第三章高分子材料的物理化学性质
高分子物理课程电子教案

高分子物理课程电子教案第一章:高分子物理概述1.1 教学目标了解高分子的基本概念掌握高分子材料的分类和特点理解高分子物理的研究内容和方法1.2 教学内容高分子的定义和基本概念高分子材料的分类和特点高分子物理的研究内容和方法高分子材料的结构和性质关系1.3 教学方法采用多媒体课件进行讲解结合实例和案例分析高分子材料的分类和特点通过实验演示高分子物理的研究方法和原理1.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第二章:高分子链的结构与运动2.1 教学目标了解高分子链的结构特点掌握高分子链的运动方式和动力学行为理解高分子链的构象和统计分布2.2 教学内容高分子链的结构特点和构象高分子链的运动方式和动力学行为高分子链的统计分布和相变现象2.3 教学方法采用多媒体课件进行讲解结合数学模型和物理图像分析高分子链的运动行为通过实验观察高分子链的构象变化和相变现象2.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第三章:高分子材料的力学性能3.1 教学目标了解高分子材料的力学性能特点掌握高分子材料的应力-应变关系和断裂行为理解高分子材料的粘弹性行为和疲劳性能3.2 教学内容高分子材料的力学性能特点和测试方法高分子材料的应力-应变关系和断裂行为高分子材料的粘弹性行为和疲劳性能3.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的力学性能特点通过实验操作和观察理解高分子材料的粘弹性行为和疲劳性能3.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第四章:高分子材料的热性能4.1 教学目标了解高分子材料的热性能特点掌握高分子材料的熔融行为和热稳定性理解高分子材料的热膨胀和导热性能4.2 教学内容高分子材料的热性能特点和测试方法高分子材料的熔融行为和热稳定性高分子材料的热膨胀和导热性能4.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的热性能特点通过实验操作和观察理解高分子材料的热膨胀和导热性能课堂提问和讨论课后作业和练习题实验报告和分析第五章:高分子材料的电性能5.1 教学目标了解高分子材料的电性能特点掌握高分子材料的导电性和绝缘性理解高分子材料的电荷注入和电荷传输5.2 教学内容高分子材料的电性能特点和测试方法高分子材料的导电性和绝缘性高分子材料的电荷注入和电荷传输5.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的电性能特点通过实验操作和观察理解高分子材料的电荷注入和电荷传输5.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第六章:高分子材料的溶液性质了解高分子材料在溶液中的溶解行为掌握高分子材料的溶液性质和溶液模型理解高分子材料溶液的相行为和溶液理论6.2 教学内容高分子材料在溶液中的溶解行为和相行为高分子材料的溶液性质和溶液模型高分子材料溶液的粘度和流变性质6.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的溶液性质通过实验操作和观察理解高分子材料溶液的粘度和流变性质6.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第七章:高分子材料的界面性质7.1 教学目标了解高分子材料在不同界面上的行为掌握高分子材料界面性质的表征方法理解高分子材料在界面上的相互作用和功能化7.2 教学内容高分子材料在不同界面上的行为和相互作用高分子材料界面性质的表征方法和技术高分子材料界面功能化和应用7.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料界面的性质通过实验操作和观察理解高分子材料界面的功能化和应用7.