二元一次方程组解应用题
二元一次方程组应用题经典题及答案

实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩类型四:列二元一次方程组解决——银行储蓄问题【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25%* 3 + Y * 2.7%* 3 = 303.75解得:X = 1500,Y = 2500。
二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。
已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。
为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。
因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。
根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。
二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。
求甲、乙两人的速度。
解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。
根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。
因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。
将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。
10道二元一次方程组应用题及答案(精品文档)

1:某校为同学们安排宿舍。
若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住4人,且两间宿舍没人住。
求该年级同学人数和宿舍间数。
(解:设年级人数是x人,宿舍是y人)解:设年级人数是x人,宿舍是y人)5y-x=-46(y-2)-x=2解这个方程组得:y=18x=942:用A、B两种原料配制两种油漆,已知甲种油漆含A、B两种原料之比为5:4,每千克50元,乙种油漆含A、B两种原料之比为3:2,每千克48.6元,求A、B两种原料每千克的价格分别是多少元。
(解:设A种原料每千克x元,B种原料每千克y元)5÷9×x+4÷9×y=503÷5×x+2÷5×y=48.6化简方程组得:5x+4y=4503x+2y=243解这个方程组得:x=36y=67.53:甲、乙两地相距24千米,公共汽车和直达快车在8:45从甲、乙两地相向开出,这两辆车都在8:52到达中途A处。
有一次,直达快车晚开8分钟,两车则在8:58相遇途中B处,求这两车的速度。
(解:设直达快车每小时x千米,公共汽车每小时y千米)7÷60×x+7÷60×y=2413÷60×y+5÷60×x=244.要用含药30%和75%的两种防腐药水,配制含药50%的防腐药水18千克,两种药水各需取多少千克?(解:设含药30%的药水x千克,含药75%的药水y千克)x+y=1830%有效成分=x×30%75%有效成分=y×75%50%有效×成分=18×50%所以30%x+7×5%=18×50%0.3x+0.75y=9x+y=180.3x+0.3y=5.4所以0.75y-0.3y=9-5.40.45x=3.6x=8y=10所以30%取8千克,75%取10千克5.一列快车长70千米,慢车长80千米,若两车同时相向而行,快车从追上慢车到完全离开慢车为20秒,若两车相向而行,则两车从相遇到离开时间为4秒,求两车每小时各行多少千米。
二元一次方程组应用题(50题)

二元一次方程组应用题(50题)1. 婆婆家的流水问题婆婆家有一个流水池,从自来水管道接入流水池中,再从流水池中通过自来水管道供应给家中的各个水龙头。
假设自来水管道的水流速度为x,流水池的容积为y,通过自来水管道流出的水量为z。
已知当自来水管道的水流速度为8升/分钟时,流水池会在20分钟内完全注满。
求出流水池的容积和通过自来水管道流出的水量之间的关系。
解题思路:设流水池的容积为y升,通过自来水管道流出的水量为z升。
根据题意得到以下方程组: 1. 自来水管道的水流速度与流水池的注水时间关系:8升/分钟 = y/20分钟 2. 流水池的容积与自来水管道流出的水量关系:z = y根据方程组可以求得:y = 160升,z = 160升。
2. 兰兰购买书籍兰兰去书店购买了几本书,每本书的价格不等。
已知兰兰购买的这几本书的总价格为x元,当其中两本书的价格分别减少5元和增加7元后,他们的价格相等。
求出每本书的原始价格。
解题思路:设第一本书的价格为y元,第二本书的价格为z元。
根据题意得到以下方程组: 1. 兰兰购买的这几本书的总价格:x = y + z 2. 当其中两本书的价格分别减少5元和增加7元后,他们的价格相等:y - 5 = z + 7将第二个方程式代入第一个方程式中,求解可以得到:y = (x + 12) / 2,z = (x - 12) / 2。
3. 成绩排名班级里有30个学生,数学和英语两门课的成绩分别用x和y表示。
已知数学成绩平均分为80分,英语成绩平均分为85分。
学生成绩排名中,有10个学生的数学成绩高于平均分,有15个学生的英语成绩高于平均分。
求出数学和英语成绩中,既高于平均分,又相等的学生人数。
解题思路:设数学成绩高于平均分且相等的学生人数为y,英语成绩高于平均分且相等的学生人数为z。
