数电课程设计实验报告

合集下载

数字电子电路 数电 实验报告 组合逻辑电路设计

数字电子电路 数电 实验报告 组合逻辑电路设计

装……订……线组合逻辑电路设计一、实验目的1、掌握用基本门电路实现组合电路的设计方法。

2、掌握实现组合电路的连接及调试方法。

通过功能验证锻炼解决实际问题的能力。

二、实验内容(一)概论设计电路的一般过程:实际逻辑问题→抽象逻辑问题→列真值表→画卡诺图→图形化简→简化表达式→画出逻辑图设计中应该注意的问题:卡诺图或公式化简是实现组合电路设计的关键步骤。

为使电路简单,使用器件最少,往往要对不同的化简方法进行比较,得到一个合理的电路。

对于多输出实现组合电路,为了使得总的逻辑电路最简,在各个输出函数化简时不能孤立地考虑各个输出函数如何化简,而应注意尽可能找出多个输出函数的同类项,使总体设计最简。

(二)实践实验题目实验要求:从实验内容所列的题目中选择一个题目进行设计,设计方法和方案不限。

要求首先进行计算机仿真,实现题目功能。

然后在数字实验系统中完成实际操作。

自行设计测试表格,完成实际电路的测试。

(三)实验设计(1)设计一个四人表决电路要求:四人表决(用电平开关表决,当开关为高电平时表示同意,当开关为低电平时表示反对)时,当多数人通过时(三个以上开关为高电平)用发光二极管显示有效,否则发光二极管显示无效。

试用基本逻辑门设计该电路。

具体电路形式不限。

并在实验台上进行调试及验证。

(2)器材:数字试验系统一台,TTL型集成电路与门74LS11,或门74LS32各一块。

(3)电路设计过程根据设计任务要求建立输入、输出变量,并列出真值表:A、B、C、D为表决输入信号,Q为输出显示信号。

装……订……线三、实验步骤1、选好芯片,并连线布线图2、测试结果真值表根据真值表写出逻辑表达式Q=ABCD+ ABC’D+AB’CD+A’BCD+ABCD=ABC+ABD+ACD+BCD′用逻辑表达式化简法简化逻辑表达式Q=ABC+ABD+ACD+BCD=AB(C+D)+CD(A+B)=ABC′D′+A′B′CD四、实验总结本次实验总体效果较为满意,通过做表决器实验,了解到了芯片的用途,与书本相结合。

数电设计实验报告

数电设计实验报告

数电设计实验报告
《数电设计实验报告》
实验目的:通过本次实验,掌握数字电路设计的基本原理和方法,提高学生对数字电路设计的理论和实践能力。

实验内容:本次实验是基于数电设计的实践操作,通过实验板和相关器件进行数字电路设计与调试。

实验内容包括逻辑门电路设计、计数器设计、状态机设计等。

实验步骤:
1. 熟悉实验板和相关器件,了解数字电路设计的基本原理和方法;
2. 根据实验要求,设计逻辑门电路并进行仿真验证;
3. 设计并搭建计数器电路,测试其功能和性能;
4. 进行状态机设计,并对其进行调试和优化;
5. 总结实验过程中遇到的问题和解决方法,对实验结果进行分析和讨论。

实验结果:通过本次实验,我们成功设计并调试了一系列数字电路,包括逻辑门电路、计数器和状态机。

实验结果表明,我们掌握了数字电路设计的基本原理和方法,提高了对数字电路设计的理论和实践能力。

实验结论:本次实验使我们深入理解了数字电路设计的原理和方法,提高了我们的实践能力和创新意识。

通过实验,我们不仅学会了数字电路设计的基本技能,还培养了我们的团队合作和问题解决能力。

这些都为我们未来的学习和工作打下了坚实的基础。

总结:通过本次实验,我们深刻体会到了实践是检验理论的最好方法。

只有通过实际操作,我们才能真正理解数字电路设计的原理和方法,提高我们的实践
能力和创新意识。

希望通过今后的实验学习,我们能不断提高自己的技能和能力,为将来的学习和工作打下坚实的基础。

数电_实验报告

数电_实验报告

一、实验目的1. 理解数字电路的基本组成和工作原理;2. 掌握常用数字电路元器件的识别和测试方法;3. 培养数字电路设计和分析能力;4. 熟悉数字电路实验仪器的使用方法。