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第八章:高分子材料的光学性能8.1 教学目标了解高分子材料的光学性能特点掌握高分子材料的光吸收和发射行为理解高分子材料的光化学反应和光物理过程8.2 教学内容高分子材料的光学性能特点和测试方法高分子材料的光吸收和发射行为高分子材料的光化学反应和光物理过程8.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的光学性能特点通过实验操作和观察理解高分子材料的光化学反应和光物理过程8.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第九章:高分子材料的环境稳定性和可持续性9.1 教学目标了解高分子材料的环境稳定性和可持续性重要性掌握高分子材料的环境稳定性和降解行为理解高分子材料的可持续性和环境影响评估9.2 教学内容高分子材料的环境稳定性和降解行为高分子材料的可持续性和环境影响评估高分子材料的生物降解和回收利用9.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的环境稳定性通过实验操作和观察理解高分子材料的可持续性和环境影响评估9.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第十章:高分子材料的应用和未来发展10.1 教学目标了解高分子材料在各个领域的应用掌握高分子材料的功能化和智能化理解高分子材料的未来发展趋势和挑战10.2 教学内容高分子材料在各个领域的应用和实例高分子材料的功能化和智能化技术高分子材料的未来发展趋势和挑战10.3 教学方法采用多媒体课件进行讲解结合实例和案例分析高分子材料的应用和功能化通过讨论和思考题引导学生理解高分子材料的未来发展趋势10.4 教学评估课堂提问和讨论课后作业和练习题思考题和研究报告重点和难点解析1. 高分子链的结构与运动:理解高分子链的结构特点,掌握高分子链的运动方式和动力学行为,以及高分子链的统计分布和构象。
药用高分子材料学复习重点

第一章绪论1、高分子分别在传统制剂、现代制剂中的作用答:在传统剂型中的应用的高分子材料:如作为片剂的赋形剂、黏合剂、润滑剂等。
在现代制剂中高分子作为应用在控释、缓释制剂和靶向制剂中,如做微丸的赋形剂、缓释包衣的衣膜以及特殊装置的器件。
包装用材料。
药用辅料的定义答:辅料是经过安全评价的、有助于剂型的制备以及保护、支持,提高药物或制剂有效成分稳定性和生物利用度的材料。
第二章高分子的结构、合成和化学反应聚合物的结构式答:聚乙烯(PE)聚丙烯(PP)聚苯乙烯(PS)聚氯乙烯(PVC)聚甲基丙烯酸甲脂(PMMA)聚乙酸乙烯酯(PV Ac)聚乙烯醇(PV A)纤维素尼龙-66按照性能和用途进行的高分子材料分类答:五大类,塑料、橡胶、纤维,涂料以及黏合剂。
热塑性塑料和热固性塑料的区别答:热塑性塑料——受热后软化,冷却后又变硬,这种软化和变硬可重复、循环,因此可以反复成型。
大吨位的品种有聚氯乙烯、聚乙烯、聚丙烯。
热固性塑料——是由单体直接形成网状聚合物或通过交联线型预聚体而形成,一旦形成交联聚合物,受热后不能再回复到可塑状态。
聚合过程(最后的固化阶段)和成型过程是同时进行的,所得制品不溶不熔。
热固性塑料的主要品种有酚醛树脂、氨基树脂、环氧树脂等。
柔性概念、影响因素答:(1)主链结构当主链中含C-O,C-N,Si-O键时,柔顺性好。
因为O、N原子周围的原子比C原子少,内旋转的位阻小;而Si-O-Si的键角也大于C-C-C键,因而其内旋转位阻更小,即使在低温下也具有良好的柔顺性。
当主链中含非共轭双键时,虽然双键本身不会内旋转,但却使相邻单键的非键合原子间距增大使内旋转较容易,柔顺性好。
当主链中由共轭双键组成时,由于共轭双键因p电子云重叠不能内旋转,因而柔顺性差,是刚性链。
(2)侧基侧基的极性越大,极性基团数目越多,相互作用越强,单键内旋转越困难,分子链柔顺性越差。
非极性侧基的体积越大,内旋转位阻越大,柔顺性越差;对称性侧基,可使分子链间的距离增大,相互作用减弱,柔顺性大。
高分子材料的物理化学性质

(6)增塑:增塑剂的加入可使材料强度降低,只适于对 弹性、韧性的要求远甚于强度的软塑料制品。
(7)外界因素:温度、外力作用速度和作用时间对强度 都有影响。
(三)粘弹性
