常见分子晶体

合集下载

【知识解析】分子晶体

【知识解析】分子晶体

分子晶体温故1.晶体中的粒子可以是分子、原子或离子;粒子间的相互作用可以是共价键、离子键、金属键或分子间作用力。

2.根据晶体中粒子间的相互作用及排列方式,可把晶体分为分子晶体、共价晶体、离子晶体和金属晶体。

1 分子晶体的定义只含分子的晶体,或者分子间以分子间作用力结合形成的晶体叫分子晶体。

如I2、H2O、NH3、H3PO4、萘等在固态时都是分子晶体。

名师提醒(1)定义中的“分子”指真实存在的小分子、分子的聚集体、缔合分子、大分子(高分子),因此,H2SO4、H2O2、C4H10等既是化学式也是分子式。

(2)离子化合物、金属单质、原子间相互结合形成空间网状结构(如金刚石、SiO2)的物质中没有分子,因此,Na2O2、Fe、SiO2等是化学式而不是分子式。

(3)稀有气体的分子是单原子分子,因此,由稀有气体单质形成的晶体也是分子晶体。

2 分子晶体中的粒子及粒子间的相互作用3 常见的典型分子晶体(1)所有非金属氢化物:H2O、H2S、NH3、CH4、HX(卤化氢)等。

(2)部分非金属单质:X2(卤素单质)、O2、H2、S8、N2、P4、C60、稀有气体等。

(3)部分非金属氧化物:CO2、SO2、NO2、P4O6、P4O10等。

(4)几乎所有的酸:H2SO4、HNO3、H3PO4、H2SiO3等。

(5)绝大多数有机物:苯、四氯化碳、乙醇、冰醋酸、蔗糖等。

4 分子晶体的物理性质(1)分子晶体具有较低的熔、沸点和较小的硬度。

分子晶体熔化时要破坏分子间作用力,由于分子间作用力很弱,所以分子晶体的熔、沸点一般较低,部分分子晶体易升华(如干冰、碘、红磷、萘等),且硬度较小。

(2)分子晶体不导电。

分子晶体在固态和熔融状态下均不存在自由移动的离子或电子,因而分子晶体在固态和熔融状态下都不能导电。

有些分子晶体的水溶液能导电,如HI、乙酸等。

(3)分子晶体的溶解性一般符合“相似相溶”规律,即极性分子易溶于极性溶剂,非极性分子易溶于非极性溶剂。

晶体的四种基本类型和特点

晶体的四种基本类型和特点

晶体的四种基本类型和特点晶体是由于原子、分子或离子排列有序而形成的固态物质。

根据晶体的结构特点,晶体可以分为四种基本类型:离子晶体、共价晶体、金属晶体和分子晶体。

1. 离子晶体离子晶体由正离子和负离子通过离子键结合而成。

正负离子之间的电荷吸引力使得离子晶体具有高熔点和脆性。

离子晶体的晶格结构稳定,形成高度有序的排列。

常见的离子晶体有氯化钠(NaCl)、氧化镁(MgO)等。

离子晶体在溶液中能够导电,但在固态下通常是绝缘体。

2. 共价晶体共价晶体由共价键连接的原子或分子组成。

共价键是由原子间的电子共享形成的,因此共价晶体具有很高的熔点和硬度。

共价晶体的晶格结构复杂多样,具有很高的化学稳定性。

典型的共价晶体包括金刚石(C)和硅(Si)。

共价晶体通常是绝缘体或半导体,由于共价键的稳定性,其导电性较弱。

3. 金属晶体金属晶体由金属原子通过金属键结合而成。

金属键是由金属原子间的电子云形成的,因此金属晶体具有良好的导电性和热传导性。

金属晶体的晶格结构常为紧密堆积或面心立方等紧密排列。

金属晶体的熔点通常较低,而且具有良好的延展性和韧性。

典型的金属晶体有铁(Fe)、铜(Cu)等。

4. 分子晶体分子晶体由分子通过弱相互作用力(如范德华力)结合而成。

分子晶体的晶格结构不规则,分子间的距离和角度较大。

由于分子间的相互作用力较弱,分子晶体通常具有较低的熔点和软硬度。

典型的分子晶体有水(H2O)、冰、石英(SiO2)等。

分子晶体在固态下通常是绝缘体,但某些分子晶体在溶液中能够导电。

总结起来,离子晶体由正负离子通过离子键结合,具有高熔点和脆性;共价晶体由共价键连接,具有高熔点和硬度;金属晶体由金属原子通过金属键结合,具有良好的导电性和热传导性;分子晶体由分子通过弱相互作用力结合,具有较低的熔点和软硬度。