二、实验内容1. 逻辑门电路实验:包括与门、或门、非门、异或门等;2. 组合逻辑电路实验:包括编码器、译码器、数据选择器等;3. 时序逻辑电路实验:包括触发器、计数器、寄存器等;4. 数字电路仿真实验:使用Multisim软件进行数字电路仿真。

三、实验原理1. 逻辑门电路:逻辑门电路是数字电路的基本单元,根据输入信号的逻辑关系,输出相应的逻辑信号。

常见的逻辑门电路有与门、或门、非门、异或门等。

2. 组合逻辑电路:组合逻辑电路由逻辑门电路组成,其输出仅与当前输入信号有关,与电路历史状态无关。

常见的组合逻辑电路有编码器、译码器、数据选择器等。

3. 时序逻辑电路:时序逻辑电路由触发器组成,其输出不仅与当前输入信号有关,还与电路历史状态有关。

常见的时序逻辑电路有触发器、计数器、寄存器等。

四、实验步骤1. 逻辑门电路实验:(1)搭建与门、或门、非门、异或门等逻辑门电路;(2)观察输入信号与输出信号之间的关系,验证逻辑门电路的功能;(3)测试逻辑门电路的延迟时间。

2. 组合逻辑电路实验:(1)搭建编码器、译码器、数据选择器等组合逻辑电路;(2)观察输入信号与输出信号之间的关系,验证组合逻辑电路的功能;(3)测试组合逻辑电路的延迟时间。

3. 时序逻辑电路实验:(1)搭建触发器、计数器、寄存器等时序逻辑电路;(2)观察输入信号、时钟信号与输出信号之间的关系,验证时序逻辑电路的功能;(3)测试时序逻辑电路的延迟时间。

4. 数字电路仿真实验:(1)使用Multisim软件搭建数字电路;(2)设置输入信号和时钟信号,观察输出信号的变化;(3)分析仿真结果,验证数字电路的功能。

五、实验结果与分析1. 逻辑门电路实验:实验结果表明,与门、或门、非门、异或门等逻辑门电路能够实现预期的逻辑功能。

数字电路课程设计报告

数字电路课程设计报告

数字电路课程设计报告数字电路课程设计报告(3篇)在经济发展迅速的今天,报告使用的频率越来越高,不同的报告内容同样也是不同的。

在写之前,可以先参考范文,下面是小编帮大家整理的数字电路课程设计报告,仅供参考,欢迎大家阅读。

数字电路课程设计报告1摘要:本文着眼于目前普遍应用在城市道路上的交通灯控制系统,设计了一个东西方向和南北方向十字路口的交通灯控制电路。

进行交通灯状态变换的分析和交通灯总体框架的设计。

关键词:交通灯控制电路 proteus 仿真电路设计1引言1.1设计任务首先设计让倒计时显示器按规律运行的电路,再通过倒计时电路的信号来控制交通灯按4 种状态循环变换。

电源电路采用9V 变压器、整流桥和稳压管,使220V 的交流电转换为5V 的直流电。

4Hz 方波脉冲由555 定时器产生,再由74LS193 实现4 分频,最终输出1Hz 的脉冲信号;用两块74LS193 实现倒计时,一块显示十位,一块显示个位,用2 个D 触发器74HC74实现30s,20s,5s 时间的转换;利用倒计时电路控制4 个状态。

最后通过74LS138 和相应的逻辑门实现对交通灯亮灭的控制。

1.2 要求设计一个东西方向和南北方向十字路口的交通灯控制电路。

要求如下:(1)南北方向(主干道)车道和东西方向(支干道)车道两条交叉道路上的车辆交替运行,主干道每次通行时间都设为30s、支干道每次通行间为20s;(2)东西方向、南北方向车道除了有红、黄、绿灯指示外,每一种灯亮的时间都用显示器进行显示(采用倒计时的方法);(3)在绿灯转为红灯时,要求黄灯先亮5s 钟,才能变换运行车道;(4)黄灯亮时,要求每秒闪亮一次;(5)同步设置人行横道红、绿灯指示。