高聚物力学性质随时间而变化的现象称为力学松弛或粘 弹现象 静态粘弹性 蠕变、应力松弛 粘弹性分类 动态粘弹性 滞后、内耗
1、蠕变
在恒温下施加较小的恒定外力时,材料的形变随时间而 逐渐增大的力学松弛现象。如挂东西的塑料绳慢慢变长。
• 这种由于力学滞后而使机械功转换成热的现象,称 为内耗。
• 相关应用
• 对于作轮胎的橡胶,则希望它有最小的力学损耗 才好 • 对于作为防震材料,要求在常温附近有较大的力 学损耗(吸收振动能并转化为热能) • 对于隔音材料和吸音材料,要求在音频范围内有 较大的力学损耗(当然也不能内耗太大,否则发 热过多,材料易于热态化)
(4)应力集中:若材料中存在某些缺陷,受力时,缺陷附 近局部范围内的应力会急剧增加,称为应力集中。应力集中 首先使其附近的高分子链断裂和相对位移,然后应力再向其 它部位传递。
(5)惰性填料:有时为了降低成本,在聚合物中加入一 些只起稀释作用的惰性填料,如在聚合物中加入粉状碳 酸钙。惰性填料往往使聚合物材料的强度降低。
F
F
均匀压缩
体积改变而形状不变
A0
弹性模量
是指在弹性形变范围内单位应变所需应力的 大小。是材料刚性的一种表征。分别对应于以上 三种材料受力和形变的基本类型的模量如下: 拉伸模量(杨氏模量)E:E = /
剪切模量(刚性模量)G:G = s /
体积模量(本体模量)B:B = p /
影响粘合强度的因素:
1.分子量:中等分子量
2.表面粗糙度:粗糙表面提高粘合强度
高分子材料的化学和物理性质

高分子材料的化学和物理性质高分子材料是一类具有特殊性质和应用价值的化学材料,它们通常是由重复单元构成的大分子,有着十分复杂的结构和多种功能。
在现代工业、医学、农业等领域中,广泛应用于各种领域中,是一种非常重要的材料。
高分子材料的化学性质高分子材料的化学性质表现在两个方面:其一是基础化学性质,包括构成元素、原子价、化学键的类型等;其二是高分子分子结构和性质之间的关系。
高分子材料的构成元素主要是碳、氢、氧、氮等元素,其中碳和氢的比例最高,这使得高分子材料具有了很高的稳定性和化学惰性。
而由此所形成的非极性高分子的亲水性较低,故表面本身具有的粘性和换能功较大。
高分子材料的原子(分子)价数,是高分子材料的结构和性质之间的重要关系基础,特别是对于它们的物理性质有着重要影响。
其中,材料的原子价数越大,它与其它原子、离子相互结合能力就越大,其物质的力学稳定性也就更强。
而材料的原子价数越小,由此形成的键能越小,就更容易被热或光线破坏。
高分子材料的化学键类型为共价键和离子键,其中,共价键属于共享电子对,包括单键、双键、三键等,具有稳定的结构和物理性质;离子键属于不同原子间电子转移形成的强化学键,具有高的凝结热和强的结构稳定性,但它们化学稳定性差,较易水解,交联性小,因此会对材料的化学性质产生较大的影响。
高分子材料的分子结构和性质之间的关系,是高分子材料化学性质研究的重点之一。
高分子分子结构的多样性制约了高分子材料的性能与用途,而这一特性又与材料的原子价数和化学键相关。
高分子材料的物理性质高分子材料的物理性质主要包括力学性质、热力学性质、电学性质和光学性质。
高分子材料的力学性质是指这类材料在承受外力时所产生的反应。
它通常表现为弹性、塑性和黏弹性等,而其中最为重要的是强度、韧度和硬度。
高分子材料的热力学性质是指高分子材料物质在热力学条件下的行为。
热力学性质包括热膨胀系数、热导率、比热等,高分子材料的这些性质直接影响着高分子材料的应用。
第三章 (1) 高分子材料的物理化学性质

19
(ii)pH敏感水凝胶 :pH敏感性水凝胶是体积随环境pH值、 离子强度变化的高分子凝胶。这类凝胶大分子网络中具有可解 离成离子的基团,其网络结构和电荷密度随介质pH值的变化而 变化,并对凝胶的渗透压产生影响;同时因为网络中添加了离 子,离子强度的变化也引起体积变化。 一般来说,具有pH值响应性的水凝胶都是含有酸性或碱性侧 基的大分子网络,即聚电解质水凝胶。随着介质pH值、离子强 度的改变,酸、碱基团发生电离,导致网络内大分子链段间氢 键的解离,引起不连续的溶胀体积变化。
18
