高分子材料物理化学实验复习资料整理

合集下载

高分子材料物理化学实验复习

高分子材料物理化学实验复习

一、热塑性高聚物熔融指数的测定熔融指数 (Melt Index 缩写为MI) 是在规定的温度、压力下,10min 内高聚物熔体通过规定尺寸毛细管的重量值,其单位为g 。

min)10/(600g tW MI ⨯=影响高聚物熔体流动性的因素有内因和外因两个方面。

内因主要指分子链的结构、分子量及其分布等;外因则主要指温度、压力、毛细管的内径与长度为了使MI 值能相对地反映高聚物的分子量及分子结构等物理性质,必须将外界条件相对固定。

在本实验中,按照标准试验条件,对于不同的高聚物须选取不同的测试温度与压力。

因为各种高聚物的粘度对温度与剪切力的依赖关系不同,MI 值只能在同种高聚物间相对比较。

一般说来,熔融指数小,即在12、 34测定取向度的方法有X 射线衍射法、双折射法、二色性法和声速法等。

其中,声速法是通过对声波在纤维中传播速度的测定,来计算纤维的取向度。

其原理是基于在纤维材料中因大分子链的取向而导致声波传播的各向异性。

几个重要公式:①传播速度C=)/(10)(1063s km t T L L ⨯∆-⨯- 单位:C-km/s ;L-m ;T L -?s ;△t-?s ②模量关系式 2C E ρ= ③声速取向因子 221CC f u a -= ④?t(ms)=2t 20-t 40(解释原因)Cu 值(km/s ):PET= 1.35,PP=1.45,PAN=2.1,CEL=2.0 (可能出选择题)测定纤维的C u 值一般有两种方法:一种是将聚合物制成基本无取向的薄膜,然后测定其声速值;另一种是反推法,即先通过拉伸试验,绘出某种纤维在不同拉伸倍率下的声速曲线,然后将曲线反推到拉伸倍率为零处,该点的声速值即可看做该纤维的无规取向声速值C u (见图1)。

思考题:1、影响实验数据精确性的关键问题是什么?答:对纤维的拉伸会改变纤维的取向。

所以为保证测试的精确性,每种纤维试样至少取3根以上迸行测定。

2、比较声速法与双折射法,两者各有什么特点?三、光学解偏振法测聚合物的结晶速度(无计算题,最好知道公式。

高分子物理复习提纲(分子运动及其介电性能)

高分子物理复习提纲(分子运动及其介电性能)

第三章 高聚物的分子运动3.1 高聚物的分子热运动1. 高分子热运动的特点1. 运动单元的多重性。

除了整个分子的运动(即布朗运动)外还有链段、链节、侧基、支链等的运动(称微布朗运动).2. 运动时间的依赖性。

高分子热运动是一个松驰过程。

在外场作用下物体从一种平衡状态通过分子运动过渡到另一种平衡状态是需要时间的,这个时间称为松弛时间,记作τ./0t x x e τ-= 当t=τ时, 10x x e -= 式中0x 是外力未除去时塑料丝增加的长度,x (t)是外力除去后,在t 时间内测出塑料丝增加的长度,τ为常数。

因而松驰时间定义为: x 变到等于0x 的1e -时所需要的时间.它反映某运动单元松弛过程的快慢.由于高分子运动单元有大有小, τ不是单一值而是一个分布,称为”松弛时间谱”.3. 分子运动的温度依赖性. 温度对高分子的热运动有两方面的作用:①使运动单元活化。

②温度升高使高聚物发生体积膨胀。

升高温度加快分子运动,缩短松驰时间,即有/0E RT e ττ= 式中E 为活化能, 0τ为常数.如果高聚物体系的温度较低,运动单元的松驰时间τ就较长,因而在较短时间内将观察不到松驰现象;但是如果温度升高,缩短了运动单元的松驰时间τ,就能在较短的时间内观察到松驰现象。