(6)设计相关提示:所设计的交通路口为一十字路口,不涉及左右转弯问题2 交通灯控制电路分析2.1交通灯运行状态分析交通灯控制电路,要求每个方向有三盏灯,分别为红、黄、绿,配以红、黄、绿三组时间到计时显示。

数电实验报告实验

数电实验报告实验

一、实验目的1. 理解和掌握数字电路的基本原理和设计方法。

2. 培养动手能力和实验技能。

3. 提高分析问题和解决问题的能力。

二、实验原理数字电路是一种以二进制为基础的电路,其基本元件是逻辑门和触发器。

本实验主要涉及以下几种逻辑门:与门、或门、非门、异或门、同或门、与非门、或非门等。

1. 与门(AND Gate):当所有输入端都为高电平时,输出才为高电平。

2. 或门(OR Gate):当至少一个输入端为高电平时,输出为高电平。

3. 非门(NOT Gate):对输入信号取反。

4. 异或门(XOR Gate):当输入端信号不同时,输出为高电平。

5. 同或门(NOR Gate):当输入端信号相同时,输出为高电平。

6. 与非门(NAND Gate):与门和非门的组合。

7. 或非门(NOR Gate):或门和非门的组合。

三、实验器材1. 数字电路实验箱2. 逻辑门芯片3. 电源4. 连接线5. 测试仪器四、实验步骤1. 组成基本逻辑门电路:根据实验原理,搭建与门、或门、非门、异或门、同或门、与非门、或非门等基本逻辑门电路。

2. 测试电路功能:使用测试仪器对搭建的电路进行测试,验证电路是否满足基本逻辑功能。

3. 组成组合逻辑电路:根据实验要求,搭建组合逻辑电路,如全加器、半加器、译码器、编码器等。

4. 测试组合逻辑电路:使用测试仪器对搭建的组合逻辑电路进行测试,验证电路是否满足设计要求。

5. 组成时序逻辑电路:根据实验要求,搭建时序逻辑电路,如触发器、计数器、寄存器等。

6. 测试时序逻辑电路:使用测试仪器对搭建的时序逻辑电路进行测试,验证电路是否满足设计要求。

五、实验结果与分析1. 基本逻辑门电路测试结果:根据测试数据,搭建的与门、或门、非门、异或门、同或门、与非门、或非门等基本逻辑门电路均满足设计要求。

2. 组合逻辑电路测试结果:根据测试数据,搭建的全加器、半加器、译码器、编码器等组合逻辑电路均满足设计要求。

武汉纺织大学数电课程设计实验报告参考模板

武汉纺织大学数电课程设计实验报告参考模板

武汉纺织大学数字电子课程设计实验报告设计题目:多路智力竞赛抢答器姓名:班级:学号:指导教师:陶恒齐2015年7月01日摘要数字电子技术课程设计是在学习完数字电子电路课程之后按照课程教学的要求,对学生进行综合性训练的一个实践性教学环节。

主要目的是培养学生综合运用理论知识能力,分析问题和解决问题的能力,以及根据实际要求进行独立设计的能力,了解数字电子电路的一般设计方法,初步掌握数字电子线路安装、布线、焊接、调试等基本技能,熟练掌握电子电路基本元器件的使用方法,训练、提高读图能力,掌握组装、调试方法。

关键词数字电子、培养能力一、数电课程设计的目的数字电子技术课程设计是在学习完数字电子电路课程之后,按照课程教学的要求,对学生进行综合性训练的一个实践性教学环节。

主要目的是培养学生综合运用理论知识能力,分析问题和解决问题的能力,以及根据实际要求进行独立设计的能力;了解数字电子电路的一般设计方法,初步掌握数字电子线路安装、布线、焊接、调试等基本技能;熟练掌握电子电路基本元器件的使用方法,训练、提高读图能力;掌握组装、调试方法。

二、设计题目及要求1.设计题目多路智力竞赛抢答器2.功能要求(1)4名选手编号为:1,2,3,4。

各有一个抢答按钮,按钮的编号与选手的编号对应,也分别为1,2,3,4。

(2)给主持人设置一个控制按钮,用来控制系统清零和抢答的开始(3)抢答器具有数据锁存和显示的功能。

抢答开始后,若有选手按动抢答按钮,该选手编号立即锁存,并在抢答显示器上显示该编号,同时扬声器给出音响提示,封锁输入编码电路,禁止其他选手抢答,同时计数器显示此时的时间。

