA for these procedures.The next section gives a brief description of the merits anddemerits of using total RNA or poly(A) RNA in some of the mostcommon RNA analysis techniques.Chapter 14,“Nucleic Acid Hybridization,”discusses the nuances and quirks of these proce-dures in greater depth.For detailed RNA purification protocols,see Krieg (1996) Rapley and Manning (1998),and Farrel (1998).Northern HybridizationsNorthern analysis is the only technique available that can deter-mine the molecular weight of an mRNA species.It is also the leastsensitive.Total RNA is most commonly used in this assay,but ifyou don’t detect the desired signal,or if false positive signals fromribosomal RNA are a problem,switching to poly(A) RNA mightbe a good idea.Since only very small amounts of poly(A) RNAare present,make sure that it is feasible and practical to obtainenough starting cells or tissue.Theoretically you could use as muchas 30m g of poly(A) RNA in a Northern,which is the amount foundin approximately 1mg of total RNA.Will it be practical andfeasible for you to sacrifice the cells or tissue required to get thismuch RNA? If not,use as much poly(A) RNA as is practical.One drawback to using poly(A) RNA in Northern hybridiza-tions is the absence of the ribosomal RNA bands,which are ordi-narily used to gauge the quality and relative quantity of the RNAsamples,as discussed later in this chapter.Fortunately there areother strategies besides switching to poly(A) RNA that can beused to increase the sensitivity of Northern hybridizations.Youcould alter the hybridization conditions of the DNA probeRNA Purification199(Anderson,1999),or you could switch to using RNA probes in thehybridization,which are 3- to 5-fold more sensitive than DNAprobes in typical hybridization buffers (Ambion TechnicalBulletin 168,and references therein).Dramatic differences in thesensitivity of Northern blots can also be seen from using differenthybridization buffers.If you remain dissatisfied with the Northern data,and you arenot interested in determining the size of the target,switching to amore sensitive technique such as nuclease protection or RT-PCRmight help.Nuclease protection assays,which are 5- to 10-foldmore sensitive than traditional membrane hybridizations,canaccommodate 80 to 100m g of nucleic acid in a single experiment.RT-PCR can detect extremely rare messages,for example,400copies of a message in a 1m g sample as described by Sun et al.(1998).RT-PCR is currently the most sensitive of the RNA analy-sis techniques,enabling detection and quantitation of the rarestof targets.Quantitative approaches have become increasinglyreliable with introduction of internal standards such as in com-petitive PCR strategies (Totzke et al.,1996;Riedy et al.,1995).Dot/Slot BlotsIn this procedure,RNA samples are directly applied to a mem-brane,either manually or under vacuum through a filtrationmanifold.Hybridization of probe to serial dilutions of sample canquickly generate quantitative data about the expression level of atarget.Total RNA or poly(A) RNA can be used in this assay.Sincethe RNA is not size-fractionated on an agarose gel,a potentialdrawback to using total RNA in dot/slot blots is that signalof interest cannot be distinguished from cross-hybridization torRNA.Switching to poly(A) RNA as the target source might alle-viate this problem.However,it is crucial that relevant positive andnegative controls are run with every dot/slot blot,whether thesource of target nucleic acid is total RNA or poly(A) RNA.Hybridization to Gene Arrays and Reverse Dot BlotsGene arrays consist of cDNA clones (sometimes in the form ofPCR products,sometimes as oligonucleotides) or the correspond-ing oligos spotted at high density on a nylon membrane,glassslide,or other solid support.By hybridizing labeled cDNA probesreverse transcribed from mRNA,the expression of potentiallyhundreds of genes can be simultaneously analyzed.This procedurerequires that the labeled cDNA be present in excess of the targetspotted on the array.This is difficult to achieve unless poly(A)RNA is used as template in the labeling reaction.200Martin et al.Ribonuclease Protection AssaysEither total RNA or poly(A) RNA can be used as starting mate-rial in nuclease protection assays.However,total RNA usually af-fords enough sensitivity to detect even rare messages,when themaximum amount (as much as 80 to 100m g) is used in the assay.If the gene is expressed at extremely low