2. 高聚物的力学状态和热转变在一定的力学负荷(砝码)下,高分子材料的形变量与温度的关系式称为高聚物的温度-形变曲线(或称热机械曲线)①线型非晶态高聚物的温度-形变曲线.线形非晶态聚合物的形变-温度曲线玻璃态:链段运动被冻结,此时只有较小的运动单元如链节、侧基等的运动,以及键长键角的变化,因而此时的力学性质与小分子玻璃差不多,受力后变形很小(0.01%~0.1%),且遵循胡克定律,外力除后立即恢复。

这种形变称为普弹形变.玻璃态转变:在3~5℃范围内几乎所有的物理性质都发生突变,链段此时开始运动,这个转变温度t称为玻璃态转变温度(T g).高弹态:链段运动但整个分子链不产生移动.此时受较小的力就可发生很大的形变(100%~1000%),外力除去后可完全恢复,称为高弹形变。

高分子材料物理化学实验复习资料整理

高分子材料物理化学实验复习资料整理
C
Huggins式: sp K H C C
2

ln 2 Kramer式: K K C C
外推至 C→0, 两直线相交于一点此截距即为[]。 两条直线的斜率
4 / 11

{
图2
lg C
sp
ln 对 C和 对C 的关系图 C C
3 / 11
图 1 DSC 法测定结晶速率 (a)等温结晶 DSC 曲线 (b)结晶分数与时间关系
高材物化实验复习资料
4
放热峰。当曲线回到基线时,表明结晶过程已完成。记放热峰总面积为 A0,从结晶起始时刻(t0)到任一时 刻 t 的放热峰面积 At 与 A0 之比记为结晶分数 X(t): Avrami 指数 n=空间维数+时间维数(空间维数:球晶:1;片晶:2;针状:3;时间维数:均相成核:1, 异相成核:0; ) DSC: (纵坐标:放热峰朝下,吸热峰朝上) 图:Tg,冷结晶峰,熔融峰。 如何去除冷结晶峰? 升温一次,去除热历史。
二、声速法测定纤维的取向度和模量
测定取向度的方法有 X 射线衍射法、双折射法、二色性法和声速法等。其中,声速法是通过对声波在纤 维中传播速度的测定,来计算纤维的取向度。其原理是基于在纤维材料中因大分子链的取向而导致声波传播 的各向异性。 几个重要公式: ①传播速度 C=
L 10 3 (km / s) (TL t ) 10 6
N2。
注意:定要掌握三张图的含义。
五、粘度法测定高聚物分子量
1、测定高聚物分子量的方法有多种,如端基测定法、渗透法、光散射法、超速离心法和粘度法等。 2、马克(Mark)公式: KM 。该式实用性很广,式中 K、值主要依赖于大分子在溶液中的形态。

高分子化学与物理总复习

高分子化学与物理总复习

第一章聚合物、聚合度和链节的定义区别结构单元、单体单元、重复单元数均分子量、重均分子量和多分散系数D的计算(计算题)高分子的分类(3种)表1-2常见高分子的英文缩写,结构式书写高分子合成反应的分类图1-2 三相两转变第二章缩聚反应的定义官能团和官能度的定义官能团等活性理论缩聚反应的两大特征:逐步性和可逆性反应程度P的定义,与平均聚合度的关系计算题:式2-18和式2-20(计算题)体型缩聚的概念凝胶点的计算,式2-42(计算题)简述缩聚反应的四种实施方法(简答题)第三章自由基的定义聚合单体的反应类型判断自由基聚合的基元反应终止反应的类型链转移反应的定义引发剂的定义和种类引发剂效率小于1的原因在自由基聚合反应过程中所做的三点假设(简答题)自动加速效应的定义动力学链长的定义链转移常数的定义常见的阻聚剂自由基聚合四种实施方法的体系组成第四章阳离子聚合的单体和引发剂阳离子聚合机理特点阴离子聚合的单体和引发剂阴离子聚合机理特点活性聚合的定义配位聚合催化剂的组成第五章二元共聚物的四种类型共聚曲线的四种类型(简答题)判断单体和自由基的活性大小第六章高分子化学反应的分类影响高分子反应活性的化学因素高分子官能团反应的定义降解的定义和分类第七章结构单元的键接方式有高分子链的构造有高分子链的构型包括典型的构象状态包括链段的定义影响高分子链柔性的因素(简答题)高分子链柔性的表征聚集态结构的定义和意义高分子间作用力包括常用内聚能密度大小评价高分子分子间作用力高分子的结晶形态主要有球晶是高分子结晶中最重要的结晶形态,在正交偏光显微镜下出现特有的黑十字消光图案。