这四种基本类型的晶体在结构、性质和应用上都有明显的差异。

研究晶体的类型和特点对于理解物质的性质和应用具有重要意义。

晶体的五种类型

晶体的五种类型

晶体的五种类型晶体是固体物质中最基本的结构单位,是由原子、离子或分子组成的有序三维排列结构,通常会表现出明显的对称性和周期性,具有独特的物理、化学和光学性质。

晶体具有非常重要的应用价值,在化学、物理、地学、材料科学等领域都有广泛的应用。

本文将介绍晶体的五种类型,分别为离子晶体、共价分子晶体、金属晶体、非金属共价晶体和离子共价晶体。

一、离子晶体离子晶体是由正、负离子按确定的方式排列而成的固体。

离子晶体的原子、离子之间的相互作用力是电吸引力,形成的结构呈离子晶体的晶格。

离子晶体往往是高熔点、高硬度的固体,具有良好的导电、导热性能和高抗化学侵蚀性。

例如,氯化钠(NaCl)、氧化镁(MgO)等都是典型的离子晶体。

二、共价分子晶体共价分子晶体是由分子间的共价键组成的晶体,具有明显的分子性,分子间的弱分子力重叠性质使其具有低熔点、低硬度的特点。

与大多数离子晶体不同,共价分子晶体通常在常温下都是不导电的。

典型的共价分子晶体有二氧化硅(SiO2)、石墨(C)等。

三、金属晶体金属晶体是由金属原子组成的固体。

由于金属原子之间相互较大的共价键跨越整个晶体结构,因此,金属晶体之间的相互作用力基本为金属键。

金属晶体的导电性能非常好,同时也具有优异的导热性能和良好的塑性变形性能。

金属晶体也不易破坏,不易受光化反应的影响。

铜、铁、铝等常见金属都是典型的金属晶体。

四、非金属共价晶体非金属共价晶体除了不同于金属晶体的结论中核心原子种类不同外,其它的与金属晶体相似。

非金属元素间共同构成的共价键及离子间结构在化学中有着广泛的应用。

如硫化氢(H2S)、氨气(NH3)和水(H2O)等分子晶体都属于非金属共价晶体。

五、离子共价晶体离子共价晶体是离子晶体和共价分子晶体的混合物,由正、负离子和分子团按照一定的比例组成。

离子共价晶体的结晶形式介于离子晶体与共价分子晶体之间,具有离子晶体的物理性质,如硬度、熔点,又具有共价分子晶体的化学性质,如静电作用、极性等。

分子晶体和原子晶体

分子晶体和原子晶体

学与问
1、怎样从原子结构角度理解金刚石、硅 和锗的熔点和硬度依次下降?
解释:结构相似的原子晶体,原子半径越小, 键长越短,键能越大,晶体熔点越高 金刚石 > 碳化硅 > 晶体硅
2、“具有共价键的晶体叫做原子晶体”。这 种说法对吗?为什么?
知识拓展-石墨
一种结晶形碳,有天然出产的矿物。铁黑 色至深钢灰色。质软具滑腻感,可沾污手指成 灰黑色。有金属光泽。六方晶系,成叶片状、 鳞片状和致密块状。密度2.25g/cm3,化学性 质不活泼。具有耐腐蚀性,在空气或氧气中强 热可以燃烧生成二氧化碳。石墨可用作润滑剂, 并用于制造坩锅、电极、铅笔芯等。
因此,比较分子晶体的熔、沸点高低, 实际上就是比较分子间作用力(包括范力 和氢键)的大小。
(1)组成和结构相似的物质,
分子量越大,熔沸点越高。 ___________________________________
烷烃、烯烃、炔烃、饱和一元醇、醛、 羧酸等同系物的沸点均随着碳原子数的增 加而升高。
因为CO2是分子晶体,SiO2是原子晶体, 所以熔化时CO2是破坏范德华力而SiO2是破 坏化学键。所以SiO2熔沸点高。
破坏CO2分子与SiO2时,都是破坏共价 健,而C-O键能>Si-O键能,所以CO2分子更 稳定。
4、原子晶体熔、沸点比较规律 在共价键形成的原子晶体中,原子半
径小的,键长短,键能大,晶体的熔、沸 点高。如:金刚石 > 碳化硅 > 晶体硅
2 、分子晶体和原子晶体
一、分子晶体
1、概念 分子间以分子间作用力(范德华力,氢键)相 结合的晶体叫分子晶体。
构成分子晶体的粒子是分子,
粒子间的相互作用是分子间作用力 .
分子晶体有哪些物理特性,为什么?