抢答选手的编号一直保持到主持人将系统清零为止。

(4)抢答器具有定时(10秒)抢答的功能。

当主持人按下开始按钮后,定时器开始倒计时,定时显示器显示倒计时间,若无人抢答,倒计时结束时,扬声器响。

参赛选手在设定时间(10秒)内抢答有效,抢答成功,扬声器响,同时定时器停止倒计时,抢答显示器上显示选手的编号,定时显示器上显示剩余抢答时间,并保持到主持人将系统清零为止。

数电实验报告

数电实验报告

数电实验报告实验目的:本实验旨在通过实际操作,加深对数电原理的理解,掌握数字电子技术的基本原理和方法,培养学生的动手能力和实际应用能力。

实验仪器和设备:1. 示波器。

2. 信号发生器。

3. 逻辑分析仪。

4. 电源。

5. 万用表。

6. 示教板。

7. 电路元件。

实验原理:数电实验是以数字电子技术为基础,通过实验操作来验证理论知识的正确性。

数字电子技术是一种以数字信号为工作对象,利用电子器件实现逻辑运算、数字存储、数字传输等功能的技术。

本次实验主要涉及数字逻辑电路的设计与实现,包括基本逻辑门的组合、时序逻辑电路、触发器等。

实验内容:1. 实验一,基本逻辑门的实验。

在示教板上搭建与非门、或门、与门、异或门等基本逻辑门电路,通过输入不同的逻辑信号,观察输出的变化情况,并记录实验数据。

2. 实验二,时序逻辑电路的实验。

利用触发器、计数器等元件,设计并搭建一个简单的时序逻辑电路,通过改变输入信号,验证电路的功能和正确性。

3. 实验三,逻辑分析仪的应用。

利用逻辑分析仪对实验中的数字信号进行观测和分析,掌握逻辑分析仪的使用方法,提高实验数据的准确性。

实验步骤:1. 按照实验指导书的要求,准备好实验仪器和设备,检查电路连接是否正确。

2. 依次进行各个实验内容的操作,记录实验数据和观察现象。

3. 对实验结果进行分析和总结,查找可能存在的问题并加以解决。

实验结果与分析:通过本次实验,我们成功搭建了基本逻辑门电路,观察到了不同输入信号对输出的影响,验证了逻辑门的功能和正确性。

在时序逻辑电路实验中,我们设计并搭建了一个简单的计数器电路,通过实验数据的记录和分析,验证了电路的正常工作。

逻辑分析仪的应用也使我们对数字信号的观测和分析有了更深入的了解。

实验总结:本次数电实验不仅加深了我们对数字电子技术的理解,还培养了我们的动手能力和实际应用能力。

在实验过程中,我们遇到了一些问题,但通过认真分析和思考,最终都得到了解决。

这次实验让我们深刻体会到了理论与实践相结合的重要性,也让我们对数字电子技术有了更加深入的认识。

数电设计实验报告

数电设计实验报告

一、实验目的1. 熟悉数字电路的基本组成和设计方法。

2. 学习组合逻辑电路和时序逻辑电路的设计与实现。

3. 掌握Verilog HDL语言进行数字电路的设计与仿真。

4. 提高数字电路分析与设计能力。

二、实验内容本次实验主要设计一个数字钟电路,要求实现以下功能:1. 显示时、分、秒,时间周期为24小时。

2. 时间基准为1秒对应1Hz的时钟信号。

3. 可通过按键进行校时。

三、实验原理数字钟电路主要由以下部分组成:1. 振荡器:产生基准时钟信号。

2. 分频器:将基准时钟信号分频,得到1Hz的时钟信号。

3. 计数器:对1Hz的时钟信号进行计数,实现秒、分、时的计时。

4. 显示器:将计时结果显示出来。

5. 校时电路:通过按键进行校时操作。

四、实验步骤1. 使用Verilog HDL语言编写数字钟电路的代码。

2. 使用ModelSim进行仿真,验证电路功能。

3. 将代码编译并下载到FPGA芯片上。

4. 在FPGA开发板上进行实验,测试电路功能。

五、实验代码```verilogmodule digital_clock(input clk, // 基准时钟信号input rst_n, // 复位信号,低电平有效 input set, // 校时按键output [5:0] h, // 时output [5:0] m, // 分output [5:0] s // 秒);reg [23:0] counter; // 计数器reg [23:0] h_counter; // 时计数器reg [23:0] m_counter; // 分计数器reg [23:0] s_counter; // 秒计数器// 时计数器always @(posedge clk or negedge rst_n) beginif (!rst_n) beginh_counter <= 24'd0;end else beginif (counter >= 24'd86400) beginh_counter <= h_counter + 24'd1;counter <= 24'd0;end else begincounter <= counter + 24'd1;endendend// 分计数器always @(posedge clk or negedge rst_n) begin if (!rst_n) beginm_counter <= 24'd0;end else beginif (h_counter >= 24'd24) beginm_counter <= m_counter + 24'd1; h_counter <= 24'd0;end else beginm_counter <= m_counter + 24'd1; endendend// 秒计数器always @(posedge clk or negedge rst_n) begin if (!rst_n) begins_counter <= 24'd0;end else beginif (m_counter >= 24'd59) begins_counter <= s_counter + 24'd1;m_counter <= 24'd0;end else begins_counter <= s_counter + 24'd1;endendend// 时、分、秒输出assign h = h_counter[5:0];assign m = m_counter[5:0];assign s = s_counter[5:0];endmodule```六、实验结果1. 仿真结果:使用ModelSim对代码进行仿真,验证电路功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录汽车尾灯控制电路设计第一章设计指标 (3)设计指标 (3)第二章系统概述.......................................... .. .. (3)2.1设计思想 (3)2.2可行性论证 (5)2.3各功能的组成 (5)2.4总体工作过程 (5)第三章单元电路设计与分析 (6)3.1各单元电路的选择 (6)3.2设计及工作原理分析 (9)第四章电路的组构与调试.......................................... (9)4.1 遇到的主要问题 (9)4.2 现象记录及原因分析 (9)4.3 解决措施及效果 (9)4.4 功能的测试方法、步骤、设备、记录的数据 (9)第五章结束语 (9)5.1对设计题目的结论性意见及进一步改进的意向说明 (9)5.2 总结设计的收获与体会 (9)附图(电路图、电路总图) (11)参考文献 (11)第一部分:汽车尾灯控制电路设计第一章设计指标用6个发光二极管模拟汽车尾部左、右两侧的3个尾灯,用开关模拟左转、右转、刹车、倒车和检查控制。

当汽车处于左转或右转状态时,左侧或右侧的3个汽车尾灯按照左循环或有循环的顺序以1Hz的频率依次轮流点亮。

当刹车键按下时,汽车所有的尾灯同时长亮。

当倒车键按下时,汽车所有的尾灯以1Hz 的频率闪烁,同时蜂鸣器以0.5s响、0.5秒停的方式鸣响。

4个按键优先级别最高为倒车。

若转弯键和刹车键同时按下,转弯侧的灯轮流循环亮,另一侧的灯长亮。

若左转、右转按键同时按下,做刹车处理。

第二章系统概述2.1设计思想分析设计要求可知,电路主要根据三个按键对两组6个发光二极管进行控制。

发光二极管的点亮模式有3种:循环轮流点亮,闪烁,长亮。

发光二极管循环轮流点亮采用的是计数器控制译码器实现电路,闪烁点亮和蜂鸣器鸣响采用的是一定频率的脉冲信号控制。

左右两组尾灯模式对称,所以采用的是相同的模式控制。

每组尾灯有3路输出,采用三进制计数器控制2—4译码器74139m实现,74139m为高电平有效。

当使能无效时,74139m的4个输出都为高电平;使能有效时,根据译码器输入B、A的码值i输出Yi为低电平。

由表可见,采用74149m输出Y0—Y2方向后控制3个尾灯,当时能G有效时,可有计数器控制译码器输入B、A按“00”“01”“10”状态变化,则3个尾灯轮流依次点亮。

若使能G无效,译码器输出全为高电平,可采用逻辑门控制发光二极管全亮或由倒车键选通脉冲信号控制发光二极管。

74139m逻辑功能表如图2-6-1所示。

表2-6-1 2—4译码器74139m功能表输入G B A输出Y0 Y1 Y2 Y3L * *H H H HH L L L H H HH L H H L H HH H L H H L HH H H H H H L采用20Hz至20KHz的音频脉冲信号控制蜂鸣器,可以使蜂鸣器鸣响,信号频率越高,音调越高。