结晶度的定义和测定结晶度的方法链结构与结晶能力的关系(简答题)结晶过程包括晶核的生长和晶体生长,晶核生产包括和淬火和退火结晶度和晶体尺寸的影响取向的应用改善共混组分间相容性的有效途径是第八章高分子运动的特点(简答题)玻璃化转变温度的测定方法影响玻璃化转变温度的因素(简答题)P193 加入增塑剂的目的P195 熔点和熔限的定义P197 结晶温度对熔点的影响P201 高分子流动的机理P201 塑料的成型加工温度链的柔顺性、极性和分子量对粘流温度的影响P202 图8-22 识别牛顿流体、假塑性流体、胀塑性流体和宾汉流体大多数高分子熔体属于流体,黏度随剪切速率增大而P204 高分子流动行为的表征(填空)P212 熔体流动中的弹性效应第九章力学性能P218 泊松比和杨氏模量的定义P219 脆性断裂和韧性断裂、强迫高弹形变的定义P221 图9-6 屈服点和断裂点表9-1 高分子五种类型的应力-应变曲线P224 银纹和裂纹的区别(简答题)P230 橡胶高弹性的本质P233 粘弹性、蠕变和应力松弛的定义P241 时温等效原理第十章P243 高分子溶解过程需经两个阶段:先溶胀后溶解交联高分子只能溶胀,不能溶解,最后达到溶胀平衡P244 溶度参数的定义P247 溶解度参数相近原则Huggins参数X1判断溶剂的优劣P257 重均分子量的测定方法数均分子量的测定方法黏均分子量的测定方法,测定特性粘度常使用毛细管粘度计中的P267 凝胶渗透色谱法的分离过程完全有体积排除效应所致,分子量大的先被淋洗出来;分子量小的后被淋洗出来第11章P274 介电常数的定义考试题型一、选择题10小题,每题1分二、填空题20小题,每题2分三、简答题5小题,每题6分四、计算题2小题,每题10分。

高分子材料基础复习总结

高分子材料基础复习总结

高分子材料(聚合物材料)以高分子化合物(树脂)为基体,再配有其它添加剂(助剂)。

高分子化合物(高分子)往往由许多相同的、简单的结构单元通过共价键(有些是离子键)有规律的重复连接而成。

蠕变现象受到一个恒定应力σ0时,形变随时间无限发展。

应力松弛在恒定形态下,物理的应力随时间而逐渐衰减。

滞后现象高聚物在交变应力(周期性应力)作用下,形变落后于应力的现象。

力学内耗出现滞后现象时,则由于形变功与恢复功并不相等而产生功的损耗。

屈服是指在较大外力作用下材料发生塑性变形的行为。

塑料以合成或天然高聚物为基本成分,并配以一定的高分子助剂如填料、增塑剂、稳定剂、着色剂等经加工可塑成型,并在常温下保持其形状不变的材料。

热塑性弹性体是指在高温下能塑化成型而在常温下能显示橡胶弹性的一类材料,因此其既显示橡胶的物理性能,又具有热塑性塑料加工特性的材料。

回弹率将纤维拉伸后除去负荷,可回复的弹性伸长与总伸长之比。

弹性模量每单位截面积的纤维延伸原来1%所需的负荷(单位:N/tex互穿网络弹性体由两种线型弹性体胶乳混合在一起,再进行凝聚并同时进行交联现代分析测试方法一、高分子材料的化学分析1,简单定性分析受热行为,包括燃烧试验(火焰试验)、干馏试验。