分子晶体

分子晶体

1.复习本周031、032、033、034校本 作业,掌握物质熔沸点的判断比较方法。 2.完成校本作业035(定时一节课), 周一交齐。 3.下周一开始复习烷烃,注意预习选考 有机第一章第3节 烃。 4.期中考试----《物质结构与性质》模块 测试。(注意合理安排复习进度)
①对于组成和结构相似且不存在氢键的分子晶体,相对分子 质量越大,分子间作用力越大,相应分子晶体的熔、沸点越高 ,硬度越大。 ②如互为同分异构体,则支链数越多,熔、沸点越低。 ③若分子间有氢键,则分子间作用力比结构相似的同类晶体 强,故熔、沸点特别高。
(4)金属要比较金属键的强弱。金属阳离子所带正电荷越多,
力的强弱。
(1)原子晶体要比较共价键的强弱。一般地说,成键的两原子半 径越小,共价键的键长越短,共价键越强,相应原子晶体的熔、 沸点越高,硬度越大。 (2)离子晶体要比较离子键的强弱。一般地说,阴离子和阳离子
所带电荷数越大,半径越小,离子键越强,相应离子晶体的熔、
沸点越高,硬度越大。
(3)分子晶体要比较分子间作用力的强弱
分子晶体
1. 构成
2. 哪些晶体属于分子晶体
较典型的分子晶体有:
(1)所有非金属氢化物:如水、硫化氢、氨、氯化 氢、甲烷、乙烯、苯等等; (2)部分非金属单质:如卤素(X2)(碘)、氧(O2 ) 、 硫(S8)、氮(N2)、白磷(P4)、C60等等; (3)部分非金属氧化物:如CO2、N2O4、NO、SO2等等 (4)几乎所有的酸(而碱和盐则是离子晶体) (5)绝大多数有机物的晶体:乙醇、醋酸和乙酸 乙酯
几种典型的分子晶体比较
单质碘 干冰 冰
晶胞或结构模 型
微粒间作用力
范德华力
范德华力
范德华力和氢键

10-典型晶体简介(分子晶体)