根据题意得到以下方程组: 1. 数学成绩平均分为80分:(80 * 30 + y) / 30 =80 2. 英语成绩平均分为85分:(85 * 30 + z) / 30 = 85 3. 学生成绩排名中,有10个学生的数学成绩高于平均分:y = 10 4.学生成绩排名中,有15个学生的英语成绩高于平均分:z =15求解方程组可以得到:y = 10,z = 15,既高于平均分,又相等的学生人数为10。
二元一次方程组应用题经典题及答案

实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36 千米,相向而行,如果甲比乙先走 2 小时,那么他们在乙出发 2.5 小时后相遇;如果乙比甲先走 2 小时,那么他们在甲出发 3 小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y 千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6 ,y=3.6 答:甲的速度是 6 千米/每小时,乙的速度是 3.6 千米/每小时。
【变式2】两地相距280千米,一艘船在其间航行,顺流用14 小时,逆流用20 小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x 千米/小时,则水流速度y 千米/小时,有:20(x-y)=28014 (x+y )=280 解得:x=17 ,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度 3 千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作 6 周完成需工钱 5.2 万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱 4.8 万元. 若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:类型三:列二元一次方程组解决商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10 亩地种植甲、乙两种蔬菜,共获利18000 元,其中甲种蔬菜每亩获利2000 元,乙种蔬菜每亩获利1500 元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y 亩,依题意得:① x+y=10②2000x+1500y=18000解得:x=6 ,y=4 答:李大叔去年甲、乙两种蔬菜各种植了6亩、4 亩变式2】某商场用36 万元购进A、B两种商品,销售完后共获利 6 万元,其进价和售价如下表:(注:获利= 售价—进价)求该商场购进A、 B 两种商品各多少件;解:设购进 A 的数量为x 件、购进 B 的数量为y 件,依据题意列方程组1200x+1000y=360000(1380-1200)x+(1200-1000)y=60000解得x=200 ,y=120 答:略类型四:列二元一次方程组解决银行储蓄问题【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000 元钱. 第一种,一年期整存整取,共反复存了 3 次,每次存款数都相同,这种存款银行利率为年息 2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%. 三年后同时取出共得利息303.75 元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x 为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25 %* 3 + Y * 2.7 %* 3 = 303.75解得:X = 1500 ,Y = 2500 。
二元一次方程组应用题类型题

22名二级工和三级工人准备完 成1400个零件,其中二级工每人 定额完成200个,三级工人每人 定额完成50个,问二级工和三 级工各多少人
现在年龄
甲X
乙y
将来年龄
X+ x-y
61
Y- x-y
4
甲比乙大的岁数
x-y
解:设甲、乙现在的年龄分 从问题情境可以知知道甲
别是x、y岁根据题意,得 的年龄大于乙的年龄
y-(x- y)=4
x=42
X+(x-y)=61 解得 y=23
答:甲、乙现在的年龄分别是42、23岁
5、小明骑摩托车在公路上匀速行驶,12:00时看 到里程碑上的数是一个两位数,它的数字之和是7; 13:00时看里程碑上的两位数与12:00时看到的个 位数和十位数颠倒了;14:00时看到里程碑上的 数比12:00时看到的两位数中间多了个零,小明在 12:00时看到里程碑上的数字是多少
形或六边形要求每两个相邻的图形只有一条公共边,已 知摆放的正方形比六边形多4个,并且一共用了110个小 木棍,问连续摆放了正方形和六边形各多少个
…
…
图形 正方形 六边形
关系
连续摆放的个数 (单位:个) x
y
正反方形比六边形多 4 个
使用小木棒的根数 (单位: 根)
4+3(x-1)=3x+1
6+5(y-1)=5y+1
相等关系
30只母牛和15只小牛,1天约需用饲料675kg
42只母牛和20只小牛,1天约需用饲料940kg
列
30x 15y 675
42x 20y 940
解得: x 20
y
5
答:平均每只母牛1天约需饲料20kg,每只小牛1天约需饲料5kg,
列二元一次方程组解应用题专项练习50题(有答案)ok

列二元一次方程组解应用题专项练习50题(有答案)ok1、已知某铁路桥长800m,火车从开始上桥到完全过桥共用45s,整列火车完全在桥上的时间是35s,求火车的速度和长度。