根据燃烧性、分解出气体的气味、火焰、外形变化等分析。

2,高分子材料的溶解性3,高分子材料的分离和纯化溶解-沉淀萃取二、高分子材料的波谱分析1,红外光谱(IR)1)分析与鉴别高聚物2)高聚物反应的研究3)共聚物的研究4)结晶度的研究5)高聚物的表面研究6)高聚物的取向研究2核磁共掁(NMR)1)高分子的鉴别2)共聚物组成的测定3)立构规整性的测定4)共聚物序列结构的研究5)高聚物分子运动的研究6)支化度和键接方式的研究三、高分子材料的色谱分析1,气相色谱1)利用纯物质对照的定性分析,如:利用保留值包括t R、V R定性。

2)利用文献保留数据的定性分析3)与其它方法结合的定性法,如IR、化学反应4)利用峰面积或峰高定量分析2,裂解气相色谱1)热固性树脂的鉴定2)共聚物与共混物的区别3)高分子官能团的鉴定4)高分子同系物的测定四、x-射线衍射在高分子材料研究中的应用1)高聚物的物相分析(包括各种添加剂的物相分析)2)结晶度的测定3)取向度的测定4)微晶大小的测定5)高聚物晶体结构分析五、电子显微镜1,SEM1)研究纤维和织物的结构及其缺陷特征2)研究均相聚合物及其多相复合体系的结构2,TEM1)研究聚合物的结晶结构2)研究由表面起伏现象表现的微观结构问题,如PAN变成C纤维过程中微纤结构的变化。

高分子物理复习资料

高分子物理复习资料

高分子物理复习资料第一章高分子链的结构高分子结构的层次:●高分子链的结构:高分子的链结构又称一级结构,指的是单个分子的结构和形态,它研究的是单个分子链中原子或基团的几何排列情况。

包含一次结构和二次结构。

●高分子的一次结构:研究的范围为高分子的组成和构型,指的是单个高分子内一个或几个结构单元的化学结构和立体化学结构,故又称化学结构或近程结构。

●高分子的二次结构:研究的是整个分子的大小和在空间的形态(构象)。

例如:是伸直链、无规线团还是折叠链、螺旋链等。

这些形态随着条件和环境的变化而变化,故又称远程结构。

●高分子的聚集态结构:高分子的聚集态结构又称二级结构,是指具有一定构象的高分子链通过范德华力或氢键的作用,聚集成一定规则排列的高分子聚集体结构。

§1.1组成和构造1、结构单元的化学组成:按化学组成不同聚合物可分成下列几类:①碳链高分子(C)分子链全部由碳原子以共价键相连接而组成,多由加聚反应制得。

如:聚苯乙烯(PS)、聚氯乙烯(PVC)、聚丙烯(PP)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯PMMA。

②杂链高分子(C、O、N、S)分子主链上除碳原子以外,还含有氧、氮、硫等二种或二种以上的原子并以共价键相连接而成。

由缩聚反应和开环聚合反应制得。

如:聚酯、聚醚、聚酰胺、聚砜。

POM、PA66(工程塑料)PPS、PEEK。

③元素高分子(Si、P、Al等)主链不含碳原子,而由硅、磷、锗、铝、钛、砷、锑等元素以共价键结合而成的高分子。

侧基含有有机基团,称作有机元素高分子,如: 有机硅橡胶有机钛聚合物侧基不含有机基团的则称作无机高分子,例如:梯形和双螺旋型高分子,分子的主链不是一条单链而是像“梯子”和“双股螺线”那样的高分子链。

※表1-1,一些通用高分子的化学结构,俗称2、高分子的构型:构型(configurafiom):指分子中由化学键所固定的原子在空间的几何排列。

这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。

高分子物理复习提纲(分子运动及其介电性能)