本设计在倒车时,蜂鸣器以0.5秒间隔鸣响,可以在刹车键按下时,通过逻辑门控制产生如图2-6-1的脉冲信号波形驱动蜂鸣器,尾灯控制参考设计方案原理框图如图2-6-2所示。

图2-6-1倒车时蜂鸣器控制波形图2-6-2尾灯控制参考设计方案原理框图图2-6-3汽车尾灯控制电路状态表2.2可行性论证在汽车运行的过程中,驾驶司机通过尾灯通知后继车辆本人的意图,对于维持正常的交通次序,保障人生安全具有极其重要的意义。

所以设计出一个更加科学,实际化的尾灯电路控制系统是十分有必要的。

下面从2个方面论述本设计的可行性。

(1)用按键控制4种状态,使司机在应急状态能够以最快速度通知其他司机自己的行车意图。

避免了脚踩刹车时的反应滞后;转弯时左右循环,让后继车辆更加清晰明白前行车辆的意图,避免视觉失误;设计时还考虑优先级,最高级别为倒车,转弯键和刹车键同时按下,转弯侧循环亮,另一侧灯长亮。

若同时按下左右转弯键做刹车处理。

优先级别的设计更人性化的考虑了各种驾驶时情况的变化。

(2)设计电路简单易于实现,适合于投入生产。

整个设计采用7个7490级联实现8分频,再用一个7490和一个与门实现三进制计数,两个74139m 译码器分别控制左右循环,逻辑控制则采用门电路实现,不存在不可操作部分。

(3)电路的设计利用QuartusⅡ绘图,分析综合后下载到LP-2900装置上,通过编相应的引脚,实现效果。

综上,本设计方案是可行的。

2.3各功能的组成分频器采用7490芯片实现。

用7个7490实现10MHz-1Hz共八个10倍分频,得到1KHz和1Hz的信号,用于实现不同频率信号的输入。

倒车时需要交替选择1KHz和1Hz频率,可以用分频器实现。

三进制计数器采用7490进行三进制计数电路设计,用异步清零使其变为三进制计数器。

QB、QC为输出,00,01,10;复位信号为11,用于控制译码器的两个输入,使左转,右转实现循环点亮。

译码器采用74139m,其中一个译码器的使能端控制左循环的逻辑信号控制,另一个译码器额使能端控制右循环的的逻辑信号控制。

逻辑控制部分则实现左边长亮电路、右边长亮电路、左边循环点亮电路、右边循环点亮电路和蜂鸣器的选择。

FPGA开发装置用于实现设计,D区的发光二极管L13-L15、L20-L22作为左、右两组尾灯。

C区的蜂鸣器实现倒车控制。

整个电路实现4个功能,分别是左转、右转、刹车、倒车。

左、右对称,以左转为例:有分频器,三进制计数器,译码器,非门,与门,LED灯组成;刹车由与门,或门组成;倒车由分频器和与门实现。

2.4总体工作过程左循环键按下时,分频器选择1Hz频率,计数器输出控制左循环译码器,循环点亮三个灯;右循环键按下时,分频器选择1Hz频率,计数器输出控制右循环译码器,循环点亮三个灯;刹车键按下时时不选择频率,直接输入电平,六个灯同时长亮;倒车键按下时,交替选择1KHz和1Hz频率,蜂鸣器0.5秒间隔响,左右尾灯均1Hz闪;左右键同时按下做刹车处理,刹车键和转弯键同时按下,转弯侧尾灯循环点亮,另一侧长亮;第三章单元电路设计与分析3.1各单元电路选择分频器分频器用7490芯片实现。

用7个7490实现10MHz-1Hz共八个10倍分频,得到1KHz和1Hz的信号。

当计数器脉冲CP控制五进制计数器的时钟CLKB,并以五进制计数器的最高为输出QD控制二进制计数器的时钟CLKKA,构成5421BCD码十进制计数器,输出码从高位到低位顺序为QA、QD、QC、QB。