解:设火车的速度为v,长度为l,则有:l + 800 = vt (火车在桥上的时间)l = v(t-10) (火车在桥上外的时间)联立得:v = 80m/s,l = 2400m。
2、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?解:设用x张铁皮制盒身,y张铁皮制盒底,则有:8x = 22y (每张铁皮做8个盒身或做22个盒底)x = 2y/7190 = 9x + 11y (总共用了190张铁皮)代入得:x = 60,y = 35.3、用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,一个桶身一个桶底正好配套做一个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?解:设用x张铁皮做桶身,y张铁皮做桶底,则有:x + y/8 = 63 (每张铁皮能做1个桶身或8个桶底)代入得:x = 35,y = 224.4、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:货车种类 | 货车辆数(辆) | 累计运货吨数(吨) |甲。
| 2.| 15.5.|乙。
| 5.| 35.|现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,则货主应付运费多少元?解:设甲、乙两种货车每辆运输的吨数分别为x、y,则有:2x + 5y = 50 (过去两次租用的情况)3x + 5y = 70 (现在租用的情况)联立得:x = 10,y = 8.应付运费为:(15.5+35) * 30 = 1650元。
5、某工厂第一季度生产甲、乙两种机器共480台,计划第二季度生产这两种机器共554台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?解:设第一季度甲、乙两种机器分别生产x、y台,则有:x + y = 4801.1x + 1.2y = 554 (第二季度计划生产的情况)联立得:x = 280,y = 200.6、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?解:设种茄子的亩数为x,种西红柿的亩数为y,则有:x + y = 252600x + 2600y = - 1700x - 1800y (总花费为元)联立得:x = 10,y = 15.总获纯利为:2600 * 10 + 2600 * 15 = 元。
列二元一次方程组解应用题练习题及答案

列二元一次方程组解应用题专项训练1、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。
在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?2、初三(2)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一节”期间的销售额.求A、B超市两年各自的销售额。
3、用白铁皮做罐头盒,每张铁皮可制成盒身25个,或制盒底40个,一个盒身和两个盒底配成一套罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?4、甲,乙两人分别从A、B两地同时相向出发,在甲超过中点50千米处甲、乙两人第一次相遇,甲、乙到达B、A两地后立即返身往回走,结果甲、乙两人在距A地100米处第二次相遇,求A、B两地的距离甲、乙两人从A地出发到B地,甲步行、乙骑车。
若甲走6千米,则在乙出发45分钟后两人同时到达B地;若甲先走小时,则乙出发后半小时追上甲,求A、B两地的距离。
5、已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从一开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度?6、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下甲同学说:“二环路车流量为每小时10000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”;请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?7、已知关于、的二元一次方程组的解满足二元一次方程,求的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组解应用题
二元一次方程组解决实际问题的基本步骤
1、审
2、设
3、列
4、解
5、答 (
6、检验)
一、行程问题 基本关系量:速度×时间=路程
相向而行(相遇): 甲走的路程+乙走的路程=两者距离
一前一后(追击): 前者走的路程+两者距离=后者走的路程
环行跑道⎩⎨⎧=-=+周长
后者走的路程:前者走的路程同向出发(相遇一次)周长乙走的路程:甲走的路程反向出发(相遇一次)
顺水速度=静水速度—水流速度 逆水速度=静水速度—水流速度
1、甲、乙两人分别从相距30km 的A 、B 两地同时相向而行。
经历了3小时后,两人没有相遇,只相距3km ,再经过两小时,甲到B 地所剩的路程是乙到A 地所剩路程的2倍,求甲乙两人的速度。
2、甲、乙两人同时绕400米的环形跑道行走,如果他们同时从同一起点背向而行,2.5分钟后可以相遇;如果他们同时从同一起点同向而行,12.5分钟能追上乙,求甲乙每分钟各走多少米?