高分子物理复习提纲(分子运动及其介电性能)

高分子物理复习提纲(分子运动及其介电性能)第三章高聚物的分子运动3.1 高聚物的分子热运动1. 高分子热运动的特点1. 运动单元的多重性。

除了整个分子的运动(即布朗运动)外还有链段、链节、侧基、支链等的运动(称微布朗运动).2. 运动时间的依赖性。

高分子热运动是一个松驰过程。

在外场作用下物体从一种平衡状态通过分子运动过渡到另一种平衡状态是需要时间的,这个时间称为松弛时间,记作τ./0t x x e τ-= 当t=τ时, 10x x e -= 式中0x 是外力未除去时塑料丝增加的长度,x (t)是外力除去后,在t 时间内测出塑料丝增加的长度,τ为常数。

因而松驰时间定义为: x 变到等于0x 的1e -时所需要的时间.它反映某运动单元松弛过程的快慢.由于高分子运动单元有大有小,τ不是单一值而是一个分布,称为”松弛时间谱”.3. 分子运动的温度依赖性. 温度对高分子的热运动有两方面的作用:①使运动单元活化。

②温度升高使高聚物发生体积膨胀。

升高温度加快分子运动,缩短松驰时间,即有/0E RT e ττ= 式中E 为活化能,0τ为常数.如果高聚物体系的温度较低,运动单元的松驰时间τ就较长,因而在较短时间内将观察不到松驰现象;但是如果温度升高,缩短了运动单元的松驰时间τ,就能在较短的时间内观察到松驰现象。

2. 高聚物的力学状态和热转变在一定的力学负荷(砝码)下,高分子材料的形变量与温度的关系式称为高聚物的温度-形变曲线(或称热机械曲线)①线型非晶态高聚物的温度-形变曲线.线形非晶态聚合物的形变-温度曲线玻璃态:链段运动被冻结,此时只有较小的运动单元如链节、侧基等的运动,以及键长键角的变化,因而此时的力学性质与小分子玻璃差不多,受力后变形很小(0.01%~0.1%),且遵循胡克定律,外力除后立即恢复。

这种形变称为普弹形变.玻璃态转变:在3~5℃范围内几乎所有的物理性质都发生突变,链段此时开始运动,这个转变温度t称为玻璃态转变温度(T g).高弹态:链段运动但整个分子链不产生移动.此时受较小的力就可发生很大的形变(100%~1000%),外力除去后可完全恢复,称为高弹形变。

高分子物理实验必备复习材料

高分子物理实验必备复习材料

高分子物理实验必备复习材料一、浊点滴定法测定聚合物的溶解度参数1、测定聚合物溶解度参数的实验方法有:黏度法、交联后的溶胀平衡法、反相色谱法和浊点滴定法等,实验用浊点滴定法2、溶解度参数是表示物体混合能与相互溶解的关系:2/1)(VE ?=δ,单位3/cm J ,根据溶解度参数的定义,溶解度参数δ应为“内聚能密度”的平方根原理:浊点滴定法是在两元互溶体系中,如果聚合物的溶解度参数p δ在两个互溶的溶剂s δ值的范围内,就可调节这两个互溶混合溶剂的溶解度参数sm δ,使sm δ与p δ很接近。

只要把两个互溶的溶剂按照一定的百分比配成混合溶剂,该混合溶剂的溶解度参数sm δ可以近似地表示成:2211δ?δ?δ+=sm3、混合溶剂的溶解度参数sm δ:2211δ?δ?δ+=sm,1?,2?分别是混合溶剂中组分1和组分2的体积分数。

1δ、2δ为混合溶剂中组分1和组分2的溶解度参数。

4、聚合物的溶解度参数p δ:2mlmh p δδδ+=,式中,mh δ为高溶解度参数的沉淀剂滴定聚合物溶液在混浊点时混合溶剂的溶解度参数;ml δ为低溶解度参数的沉淀剂滴定聚合物的混浊点时混合溶剂的溶解度参数。