热可逆性水凝胶 有些聚合物水溶液在室温下呈自由流动的液态 而在体温下呈凝胶态,即形成热可逆性水凝胶(TGR)。这一体系 能够较容易地对特定的组织部位注射给药,在体内环境下很快形 成凝胶。而且这种给药系统的制备较简单,只需将药物与聚合物 水溶液进行简单地混合。 如:聚环氧乙烷(PEO)与聚环氧丙烷(PPO)嵌段共聚物是已被批 准用于药用辅料的高分子,商品名叫普流罗尼(Pluronic)或泊洛沙 姆(Poloxamer),依据其结构和浓度,这类聚合物存在两个临界相 转变温度,即溶液-凝胶转变温度(相当于LCST)和凝胶-溶液转变 温度,在这两个温度之间其水溶液呈现凝胶状态。利用这类共聚 物水溶液低温溶液状态混合药物,尤其是生物类药物,注人体内 形成凝胶,从而实现控制药物释放同时保护药物活性的功能。
高分子材料

2. 高分子材料的机械性能特点 (1)强度低
100 MPa, 比 金属低得多, 但由于其重量轻、密度小, 许多高聚物的比强度还是很高的, 某些 工程塑料的比强度比钢铁和其他金属 还高。对于粘弹性的高聚物,其强度 主要受温度和变形速度的影响。
另一类高分子化合物的分子中虽然也包含了成千上万个结 构单元,但是所有的结构单元都是相同的,是由很多相同的 单元连接在一起的,不少天然的有机高分子材料都有这样的 结构,例如天然橡胶的主要成分是异戊二烯,棉纤维的主要 成分是纤维素。
构成大分子的最小重复结构单元,简称结构单元,或 称链节。构成结构单元的小分子称单体。
随着温度的升高,高聚物的力学
状态发生变化,在脆化温度Tb以下, 高聚物处于硬玻璃态;在Tb~Tg之间 处于软玻璃态;在略高于Tg时处于皮 革态;在高于Tg较多时处于橡胶态; 在接近于粘流温度Tf时处于半固态。
相应地,高聚物的性能由硬脆逐渐变 为强硬、强韧、柔韧高分子材料
高分子材料又称为高分子聚合物(简称高聚物),是以高分子化合 物为主要组分的有机材料。高分子化合物是指相对分子质量很大 的化合物,其相对分子质量一般在5000以上,有的甚至高达几百 万。高分子化合物由低分子化合物通过聚合反应获得。组成高分 子化合物的低分子化合物称作单体。
高分子材料的发展概况 (1)蒙昧期:19世纪中叶以前人们是无意识地使用高分子 材料。 (2)萌芽期:20世纪初期出现化学改性和人工合成的高分 子。 (3)争鸣期:20世纪初期到30年代高分子 (Macromolecule Polymer)概念形 成。 1920年德国学者H.Staudinger发表了他的划时代的文献 “论聚合”,提出异戊二烯构成橡胶,葡萄糖构成淀粉,纤 维素氨基酸构成蛋白质,都是以共价键彼此连接,提出高分 子长链结构的概念。
高分子物理化学 第三章

第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
粘度法(粘均分子量)
该法是目前最常用的方法之一。 溶液的粘度除了与分子量有关,还取决 于聚合物分子的结构、形态和尺寸, 因此,粘度法测分子量只是一种相对 的方法。
根据上述关系由溶液的粘度计算聚合物 的分子量。
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
例如尼龙6:
H2N(CH2)5CO NH(CH2)5CO n NH(CH2)5COOH
COOH 一头 (中 NH2 ,一头 间已无这两种基团),可用酸碱滴 定来分析端氨基和端羧基,以计算 分子量。
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
计算公式:
W——试样质量 n——试样摩尔数 ne——试样中被分析的端基摩尔数 Z——每个高分子链中端基的个数
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
C —— 溶液的浓度
—— 溶剂的沸点升高常数
—— 溶剂的冰点降低常数
—— 溶质分子量
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
一些溶剂的沸点升高常数
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
一些溶剂的冰点降低常数
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
特 点
可证明测出的是 ; 对缩聚物的分子量分析 应用广泛; 分子量不可太大,否则 误差太大。