3、从A 城到B 城,水路比陆路近40千米,上午11时,一只轮船以每小时24km 的速度从A 城向B 城行驶,下午2时,一辆汽车以每小时40千米的速度从A 城向B 城行驶,轮船和汽车同时到达B 城,求A 城到B 城的水路和陆路各多长?
4、汽车往返于A 、B 两地,途径高地C ,(A 至C 是上坡,C 至B 是下坡),汽车上坡时速度为25km/h ,下坡时的速度为50km/h ,汽车从A 到B 需132
h ,从B 至A 需4h ,求A 、C 间及B 、C 间的距离。
5一只部队行军两天,共进行78km ,这支部队第一天每小时比第二天每小时平均多行进
1.5km 。
如果第一天行进4h ,第二天行进5h ,那么这两天的平均速度各是多少。
6、A、B两人分别从相距20km的甲、乙两地同时相向而行,两小时后两人在途中相遇,相遇后A就返回甲地,B仍向甲地前进。
A回到甲地时,B离甲地还有2km,求A、B两人的速度。
7、甲乙两人从相距36千米的两地相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇。
求甲乙两人的速度。
8、在规定时间内,汽车从甲地行驶去乙地,如果一小时行驶45千米就延误1
2
小时到达;
如果没一小时行驶50千米,可提前1
2
小时到达。
问甲乙两地之间的路程及原规定行驶的
时间各是多少?
9、一条船顺流航行,每小时行20千米,逆流航行,每小时行16千米.求轮船在静水中的速度和水流速度?
二、工程问题:工作量=工作效率×工作时间
一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题
1、某工程队承包了两项工程,第一项工程甲组做了10天,乙组做了8天,共获报酬12800元,第二项工程甲组做了8天,乙组做了12天,共获报酬13600元,甲乙两组做工一天平均各应获得报酬多少元?
2、甲乙两组共生产某种产品,若甲组先生产1天,然后两组一起生产5天,则两组的产量一样多,若甲组先生产300个产品,然后两组同时生产4天,则乙组比甲组多生产100个产品,两组一天各生产多少个产品?
3.要修一段420千米长的公路,甲工程队先干2天乙工程队加入,两工程队再合干2天完成任务,如果乙队先干2两天,甲乙合干3天完成任务.问甲乙两队每天各能修路多少千米?
4.某队运输一批货物,计划20天完成任务,实际每天多运送5吨.结果不但提前2天完成任务而且还多运了10吨.问这批货物有多少?原计划每天运多少吨?
三、数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示
1、一个两位数,它的十位上的数字与个位上的数字的和是7,若这个两位数加上45,则恰好成为个位上的数字与十位上的数字对调后组成的两位数,求这个两位数。
2、一个两位数,十位数字比个位数字大3,变换这个两位数的两个数字的位置,所得的两
位数是原数的4
7。
求原来的两位数。
3、甲乙两个两位数,若把甲数放在乙数的左边,则组成的四位数是乙数的201倍,若把乙数放在甲数的左边,则组成的四位数比上面的四位数小1188,球这两个数。
4、一个四位数,千位上的数字与个位上的数字相同,百位上的数字与十位上的数字相同,它的各个数位上的数字之和为22,它的前两个数字组成的两位数比后两个数字组成的两位数小45,求此四位数。
5、一个三位数在400到500之间,各数位上的数位之和是9,若将各数位的数字顺序倒过
来,得到的新数是原数的13
24
,求新数。
6、李师傅开车从甲地去乙地送货,先看到路边的里程碑上的标识是一个两位数“ km”匀速前进了一段时间后,看见里程碑上的标识是“ km”,又前进了相同的时间后,看见里程碑上的标识是“0
km”,则第一个里程碑上的数是多少?
四、产品配套问题
1.张阿姨要把若干个苹果分给小朋友们吃,若每人8个,则多1个;若每人9个,•则缺2个,苹果有_______个,小朋友有_______个.
2.两台拖拉机共运水泥58t,其中一台比另一台多运8t,•则这两
台拖拉机分别运送了水泥_______t和_________t.
3.如图所示,周长为34的长方形ABCD被分成7个大小完全一样的
小长方形,•则每个小长方形的面积为( ).