levels,requiring week-long exposure times for detection,a switch to poly(A) RNA mightprove beneficial and may justify the added cost.Although verysensitive,nuclease protection assays do require laborious gelpurification of the full-length probe to avoid getting confusingresults.RT-PCRRT-PCR is the most sensitive method for detecting and quanti-tating mRNA.Theoretically,even very low-abundance messagescan be detected with this technique.Total RNA is routinely usedas the template for RT-PCR,(Frohman,1990) but some cloningsituations and rare messages require the use of poly(A) RNA(Amersham Pharmacia Biotech,1995).Note that one school of thought concerning RT-PCR considersit advisable to treat the sample RNA with DNase I,since no purifi-cation method produces RNA completely free of contaminatinggenomic DNA.RT-PCR is sensitive enough that even very smallamounts of genomic DNA contamination can cause false posi-tives.A second school of thought preaches avoidance of DNase I,as discussed in Chapter 11,“PCR.”cDNA Library SynthesisAs mentioned earlier,high-quality mRNA that is essentiallyfree of ribosomal RNA is required for constructing cDNA libra-ries.Unacceptably high backgrounds of ribosomal RNA cloneswould be produced if total RNA were reverse transcribed to pre-pare cDNA.Is It Possible to Predict the T otal RNA Yield from a CertainMass of Tissue or Number of Cells?The data provided in this section are based on experimentationat Ambion,ing a variety of samples and different purifica-tion products.The reader is cautioned that these are theoreticalestimates,and yields can vary widely based on the type of tissueor cells used for the isolation,especially when dealing withdifficult samples,as discussed later.The importance of rapid andcomplete tissue disruption,and homogenizing at subfreezing tem-RNA Purification201peratures cannot be overemphasized.In addition,yields from verysmall amounts of starting material are subject to the law of dimin-ishing returns.Thus,if the option is available,always choose morestarting material rather than less.Samples can be pooled together,if possible,to maximize yields.For example,5mg of tissue or 2.5 ¥106cells yields about 10m gof total RNA,comprised of 8m g rRNA,0.3m g mRNA,1.7m gtRNA,and other RNA.In comparison,1g of tissue or 5 ¥108cellsyields about 2mg of total RNA,comprised of 1.6mg rRNA +60m g mRNA +333m g tRNA and other RNA.Is There Protein in Y our RNA Preparation,and If So,Should Y ou Be Concerned?Pure RNA has an A260:A280absorbance ratio of 2.0.However,a low A260:A280the results.Researchers at Ambion,Inc.have used total RNA withA260:280ratios ranging from 1.4 to 1.8 with good results in RNaseprotection assays,Northern analysis,in vitro translation experi-ments,and RT-PCR assays.If protein contamination is suspectedto be causing problems,additional organic extractions with anequal volume of phenol/chloroform/isoamyl alcohol (25:24:1mixture) may remove the contaminant.Residual phenol can alsolower the A260:A280ratio,and inhibit downstream enzymatic reac-tions.Chloroform/isoamyl alcohol (24:1) extraction will removeresidual phenol.Chapter 4,“How to Properly Use And MaintainLaboratory Equipment,”discusses other artifacts that raise andlower the A260:280ratio.Some tissues will consistently produce RNAwith a lower A260:280ratio than others;the A260:280ratio for RNA iso-lated from liver and kidney tissue,for example,is rarely above 1.7.Is Y our RNA Physically Intact? Does It Matter?The integrity of your RNA is best determined by electrophore-sis on a formaldehyde agarose gel under denaturing conditions.The samples can be visualized by adding 10m g/ml of EthidiumBromide (EtBr) (final concentration) to the sample before load-ing on the pare your prep’s 28S rRNA band (located atapproximately 5Kb in most mammalian cells) to the 18S rRNAband (located at approximately 2.0Kb in most mammalian cells).In high-quality RNA the 28S band should be approximately twicethe intensity of the 18S band (Figure 8.1).The most sensitive test of RNA integrity is Northern analysisusing a high molecular weight probe expressed at low levels in thetissues being analyzed.However,this method of quality control isvery time-consuming and is not necessary in most cases.202Martin et al.Northern analysis is not tolerant of partially degraded RNA.If samples are even slightly degraded,the quality of the data is severely compromised.For example,even a single cleavage in 20% of the