5、试剂:三氯甲烷,正戊烷(ml δ),甲醇(mh δ),聚苯乙烯(PMMA ,溶于三氯甲烷)6、注意事项:(1)溶解PMMA 时,PMMA 与CHCl3要充分混匀,防止滴定时容易出现浑浊;(2)所用试剂为有机溶剂,故滴定管塞口不能涂凡士林,以免污染试剂;(3)读数时视线要与凹液面相平;(4)判定终点时,要将试剂对着阳光,以便判定终点;(5)CHCl3有挥发性,故在配制试样和移取过程中要准确迅速,防止其挥发,造成浓度变化,且其有剧毒,用完应回收,不可随意倾倒。

7、浊点滴定法测定聚合物溶解度参数时候,根据什么原则选择溶剂和沉淀剂?溶剂与聚合物的溶解度参数相近,能否保证二者相溶?为什么?答:对非极性溶剂,根据相似相溶原理,对极性溶剂,根据溶剂比原则来选择溶剂和沉淀剂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、根据实验图分析结晶温度对结晶速度的影响。
1.影响高聚物结晶速度常数的因素有哪些?试从实验结果分析温度对结晶速度的影响。 答:①分子链结构:凡分子结构对称、规整性好、柔性好、分子间作用力强的聚合物易结晶,结晶
速率也快。 ②温度:温度对结晶速度的影响极大,温度较高,结晶速率小;随着温度下降,结晶速率增加;温度 再进一步降低,结晶速率又下降;当 T<Tg 时,则不能结晶。 ③应力:应力能使分子链沿外力方向有序排列,可提高结晶速度。 ④分子量:在相同条件下,一般分子量低结晶速度快。 ⑤杂质:杂质影响较复杂,有的可阻碍结晶的进行,有的则能加速结晶(成核剂)。 ⑥溶剂:有的溶剂能明显地促进高聚物结晶,例如水能促进尼龙和聚酯的结晶。 总之,结晶能力越强,结晶速度也越大。
C
高材物化实验复习资料
5
分别代表常数 KH 和 KK。 (2)一点法 5、换算前提:极稀溶液。所以

t 0 t0
当选择的乌氏粘度计 t0<100s 时,需要动能校正。 6、该实验使用 PVA(聚乙烯醇),溶剂为去离子水。 思考题
1、讨论影晌分子量测定的主要因素。
答:毛细管粘度计的选择(选溶剂的流经时间>100s) ,溶液浓度,测试温度。 ①毛细管的直径:毛细管直径太大会使液体下降过快而致使时间测量不准确;毛细管直径太小也会使测 量时间不准确。 ②溶液浓度:计算公式中要求浓度要有一定的范围; ③温度:温度会通过影响聚合物的黏度来影响其分子量。
二、声速法测定纤维的取向度和模量
测定取向度的方法有 X 射线衍射法、双折射法、二色性法和声速法等。其中,声速法是通过对声波在纤 维中传播速度的测定,来计算纤维的取向度。其原理是基于在纤维材料中因大分子链的取向而导致声波传播 的各向异性。 几个重要公式: ①传播速度 C=
L 10 3 (km / s) (TL t ) 10 6
2、什么情况下需要做动能校正?为什么?
答:当时间 t<100s 时不满足公式的适用条件。若考虑其促使流动的力除克服其流动内摩擦外尚有部分消耗 于液体流动的动能,这部分能量的消耗需要予以校正。
六、加聚反应动力学——膨胀计法测反应速度
1、膨胀计是测定聚合速度的一种方法。它的依据是单体密度小,聚合物密度大,此时随着聚合反应的进 行,体积会发生收缩。当一定量单体聚合时,体积的变化与转化率成正比。如果将这种体积的变化放在一根 直径很窄的毛细管中观察,其灵敏度将大为提高,这种方法就是膨胀计法。 2、几种方法测反应速度:直接法和间接法。间接法有膨胀计法、测比重、测折射率、测比容等。 3、 v p
1.影响熔融指数的外部因素是什么?
答:影响因素有内因和外因两个方面:内因:①分子链的结构;②分子量;③分子量分布;外因:①温度; ②压力;③毛细管的内径与长度;④时间。总共七个影响因素。 熔融指数单位:g/10min
2、测定热塑性高聚物熔融指数有何意义?
答:熔融指数是用来表征熔体在低剪切速率下流变性能的一种相对指标。热塑性高聚物制品大多在熔融状态 加工成形,其熔体流动性对加工过程及成品性能有较大影响,为此必须了解热塑性高聚物熔体的流变性能, 以确定最佳工艺条件。
lg lg K lg M
1; 为相对粘度, 溶液粘度( s) 。
0
溶剂粘度( s)
sp
C 或 lg C
当 C→0 时,
lim c0
sp
C
lim
c0