A .30
B .20
C .10
D .14
4.一个长方形周长为30,若它的长减少2,宽增加3,就变成了一个正方形,设该长方形长为x ,宽为y ,则可列方程组为( ).
2()30303015....23232323x y x y x y x y A B C D x y x y x y x y +=+=-=+=⎧⎧⎧⎧⎨⎨⎨⎨-=+-=++=-+=-⎩⎩⎩⎩
5.现用380张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,•一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?
6、某车间有24名工人生产螺栓与螺母,每人每天平均能生产螺栓120个或螺母80个.一个螺栓配两个螺母,车间调度室分配多少工人生产螺栓螺母恰好使生产的螺栓和螺母配套?
7、某木工厂有28名工人,2个工人一天加工3张桌子,3个工人一天可加工10只椅子.现在如何安排劳动力使生产的一张桌子与4只椅子配套?
8、一个由一个凳面和3条腿组成,如果1立方米木料可制作300条凳子腿或做凳面50个.现在有9立方米木料,为充分利用材料,请你设计一下用多少木料做凳面用多少木料做凳腿?
五、盈亏问题
1.某商场为迎接店庆进行促销,羊绒衫每件按标价的八折出售,每件将赚80元,•后因库存太多,每件羊绒衫按标价的六折出售,每件将亏损60元,则该商场每件羊绒衫的进价为_____,标价为_______.
2.某种彩电原价是2018元,若价格上涨x%,那么彩电的新价格是______元;若价格下降y%,那么彩电的新价格是_______元.
3.某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由m%提高到(m+6)%,则m 的值为( ).
A .10
B .12
C .14
D .17
4.在我国股市交易中,每买一次要交千分之七点五的各种费用,某投资者以每股100元的价格买入上海股票1 000股,当该股票涨到120元时全部卖出,•该投资者的实际赢利为().
A.2 0000元 B.1 9250元 C.18350元 D.19100元
5.某商场欲购进甲、乙两种商品共50件,甲种商品每件进价为35•元,•利润率是20%,乙种商品每件进价为20元,利润率是15%,共获利278元,则甲、•乙两种商品各购进多少件?
6、.五.一来临,某商店把两种山地自行车上市推销,如果原价买这两种自行车共需880元,而推销时第一种山地自行车打八折,第二种打七五折,结果两种自行车共少买200元,则原来每种自行车售价分别为多少元?
7、某商场换季,决定把时装按八折,运动装按7.5折出售,这天商场收现金0.95万元,经核算比打折之前少收了0.25万元,问原来时装和运动装各收多少元?
六、倍分问题较大量=较小量+多余量,总量=倍数×倍量
1、一块矩形草坪的长比宽的2倍多10米,它的周长是132米,则宽和长分别是多少?
2、一批书分给组学生,每人6本则少6本,每人5本则多5本,该组共有多少名学生,这批书共有多少本?
3、某班学生有x人,准备分成y个组开展活动,若每个组7人,则余3人;若每个组8人,则差5人.求全班的人数和所分组数。
4、三年级有学生246人,其中男生比女生人数的2倍少3人,求男、女生各有多少人?
5、甲乙两条绳共长17米,如果甲绳子减去五分之一,乙绳增加1米,两条绳子相等,求甲、乙两条绳各长多少米?
6、已知长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,求黄河、长江各长多少千米?
7、甲乙两个商店各进洗衣机若干台,若甲店拨给乙店12台,则两店的洗衣机一样多,若乙店拨给甲店12台,则甲店的洗衣机比乙店洗衣机数的5倍还多6台,求甲、乙两店各进洗衣机多少台?
8、小红和小华各自购买新书若干本,已知小红买的比小华的2倍多6本,如果小红给小华9本,则小华是小红的2倍,小红和小华各买新书多少本?
七、溶液问题
在配制的前后过程中,溶液中溶剂、溶质和溶液的总量都保持不变,只是溶液的浓度发生了变化.解决问题时可从这些不变量入手去建立相等关系和列方程.
1、要用含药30%和75%的两种防腐药水配制含药50%的防腐药水18千克,两种药水各需取多少千克?
2、要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?
3、有两种药水,一种浓度为60%,另一种浓度为90%,现要配制浓度为70%的药水300克,问每种各需多少克。