10-典型晶体简介(分子晶体)
分子晶体及其堆积方式
1、无氢键型分子晶体:一般采用面心式堆积 、无氢键型分子晶体: 分子配位数通常=12 分子配位数通常 如:C60与C60分子晶体
分子晶体及其堆积方式
1、无氢键型分子晶体:一般采用面心式堆积 、无氢键型分子晶体: 分子配位数通常=12 分子配位数通常 分子晶体(干冰) 如:CO2与CO2分子晶体(干冰)
分子晶体熔点的相对高低规律之四
讨论: 讨论: 实验测得气态氯化铝的相对分子质量等于267,则其分 实验测得气态氯化铝的相对分子质量等于 , 子式为 ,其结构式可能为 。
分子晶体小结
• 分子晶体的一般情况: 分子晶体的一般情况:
所有非金属氢化物、部分共价化合物 所有非金属氢化物、部分共价化合物 非金属氢化物 物质种类 少数盐类 盐类, 少数盐类,如AlCl3 单核或多核的) 晶体中的微粒 (单核或多核的)分子 微粒间的作用力 范德华力或氢键 微粒内部的 微粒内部的 无化学键 有非极性共价键或 作用力 或有非极性共价键或有极性共价键 干冰、 典型代表 氦、氢、干冰、冰 He 、 H2 、 CO2 、 H2O 化学式 较软易碎、部分可溶于水、 较软易碎、部分可溶于水、 物理共性 熔点沸点较低、晶体导电导热性差 熔点沸点较低、晶体导电导热性差
分子晶体熔点的相对高低规律之四
升华问题: 升华问题: 某些分子晶体受热时 不经过熔化直接变成气态 这种现象叫升华 这种现象叫升华 升华的条件 条件是 升华的条件是: 在一定的压强条件下物质的熔点 熔点>沸点 在一定的压强条件下物质的熔点 沸点 能升华的常见物质有: 能升华的常见物质有: 干冰、 苯甲酸、 干冰、碘、萘、苯甲酸、氯化铝等
分子晶体熔点的相对高低规律之一
参考f=k·m1·m2/r2 (1)组成与结构相似时:—二

常见的分子晶体

常见的分子晶体

常见的分子晶体
一、分子晶体概述
分子晶体一般指非金属材料,在物理普遍重要的温度和压强下,由某种或某些充分互
反(即相处和相反)的分子形成的固体晶体。

它们的分子在晶体内部按照一定的次序排列,并被永久地结合在一起,形成稳定的结构,这使分子间的相互作用能够得到有效利用,就
像金属晶体一样,从而为物理、吸收和发射光等特性表现出新的物理机制。