C
4、特性粘度[的求得: (1)、稀释法(外推法)
sp
C
Huggins式: sp K H C C
2

ln 2 Kramer式: K K C C
外推至 C→0, 两直线相交于一点此截距即为[]。 两条直线的斜率
4 / 11

{
图2
lg C
sp
ln 对 C和 对C 的关系图 C C
结晶度的计算:熔融峰面积/100%结晶时熔融峰的面积。
以结晶分数 X(t)对时间作图,可得到图 1(b)的 S 形曲线。这种形状代表了三个不同的结晶阶段。第一 阶段相当于曲线起始的低斜率段,代表成核阶段,又称为结晶的诱导期;第二阶段曲线斜率迅速增加,为晶 体放射性生长,形成球晶的阶段,称为一次结晶;曲线斜率再次减小即进入第三阶段,到此阶段大多数球晶 发生碰撞,结晶只能在球晶的缝隙间进行,生成附加晶片,称为二次结晶。 聚合物等温结晶过程可以用 Avrami 方程进行描述:
I

解偏振光强
I I0 2
I0
i
t0
t1
2
时间
图2 等温结晶的解偏振光强—时间曲线
1 t1
2
作为表征聚合物结晶速度的参数, t 1 为半结晶期。 结晶在 Tg 和 Tm 之间。靠近 Tg, 2 链段难运动;靠近 Tm,晶核难生 成。
2 / 11
高材物化实验复习资料
3
即为图 2 中
I It 1 时所对应的时间。 I I0 2
2
单位:C-km/s;L-m;TL-s;△t-s
②模量关系式 E C
③声速取向因子 f a 1
Cu2 C2
④t(ms)=2t20-t40(解释原因)
Cu 值(km/s) :PET= 1.35,PP=1.45,PAN=2.1,CEL=2.0 (可能出选择题) 测定纤维的 Cu 值一般有两种方法:一种是将聚合物制成基本无取向的薄膜,然后测定其声速值;另一种 是反推法,即先通过拉伸试验,绘出某种纤维在不同拉伸倍率下的声速曲线,然后将曲线反推到拉伸倍率为 零处,该点的声速值即可看做该纤维的无规取向声速值 Cu(见图 1)。 思考题:
N2。
注意:定要掌握三张图的含义。
五、粘度法测定高聚物分子量
1、测定高聚物分子量的方法有多种,如端基测定法、渗透法、光散射法、超速离心法和粘度法等。 2、马克(Mark)公式: KM 。该式实用性很广,式中 K、值主要依赖于大分子在溶液中的形态。