target molecules will decrease the signal on a North-ern blot by 20%.Nuclease protection assays and RT-PCR analy-ses will tolerate partially degraded RNA without compromising the quantitative nature of the results.Which T otal RNA Isolation T echnique Is Most Appropriate for Y our Research?There are three basic methods of isolating total RNA from cells and tissue samples.Most rely on a chaotropic agent such as guani-dium or a detergent to break open the cells and simultaneouslyRNA Purification 2039.5 –7.5 –4.4 –2.4 –1.35 –.24–Figure 8.1Assessing qual-ity of RNA preparation via agarose gel electrophoresis (A ) This gel shows total RNA samples (5m g/lane)ranging from high-quality,intact RNA (lane 2) to almost totally degraded RNA (lane 7).Note that as the RNA is degraded,the 28S and 18S ribosomal bands become less distinct,the intensity of the ribosomal bands relative to the background staining in the lane is reduced,and there is a significant shift in their apparent size as compared to the size standards.(B ) This is an autorad of the same gel after hybridization with a biotinylated GAPDH RNA probe followed by noniso-topic detection.The exposureis 10 minutes the day afterthe chemiluminescent sub-strate was applied.Note thatthe signal in lane 2,fromintact RNA,is well local-ized with minimal smearing,whereas the signals fromdegraded RNA samples showprogressively more smear-ing below the bands,or whenthe RNA is extremely de-graded,no bands at all (lane7).Reprinted by permissionof Ambion,Inc.A Binactivate RNases.The lysate is then processed in one of severalways to purify the RNA away from protein,genomic DNA,andother cellular components.A brief description of each methodalong with the time and effort involved,the quality of RNAobtained,and the scalability of the procedures follow.Guanidium-Cesium Chloride MethodSlow,laborious procedure,but RNA is squeaky clean;unsuitablefor large sample numbers;little if any genomic DNA remains.This method employs guanidium isothiocyanate to lyse cells andsimultaneously inactivate ribonucleases rapidly.The cellular RNAis purified from the lysate via ultracentrifugation through a cesiumchloride or cesium trifluoroacetate cushion.Since RNA is moredense than DNA and most proteins,it pellets at the bottom of thetube after 12 to 24 hours of centrifugation at ≥32,000rpm.This classic method yields the highest-quality RNA of any avail-able technique.Small RNAs (e.g.,5S RNA and tRNAs) cannot beprepared by this method as they will not be recovered (Mehra,1996).The original procedures were time-consuming,laborious,and required overnight centrifugation.The number and size ofsamples that could be processed simultaneously were limitedby the number of spaces in the mercial productshave been developed to replace this lengthy centrifugation(Paladichuk,1999) with easier,less time-consuming methods.However,if the goal were to isolate very high-quality RNA froma limited number of samples,this would be the method of choice(Glisin,Crkuenjakov and Byus,1974).Single- and Multiple Step Guanidium Acid-Phenol MethodFaster,fewer steps,prone to genomic DNA contamination,some-what cumbersome if large sample numbers are to be processed.The guanidium-acid phenol procedure has largely replaced thecesium cushion method because RNA can be isolated from a largenumber of samples in two to four hours (although somewhat cum-bersome) without resorting to ultracentrifugation.RNA mole-cules of all sizes are purified,and the technique can be easilyscaled up or down to process different sample sizes.The single-step method (Chomczynski and Sacchi,1987) is based on thepropensity of RNA molecules to remain dissolved in the aqueousphase in a solution containing 4M guanidium thiocyanate,pH 4.0,in the presence of a phenol/chloroform organic phase.At thislow pH,DNA molecules remain in the organic phase,whereasproteins and other cellular macromolecules are retained at theinterphase.204Martin et al.It is not difficult to find researchers who swear by GITC—phenol procedures because good-quality RNA,free from geno-mic DNA contamination is quickly produced.However,a se-cond camp of researchers avoid these same procedures becausethey often contain contaminating genomic DNA (Lewis,1997;S.Herzer,personal communication).There is no single expla-nation for these polarized opinions,but the following should beconsidered.Problems can occur in the procedure during the phenol/chloro-form extraction step.The