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
溶液依数性法
小分子:
稀溶液的依数性:稀溶液的 沸点升高、冰点下降、蒸汽压下 降、渗透压的数值等仅仅与溶液 中的溶质数有关,而与溶质的本 性无关的这些性质被称为稀溶液 的依数性。
高分子材料的物理和化学性质

高分子材料的物理和化学性质高分子材料是一类重要的工程材料,具有众多独特的物理和化学性质,使其在许多领域中得到广泛应用。
本文将从分子结构、热学性质、力学性质、电学性质、光学性质等方面介绍高分子材料的物理和化学性质。
一、分子结构高分子分子量通常在10^3-10^7之间,相比小分子而言,高分子分子量大,分子体积大,交联度高,分子链上的键合弱、回旋自由度多,这些特征决定了高分子材料具有多段构象、异构性、无规共聚物的存在。
对高分子分子结构的理解对于控制其物理和化学性质,设计合理的高分子材料非常重要。
二、热学性质热学性质是高分子材料性质中关键的一部分,它们决定了高分子材料在各种物理和化学环境中的稳定性和可用性。
热学性质包括热膨胀系数、玻璃化转变、热导率、热变形温度等。
其中,热膨胀系数是指材料在温度变化过程中体积或长度的变化率,该性质对于热稳定性和耐温性的评价非常重要。
玻璃化转变指高分子材料在升温过程中的玻璃化转变温度,此时材料呈脆性固态,具有高强度和刚度,但失去了弹性。
三、力学性质高分子材料的力学性质是其在工程领域中的应用最重要的性质之一,包括拉伸强度、弯曲强度、冲击强度、硬度等。
高分子材料的力学性质与材料的分子结构密切相关,如分子量、分子量分布、交联度、分子链的取向等。
其中,拉伸强度是材料在拉伸或压缩下的强度;弯曲强度是材料在受力时抵抗变形的能力;冲击强度是指材料在受冲击载荷下的抗冲击能力;硬度是表征材料耐磨性能的一个参数。
四、电学性质电学性质包括电阻率、介电常数、击穿电压等,与高分子材料在电子器件中的应用和可靠性密切相关。
高分子材料的电学性质受到其分子结构、极性、表面状态等因素的影响。
通过改变材料的化学和物理参数,可以改善其电学性能。
五、光学性质高分子材料的光学性质是其在光电领域中的重要应用性能,包括折射率、透明度、吸收系数等。
高分子材料的光学性质取决于分子的键长、键角、现场分布等因素。
通过控制高分子材料分子结构和表面状态等参数来控制其光学性质,从而开发出新的光电器件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大尺寸是整个分子链,小尺寸是链段、链节、支
链和侧基。
第三章高分子材料的物理化学性质
2.高分子热运动是一个松弛过程,具有时间依赖 性。常用松弛时间(τ)作为描述松弛过程快慢的 物理量。
3.高分子热运动的温度依赖性 。温度升高使高分 子运动能量增加;温度升高使高聚物发生体积膨 胀,加大了分子间的空隙(自由体积) 。当自由体 积增加到与某种运动单元所需的空间尺寸相配时, 这一运动单元便开始自由运动。
第三章高分子材料的物理化学性质
5.晶态高聚物由于分子排列规整,堆砌紧密, 分子间相互作用力很强,以致溶剂分子渗 入高聚物内部非常困难,因此晶态高聚物 的溶解比非晶态高聚物要困难得多。
6.高分子溶液的实际制备工艺必须根据高分 子与溶剂的特性而定(P59)
第三章高分子材料的物理化学性质
二.高聚物溶解过程的热力学解释
用,故不利于溶解,即使溶度参数相近也不例外。 (4)氢键实际上也是一种强烈的溶剂化作用,若溶剂与高分子之
间能生成氢键,则有利于溶解。
注:表3-3、表3-4中的内容比较重要
第三章高分子材料的物理化学性质
四、渗透性及透气性
聚合物的渗透性及透气性与液体或气体在其中的 溶解性有关。当溶解度不大时,透过量遵循Fick第一 定律。影响聚合物的渗透性及透气性的主要因素有:
大小成正比,当外力除去后能立刻回复;弹性模量大;
质硬。
第三章高分子材料的物理化学性质
• 高弹态:链段运动被激发。受到外力时有 较大形变,撤力时弹性回缩 。
• 粘流态:高聚物在外力作用下发生粘性流 动,它是整个分子链互相滑动的宏观表现。 这种流动是不可逆的变形,外力除去后, 变形不再能自发回复。
第三章高分子材料的物理化学性质