无规线团形状的大分子,为 0.5~0.8;在良溶剂中,大分子溶剂化,为 0.8~l;硬棒状分子,>1。 求某一高聚物溶剂系的 K、值的具体测量,可取对数得: 3、几个粘度的关系(问答题) : sp 为增比粘度, sp
3、 聚合物的熔融指数与其分子量有什么关系?为什么熔融指数值不能在结构不同
1 / 11
高材物化实验复习资料
2
的聚合物之间进行比较?
答:①聚合物的熔融指数小,即黏度大,物料流动性差,则样品的分子量大。 ②由于不同机构的聚合物的测试环境(温度、压力)不同,并且不同的聚合物的黏度对温度与剪切力的依 赖关系不同,所以熔融指数只能在同种高聚物间相对比较。
若将上式左边对 lgt 作图得一条直线,其斜率为 Awami 指数 n,截距就是 lgK。 本实验以等规聚丙烯粒料为试样,采用结晶速度仪测定其结晶速率。 思考题:
1、聚合物的结晶速度与哪些因素有关?
答:高聚物的分子结构、分子量、添加剂(如消光剂、成核剂、填料、增塑剂等) ,成型加工的温度和时 间等。
高材物化实验复习资料
1
一、热塑性高聚物熔融指数的测定
熔融指数 (Melt Index 缩写为 MI) 是在规定的温度、压力下,10min 内高聚物熔体通过规定尺寸毛细管 的重量值,其单位为 g。
MI
W 600 ( g / 10 min) t
影响高聚物熔体流动性的因素有内因和外因两个方面。内因主要指①分子链的结构、②分子量及其③分 子量分布等;外因则主要指①温度、②压力、③毛细管的内径与长度、④时间等因素。 (内因 3 个,外因 4 个,总共 7 个影响因素) 为了使 MI 值能相对地反映高聚物的分子量及分子结构等物理性质,必须将外界条件相对固定。在本实 验中,按照标准试验条件,对于不同的高聚物须选取不同的测试温度与压力。因为各种高聚物的粘度对温度 与剪切力的依赖关系不同,MI 值只能在同种高聚物间相对比较。一般说来,熔融指数小,即在 10min 内从 毛细管中压出的熔体克数少,样品的分子量大,如果平均分子量相同,粘度小,则表示物料流动性好,分子 量分布较宽。 1、 测烯烃类。2、聚酯(比如涤纶)不能测(原因:聚酯类的流动性太差,需要很大的压力,砝码无法 提供,只能用毛细管流变仪测量。)。3、只能区别同种物质。 聚丙烯的熔点为 165℃,聚酯的熔点为 265℃。熔融加工温度在熔点上 30~50℃。 选择题 考:简述实验步骤: ① 选择适当的温度、压强和合适的毛细管。 (聚丙烯 230℃) ② 装上毛细管,预热 2~3min。 ③ 加原料, “少加压实” (①避免被测物体堵塞管口;②避免产生气泡。 ) 。平衡 5min,使其充分熔融。 ④ 加砝码,剪掉一段料头。1min 后,剪下一段。 ⑤ 称量 ⑥ 重复 10 次,取平均值。 ⑦ 关闭,清洁仪器。 选择题: 测量过程的最大误差是什么? MI
1 X exp Kt n


式中,X 为结晶分数,K 为总结晶速率常数,n 为 Avrami 指数,与成核机理和晶粒生长的方式有关。对 Avrami 方程取两次对数:
lg ln 1 X lg K n lg t
以 lg[-ln(1-X)]对 lgt 作图得一直线,其斜率为 Avrami 指数,其截距为 lgK。 实验内容:样品的质量取 8~10mg,保护气为
3 / 11
图 1 DSC 法测定结晶速率 (a)等温结晶 DSC 曲线 (b)结晶分数与时间关系
高材物化实验复习资料
4
放热峰。当曲线回到基线时,表明结晶过程已完成。记放热峰总面积为 A0,从结晶起始时刻(t0)到任一时 刻 t 的放热峰面积 At 与 A0 之比记为结晶分数 X(t): Avrami 指数 n=空间维数+时间维数(空间维数:球晶:1;片晶:2;针状:3;时间维数:均相成核:1, 异相成核:0; ) DSC: (纵坐标:放热峰朝下,吸热峰朝上) 图:Tg,冷结晶峰,熔融峰。 如何去除冷结晶峰? 升温一次,去除热历史。
相关文档
最新文档