mixture must be spun with sufficientforce to ensure adequate separation of the organic and aqueouslayers;this will depend on the rotor as can be seen in Table 8.1.For best results the centrifuge brake should not be applied,norshould it be applied to gentler settings.The interface between the aqueous and organic layers isanother potential source of genomic contamination.To get high-purity RNA,avoid the white interface (can also appear creamcolored or brownish) between the two layers;leave some of theaqueous layer with the organic layer.If RNA yield is crucial,you’llprobably want as much of the aqueous layer as possible,againleaving the white interface.In either case you can repeat theorganic extraction until no white interface is seen.Residual salt from the precipitation step,appearing as a hugewhite pellet,can interfere with subsequent reactions.Excessivesalt should be suspected when a very large white pellet is obtainedfrom an RNA precipitation.Excess salt can be removed bywashing the RNA pellet with 70% EtOH (ACS grade).To theRNA pellet,add about 0.3ml of room temperature (or -20°C)70% ethanol per 1.5ml tube or approximately 2 to 3ml per 15 to40ml tube.Vortex the tube for 30 seconds to several minutes todislodge the pellet and wash it thoroughly.Recover the RNAwith a low speed spin,(approximately 3000 ¥g;approximately7500rpm in a microcentrifuge,or approximately 5500rpm in aSS34 rotor),for 5 to 10 minutes at room temperature or at 4°C.T able 8.1Spin Requirements for PhenolChloroform ExtractionsVolumeTube Speed Spin Time1.5ml10,000 ¥g 5 minutes2.0ml12,000 ¥g 5 minutes15ml12,000¥g15 minutes50ml12,000¥g15 minutesRNA Purification205Remove the ethanol carefully,as the pellets may not adheretightly to the tubes.The tubes should then be respun briefly andthe residual ethanol removed by aspiration with a drawn outPasteur pipet.Repeat this wash if the pellet seems unusually large.Non-Phenol-Based MethodsVery fast,clean RNA,can process large sample numbers,possi-ble genomic contamination.One major drawback to using the guanidium acid-phenolmethod is the handling and disposal of phenol,a very hazardouschemical.As a result phenol-free methods,based on the ability ofglass fiber filters to bind nucleic acids in the presence of chaotro-pic salts like guanidium,have gained favor.As with the othermethods,the cells are first lysed in a guanidium-based buffer.Thelysate is then diluted with an organic solvent such as ethanol orisopropanol and applied to a glass fiber filter or resin.DNA andproteins are washed off,and the RNA is eluted at the end in anaqueous buffer.This technique yields total RNA of the same quality asthe phenol-based methods.DNA contamination can be higherwith this method than with phenol-based methods (Ambion,Inc.,unpublished observations).Since these are column-based proto-cols requiring no organic extractions,processing large samplenumbers is fast and easy.This is also among the quickest methodsfor RNA isolation,usually completed in less than one hour.The primary problem associated with this procedure is cloggingof the glass fiber filter by thick lysates.This can be prevented byusing a larger volume of lysis buffer initially.A second approachis to minimize the viscosity of the lysate by sonication (on ice,avoid power settings that generate frothing) or by drawing thelysate through an 18 gauge needle approximately 5 to 10 times.This step is more likely to be required for cells grown in culturethan for lysates made from solid tissue.If you are working with atissue that is known to be problematic (i.e.,high in saccharidesor fatty acids),an initial clarifying spin or extraction with an equalvolume of chloroform can prevent filter-clogging problems.A rea-sonable starting condition for the clarifying spin is 8 minutes at7650 ¥g.If a large centrifuge is not available,the lysate can bedivided into microcentrifuge tubes and centrifuged at maximumspeed for 5 to 10 minutes.Avoid initial clarifying spins on tissuesrich in glycogen such as liver,or plants containing high molecular-weight carbohydrates.If you generate a clogged filter,remove theremainder of the lysate using a pipettor,place it on top of a freshfilter,and continue with the isolation protocol using both filters. 