注:对于非晶态的极性高聚物,既要符合“溶度参数相近”的规律, 又要符合“极性相近”原则。
第三章高分子材料的物理化学性质
3.溶剂化原则
(1)亲电性溶剂能和给电子高分子进行溶剂化而易于溶解。 (2)给电子溶剂能和亲电子性高分子“溶剂化”而利于溶解。 (3)亲(给)电子性相同的溶剂与高分子之间不能进行溶剂化作
的条件。
第三章高分子材平方 根,内聚能密度就是单位体积的内聚 能,它是反映分子间作用力大小的一 个参数。
• 聚合物的溶度参数可用粘度法或用溶 胀度法测定。
第三章高分子材料的物理化学性质
三.溶剂的选择
除了应考虑其用途、安全性、工艺、成本等因素外, 还应遵循以下原则: 1.溶度参数相近原则
溶解过程是溶质分子和溶剂分子相互混合 的过程,在恒温恒压下,这种过程能自发 进 行 的 必 要 条 件 是 Gibbs 自 由 能 的 变 化
ΔGM<0。
即: ΔGM =ΔHM - TΔSM < 0
(注:T是溶解时的温度,ΔSM是混合熵且大于0)
第三章高分子材料的物理化学性质
1)极性高聚物在极性溶剂中,溶解时放热
1. 聚合物结构 2. 温度 3. 极性 4. 物质分子大小 5. 链的柔性
总之:渗透性大,释药速率大,渗透性小,释药速率小
第三章高分子材料的物理化学性质
第二节 聚合物的力学状态及高分子 材料的力学性质
一.温度与力学状态
(一)高分子分子运动的特点
1.运动单元的多重性
运动单元具有多重性,分为大尺寸和小尺寸两类。
② 溶解:高分子以分子状态均匀分散在溶剂中, 形成完全溶解的分子分散的均相体系
第三章高分子材料的物理化学性质
2.交联高聚物,只能溶胀,不会溶解。交联 度大的溶胀度小,交联度小的溶胀度大。
3.溶解度与分子量有关,分子量大的溶解度 小,分子量小的溶解度大。
4.非晶态高聚物的分子堆砌比较松散,分子 间的相互作用较弱,因此溶剂分子比较容 易渗入高聚物的内部使之溶胀和溶解。
根据经典的Hildebrand溶度公式,混合热为:
ΔHM ≈V1,2(δ1-δ2)2ψ1ψ2
注: 式中V1,2为溶液的总体积(mL);δ为溶度参数,ψ为体 积分数,下标1和2分别表示溶剂和溶质。
只适用于非极性的溶质和溶剂的相互混合
溶质和溶剂的溶度参数愈接近(一般δ1和δ2的差值
不宜超过±1.5 ),则ΔHM愈小,愈能满足自发
第三章高分子材料的物理化学性质
(二)高分子的力学状态
1.线型非晶态聚合物的力学状态
• 玻璃态:在温度较低时,分子运动的能量很低,只有那 些较小的运动单元,如侧基、短支链、链节能运动及发 生键长、键角的变化,而整个分子链和链段都不能运动, 处于被‘冻结’的状态。
• 该状态下高聚物受力后的形变是很小,形变与受力的
(ΔHM <0) , 使 体 系 的 自 由 能 降 低 (ΔGM
<0),所以溶解过程能自发进行。
2)非极性高分子,溶解过程一般是吸热的,
即 ΔHM >0 , 故 只 有 在 ∣ ΔHM ∣<∣ T•ΔSM∣时才能满足上式的溶解条件,也 就是说升高温度T或减小ΔHM才有可能使
体系自发进行。 第三章高分子材料的物理化学性质
对于非晶态的非极性高聚物,选择溶度参数相近的溶 剂,聚合物能很好地溶解
一般而言:若|δ1-δ2|<±1.5,则聚合物可以溶解 另外:可以根据公式:δ混=φ 1δ 1+ φ 2δ 2,选用恰当的混合溶剂溶解特定聚合 物
第三章高分子材料的物理化学性质
2.极性相近原则
• “极性相近”原则:是指极性大的溶质易溶于极 性大的溶剂,极性小的溶质易溶于极性小的溶 剂;既溶剂的极性与溶质的极性愈接近,溶质 与溶剂愈易互溶。“极性相近”原则对聚合物的 溶剂选择有一定的指导意义。
第三章 高分子材料的物理化学性质
• 特别是溶解、溶胀、凝胶化、相变、 黏弹性、力学强度和通透性等涉及到 药物制剂辅料的处理及制剂中药物的 释放。
第三章高分子材料的物理化学性质
第一节 高分子溶液的理化性质
一.高聚物溶解过程的特点(相对复杂) 1.高聚物溶解缓慢且分两个阶段
① 溶胀:溶剂分子渗入高聚物内部,使高聚物体 积膨胀的现象
2.线型晶态高聚物的物理状态
在轻度结晶的高聚物中,微晶体起着类似交 联点的作用,这种试样仍然存在明显的玻璃化转 变 。结晶度的增加,相当于交联度的增加 ,使 材料变得坚硬,宏观上将觉察不到它有明显的玻 璃化转变 。