二、常见的分子晶体
1、环-硅烷晶体:由环-硅烷分子(C6H12)构成的晶体。

它被广泛用于制造膜形态光
学器件、金属-有机框架结构和光伏元件。

3、二聚体晶体:由两个分子共价键结合起来的晶体。

它可以用来构建复杂的功能性
有机结构和有序结构,成为有机合成技术的基础。

4、单碳晶体:由碳分子(C)组成的晶体。

它具有良好的有序性和较高的热导率、导
电性和绝缘性,主要用于制造高性能体系,如有机存储器、芯片和部件等。

5.磷酸盐晶体:由磷酸分子(PO4)构成的晶体。

它具有良好的光学和热特性,主要
用于制造液晶材料,并用于电子器件、LED和量子点传感器等应用。

6、五元素的晶体:由五种元素(Cl、Br、F、I、Al)构成的晶体。

它具有高可调性,可用来作为有机非线性光学器件、催化剂、电子传感器等,也可用作纳米光学材料。

7、聚氨酯晶体:由聚氨酯(PU)分子构成的晶体。

它具有良好的拉伸性能,可以用
作纳米材料和结构材料,并用于构建有机/非金属纳米材料的现代电子和光电子装置。

高中常见分子晶体

高中常见分子晶体

高中常见分子晶体分子晶体是由分子通过非共价力相互作用形成的晶体。

在高中化学学习中,常见的分子晶体有离子型、共价型和分子型三种。

本文将对这三种常见的分子晶体进行详细介绍。

一、离子型分子晶体1.1 概述离子型分子晶体是由阴阳离子通过电静力相互作用形成的晶体。

通常由金属和非金属元素组成,如NaCl、CaF2等。

1.2 特点离子型分子晶体具有高熔点、难溶于水和易溶于极性溶剂等特点。

此外,它们还具有良好的导电性和热稳定性。

1.3 举例(1)NaCl:NaCl是一种典型的离子型分子晶体,由Na+和Cl-两种离子通过电静力相互作用形成。

它具有立方密堆积结构,每个Na+离子周围都被6个Cl-离子包围,每个Cl-离子周围也被6个Na+离子包围。

(2)CaF2:CaF2也是一种典型的离子型分子晶体,由Ca2+和F-两种离子通过电静力相互作用形成。

它具有立方密堆积结构,每个Ca2+离子周围都被8个F-离子包围,每个F-离子周围也被4个Ca2+离子包围。

二、共价型分子晶体2.1 概述共价型分子晶体是由原子通过共价键相互作用形成的晶体。

通常由非金属元素组成,如石墨、金刚石等。

2.2 特点共价型分子晶体具有高硬度、高熔点和难溶于水等特点。

此外,它们还具有良好的导电性和热稳定性。

2.3 举例(1)石墨:石墨是一种典型的共价型分子晶体,由C原子通过sp2杂化形成的平面六角环相互连接而成。

每个C原子周围都被3个其他C原子包围,形成了层状结构。

(2)金刚石:金刚石也是一种典型的共价型分子晶体,由C原子通过sp3杂化形成四面体结构相互连接而成。

每个C原子周围都被4个其他C原子包围,形成了均匀的晶格结构。

三、分子型分子晶体3.1 概述分子型分子晶体是由分子通过非共价力相互作用形成的晶体。

通常由有机物组成,如葡萄糖、苯甲酸等。

3.2 特点分子型分子晶体具有低熔点、易溶于水和难溶于非极性溶剂等特点。

此外,它们还具有良好的光学性质和生物活性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见分子晶体
分子晶体是由大量的有机分子(或者有机分子和无机分子的混合)组成的三维晶体。

它们是化学物质的纯净结晶形态,具有高度定向的分子团簇结构,因此具有各种独特的化学和物理特性。

常见的分子晶体有芳烃晶体、烷烃晶体、烯烃晶体、萘烷晶体和苯烷晶体等。

芳烃晶体是指碳原子四面有同种或不同种芳基的晶体结构。

芳烃的晶体常由四面环结构所组成,这些环可以是环状的(例如苯和芘),也可以是网状的(例如吡啶)。

芳烃晶体的晶体结构的分子间的互相
接触是由共价键形成的,因此它们具有非常高的熔点,比其它晶体都要高。

烷烃晶体是指由碳原子四面均附有烷基(由一个羟基和一个不饱和羟基连接而成)的晶体结构。

它们具有非常高的熔点,晶体结构的分子间由共价键构成的范式,如甲烷的「空气状(cellular)」晶体
结构。

烯烃晶体也是四面均有烷基附有的晶体,但是具有一个不饱和三环(即烯烃),而不是共价键构成的范式。

烯烃晶体有大量的晶体结
构类型,其中包括有萘烷(naphthalene)、芘(phenanthrene)和芪(acenaphthene)等。

萘烷晶体是指一种晶体结构,由两个连在一起的萘环(含有八个碳原子)所组成。

由于其具有古老的烯烃结构,萘烷晶体通常具有较高的熔点和灭火点,而且还具有很强的光学特性,如上转换性、荧光光谱和悬浮特性等。

苯烷晶体是指碳原子四面都附有苯基的晶体结构。

它们的分子间的相互作用是由共价键构成的,而不是烯烃晶体的烯环,因此它们的晶体结构就像甲烷一样,并且具有较高的熔点。

苯烷晶体有一种变体,称为叶绿素晶体,它由二环芳烃和两个饱和羟基所组成,具有丰富的荧光特性和传输性。

总之,常见的分子晶体有芳烃晶体、烷烃晶体、烯烃晶体、萘烷晶体和苯烷晶体等,它们均具有高度定向的分子团簇结构,因此具有各种独特的化学和物理特性。

其中,芳烃晶体是由碳原子四面有同种或不同种芳基的晶体结构组成,而烷烃晶体和烯烃晶体则是由碳原子四面均附有烷基的晶体结构,萘烷晶体是由两个连在一起的萘环构成,而苯烷晶体则是由碳原子四面都附有苯基的晶体结构。

它们的熔点均比其它晶体高,而且还具有不同的光学特性。

分子晶体是化学界的一项重要研究领域,由于它们的特殊化学性质和三维结构,可以用来开发各种新型材料,如激光材料、光学材料、高分子材料等。

此外,还可以研究分子晶体的复合结构,结合其他无机晶体材料,发展出具有更高性能的分子晶体。

因此,常见的分子晶体具有多种独特的化学和物理特性,在研究和应用领域都有着重要的作用。

未来,人们可以利用分子晶体开发出更具创新性和更环保的材料,推动产业进步和社会进步。

相关文档
最新文档