最高为输出QA的占空比为50%。

满足要求,设计图如下:仿真波形计数器和译码器控制采用7490进行三进制计数电路设计,用异步清零使其变为三进制计数器。

QB、QC为输出,00,01,10;复位信号为11,译码器采用74139m,计数器的输出控制译码器的两个输入,具体电路图如下:仿真波形其中inst4译码器的使能端控制左循环的逻辑信号控制,inst5译码器额使能端控制右循环的的逻辑信号控制。

74139m高电平有效,所以要取反。

左边长亮电路、右边长亮电路、左边循环点亮电路、右边循环点亮电路采用逻辑门控制,a、b、c、d分别接对应的引脚。

具体电路图如下:左边循环点亮电路,右边循环点亮电路分别接两个对应的译码器使能端,左边长亮电路,右边长亮电路的输出分别接对应的左右三个灯。

蜂鸣器电路用1KHz和1Hz进过与门控制蜂鸣器实现0.5秒间隔响,具体电路图如下:3.2设计及工作原理分析根据以上的设计分析与功能描述,整个控制电路可有模式控制,分频模块,三进制计数器模块,译码器模块,逻辑电路模块4部分组成。

1KHz和1Hz由10MHz通过8个7490构成是分频后级联而来。

转弯时由计数器计数,其中1Hz 经过分频产生三种状态00、01、10。

分别控制译码器的两个输入。

实现循环点亮。

逻辑控制部分实现长亮和闪烁两种状态,每个灯由一个三输入或门控制。

蜂鸣器只用1KHz和1Hz通过与门控制。

按下每个功能键就可以实现功能。

第四章电路的组构与调试4.1 遇到的主要问题在电路的组构和调试过程中,遇到的主要问题有两个①转弯键按下时,左循环的一个LED灯长亮;②左循环和右循环的循环方向一致,都往右边循环;4.2 现象记录及原因分析转弯键按下时,左循环的一个LED灯长亮,原因是控制其闪烁的线连错;左循环和右循环的循环方向一致,都往右边循环,原因是引脚标号方向反了。

4.3 解决措施及效果从长亮的灯开始寻找错误,重新连线;将L11和L13顺序改变标引脚号,重新下载调试,达到预期效果,设计恢复正常。

4.4 功能的测试方法、步骤、设备、记录的数据首先分析综合后电路没有错误,标上引脚,下载到FPGA上,按下功能键。

SW1键按下时左边三个灯以1Hz频率左循环;SW2键按下时右边三个灯以1Hz 频率右循环;SW3键按下时六个LED灯长亮;SW4键按下时六个LED灯以1Hz 频率闪烁,同时蜂鸣器以0.5秒间隔响。

SW1和SW2键同时按下时,六个LED 长亮;SW1和SW3键同时按下时左边三个灯以1Hz频率左循环,右边三个灯长亮;SW2和SW3同时按下时右边三个灯以1Hz频率右循环,左边三个灯长亮。

第五章结束语5.1对设计题目的结论性意见及进一步改进的意向说明优点是:基本实现了汽车运行中需要控制的各种情况。

缺点是:行车时都是开关控制的,应该设计电路消除机械振动带来的影响;设计电路较复杂,是否可以考虑用3-8译码器实现;设计时间过短,无法改进电路,难以达到理想效果。

5.2 总结设计的收获与体会这次电路设计的完成是我们几个同学通过查阅资料和讨论,再加上老师的指导完成的,大家都花了很多的心思。

我们几个人有好几天都是呆在实验室的。

虽然不是我一个人设计出来的,但是我发现自己在参与其中的时候学到了很多,卡诺入的化简使的电路的输出更加清晰。

起初,如何分频选择是一个难题,在查阅了书本之后,我们试着级联7个十分频电路,构成一个输入,7个输出的电路。

成功后大家都很兴奋。

三进制计数器的设计是对上学期实验的巩固,译码器的加入让我对这个芯片的使用更加了解。

每一个模块的设计都是都让我对在讨论的过程中,我们一步步发现错误与不足,不断的改进。

总的来说,这次的试验比较成功,使我受益匪浅。

附图(电路图、电路总图)分图在前面已给出,另附总电路图参考文献基于FPGA的数字电路系统设计崔葛瑾西安电子科技大学出版社数字电路及系统设计崔葛瑾高等教育出版社。

相关文档
最新文档