206Martin et al.What Protocol Modifications Should Be Used for RNAIsolation from Difficult Tissues?RNA isolation from some tissues requires protocol modifica-tions to eliminate specific contaminants,or tissue treatments priorto the RNA isolation protocol.Fibrous tissues and tissue rich inprotein,DNA and RNases,present unique challenges for totalRNA isolation.In this section we address problems presented bydifficult tissues and offer troubleshooting techniques to help over-come these problems.A separate section will discuss the homog-enization needs of various sample types in greater detail.Web sites that discuss similar issues are http://www.nwfsc./protocols/methods/RNAMethodsMenu.html and http://.au/sigtrans.html.Fibrous TissueGood yields and quality of total RNA from fibrous tissue suchas heart and muscle are dependent on the complete disruptionof the starting material when preparing homogenates.Due to lowcell density and the polynucleate nature of muscle tissue,yieldsare typically low;hence it is critical to make the most of the tissueat hand.Pulverizing the frozen tissue into a powder while keepingthe tissue completely frozen (use a chilled mortar and pestle) isthe key to isolating intact total RNA.It is critical that there be nodiscernible lumps of tissue remaining after homogenization.Lipid and Polysaccharide–Rich TissuePlant and brain tissues are typically rich in lipids,which makesit difficult to get clean separation of the RNA and the rest of thecellular debris.When using phenol-based methods to isolate totalRNA,white flocculent material present throughout the aqueousphase is a classic indicator of this problem.This flocculate will notaccumulate at the interface even after extended centrifuga-tion.Chloroform:isoamyl alcohol (24:1) extraction of the lysateis probably the best way to partition the lipids away from theRNA.To minimize loss,back-extract the organic phase,andthen clean up the recovered aqueous RNA by extraction withphenol:chloroform:isoamyl alcohol (25:24:1).When isolating total RNA from plant tissue using a non-phenol-based method,polyvinylpyrrolidone-40 (PVP-40) can be added tothe lysate to absorb polysaccharide and polyphenolic contami-nants.When the lysate is centrifuged to remove cell debris,thesecontaminants will be pelleted with the PVP (Fang,Hammar,andGrumet,1992;see also the chapter by Wilkins and Smart,“Isola-tion of RNA from Plant Tissue,”in Krieg,1996,for a list of refer-RNA Purification207ences and protocols for removing these contaminants from plantRNA preps).Centrifugation on cesium trifluoroacetate hasalso been shown to separate carbohydrate complexes from RNA(Zarlenga and Gamble,1987).Nucleic Acid and Nuclease-Rich TissueSpleen and thymus are high in both nucleic acids and ribonu-Good homogenization is the key to isolating high-qualityTissue samples should be completely pul-verized on dry ice,under liquid nitrogen,to facilitate rapid homog-enization in the lysis solution,which inhibits nucleases.Cancerouscells and cell lines also contain high amounts of DNA and RNA,which makes them unusually viscous,causing poor separation ofthe organic and aqueous phases and potentially clogging RNA-binding filters.Increasing the ratio of sample mass:volume of lysisbuffer can help alleviate this problem in filter-based isolations.Multiple acid–phenol extractions can be done to ensure that mostof the DNA is partitioned into the organic phase during acid-phenol-based isolation procedures.Two to three extractions areusually sufficient;one can easily tell if a lysate is viscous byattempting to pipet the solution and observing whether it sticksto the pipette tip.The DNA in the lysate can alternatively besheared,either by vigorous and repeated aspiration through asmall gauge needle (18 gauge) or by sonication (10 second soni-cation at 1/3 maximum power on ice,or until the viscosity isreduced).Hard TissueHard tissue,such as bone and tree bark,cannot be effectivelydisrupted using a Polytron TM or any other commonly availablehomogenizer.In this case heavy-duty tissue grinders that pulverizethe material using mechanical force are needed.Metuchen,NJ,makes tissue-grinding mills that chill samples toliquid nitrogen temperatures and pulverize them by shuttling asteel piston back and forth inside a stationary grinding vial.Bacteria and YeastBacterial and yeast cells can prove quite refractory to isolatinggood-quality RNA due to the difficulty of lysing them.Anotherproblem with bacteria is the short half-life of most bacterial mes-sages.Lysis can be facilitated by resuspending cell pellets in TEand treating with lysozyme,subsequent to which the actual 208Martin et al.。