分布式能源系统的热力学分析

分布式能源系统的热力学分析
分布式能源系统的热力学分析

分布式能源系统的热力学分析

张海洁

华电分布式能源工程技术有限公司北京100070

【摘要】分布式能源系统,相对于传统的集中供电方式而言,是指分布在用户端的、可独立地输出冷、热、电能的系统。对我国能源系统的发展具有重要意义。文章就分布式能源系统的热力学进行分析探讨。

【关键词】分布式;能源系统;热力学;分析

中图分类号:O414.1文献标识码:A

一、前言

文章对分布式能源系统的定义、主要形式和特点进行了介绍和阐述,通过分析,并结合自身实践经验和相关理论知识,以DES为例,对分布式能源系统的热力学进行了分析和探讨。

二、分布式能源系统概述

1.分布式能源系统的定义

顾名思义,分布式能源系统,是相对于能源集中生产(主要代表形式是大电厂加大电网)而言的。电在已知的二次能源中最为有用,且占有绝对优势。如果没有电,就没有了绝大多数的先进生产力。一切高新技术的研发、应用都要在电力运行的基础上进行。所以,保证充足、安全、有效的电力供应是非常重要的。然而,在目前,我国只有大电厂加大电网才能够比较好地完成此任务。估计这种状态在较长一段时间内不会改变。

分布式能源与上述比较集中的大电厂加大电网正好相反,它是把二次能源供能点分散到很多企业、社区、大厦、医院、学校、写字楼,甚至到个别家庭住宅中去。由于分散,所以每个系统的出力都不会太大,需根据用户的具体要求而定,一般在成百上千kW以下。如上所述,电是最主要的二次能源,所以目前通称的分布式能源系统都至少有电力输出;而只出热、出冷的简单小型供能系统,如仅供热的小锅炉装置、仅供冷的独立空调设备,是极少有人称之为分布式能源系统的。但是,绝大多数的分布式能源系统,是除了供电之外,还同时供热及/或供冷,是多联产系统。当然,也许还可能是多功能系统(意指除多联产输出外,输入的能源也是多种的,例如可以同时有化石能源与可再生能源输入)。

2.分布式能源系统的主要形式

分布式能源系统是一种建在用户端的能源供应方式,可独立运行,也可并网运行,是以资源、

环境效益最大化确定方式和容量的系统,将用户多种能源需求,以及资源配置状况进行系统整合优化,采用需求应对式设计和模块化配置的新型能源系统,是相对于集中供能的分散式供能方式。分布式能源系统的主要形式:根据燃料不同,分布式能源系统的主要形式,可分为燃用化石能源、燃用可再生能源和燃用二次能源及垃圾燃料等几种。燃用化石能源的动力装置有:微型燃气轮机、燃气轮机、内燃机、常规的柴油发电机、燃料电池;利用可再生能源发电技术有太阳能发电、风力发电、小水利发电、生物质发电等。

3.分布式能源系统的特点

现在世界上一些发达国家的热电效率已经达到了96%以上。可将天然气的所有能量吃光用尽。这一技术带来的好处是:①能源利用效率大幅度提高;②由于兼并发电,经济效益好;③冬夏实现天然气供应的平衡;④燃气价格承受能力大幅度提高。

三、以DES为例对分布式能源系统的热力学进行分析

1.微燃机DES工作原理和热力学分析

微燃机DES工作原理是:微燃机发电机组主要由压气机、燃气透平、燃烧室、回热器和发电机等组成。空气分为2路:(1)空气经压气机压缩进入回热器预热后,再进入燃烧室,以提高燃烧温度、增强燃气透平做功能力;(2)空气对主轴承的润滑油系统进行冷却后直接排出。天然气在燃烧室与预热空气混合燃烧,产生高温燃气进入燃气透平做功,驱动压气机和发电机。微燃机的轴系为单轴设计,故障率较低、安装维护较方便。燃气透平排气余热利用设备可以是余热锅炉、吸收式制冷机、除湿机等各种装置。

2.微燃机热力学分析参数设定

微燃机性能受环境空气温度影响很大。在不同温度下,微燃机的排气量、天然气耗量和发电量均不同。微燃机润滑油冷却空气流量为0.9kg/s,温升为30℃;单效吸收式制冷机组的额定供热量为140kW,供热时供、回水温度分别为5O℃和43℃,额定制冷量为1lOkW,制冷时供、回水温度分别为7℃和14℃。

3.微燃机DES的火用平衡和火用分析

燃烧不可逆造成的火用损失最大,其它还包括通风散热、管道散热、回热器换热等不可逆造成的火用损失。由于主要分析火用效率斯以这一部分不分别计算,而归于其它火用损失一项,通过火用平衡计算得到。一种较为普遍的能量分析方法是计算一次能源利用率.一次能源利用率越高,反映一次能源利用越充分。系统冬季热电联产时的一次能源利用率除在发电功率非常低的情况下,因为单纯产热的效率低于锅炉的热效率,造成一次能源利用率较分产系统低外,随着发电

量的增加,很快超过了分产系统的一次能源利用率,并把差距进一步拉大,节能效果非常明显。

但是系统在夏季冷电联产情况下,一次能源利用率和分产系统差距较大。虽然随着发电量增加,逐渐趋向接近,但在满负荷情况下利用率依然不及分产系统。主要是以下两个因素造成了这种结果:第一,是微型冷热电联产系统的发电效率要低于大型集中式电站的发电效率。第二,也是更主要的原因是吸附制冷机的制冷效率与电驱动的蒸汽蒸发式制冷机的制冷效率相差较多考虑到电厂发电效率后,也没有改观但是这并不说明微型冷热电联产系统夏季的对能量的利用比分产系统差,由于第一定律的局限性,无论什么温度的热量,冷量和电能都被视为同等级的能量,因而并不能区分能量品质等级的高下在该系统中,采用温度不到的废热,转化为有效的空调冷量。与一次能源高温燃烧后转化为电能再得到的相同的冷,其能量转化和利用的优劣通过下面的第二定律评价标准进行衡量,得到的结果将完全不同.由于佣分析将能量中的“质”与“量”有机地结合在一起.真实地体现了能量转化过程中能量的“贬值”过程.因此将火用分析作为系统的评价准则更为科学合理。

4.过渡季节的能量分析、火用平衡和火用分析在过渡季节(春秋季)微燃机DES只发电,无需制冷或供热。过渡季节空气温度取15℃,计算得到该系统在过渡季节的能源利用率为31.399/6,炯效率为32.54。微燃机DES是基于能量梯级利用的复合系统,在过渡季节使用并不能体现其节能优越性,所以在过渡季节可由电网供电,以进一步提高全年的能量利用率,或生产生活热水供应用户。

5.微燃机DES应用中的一些问题

微燃机DES在夏热冬冷(如上海)地区的建筑中使用时,主要问题在于夏季冷负荷与冬季热负荷的不匹配。例如,上海地区的办公楼冷负荷设计指标为120w/m,而热负荷指标为80W/m。若以夏季需冷量来设计系统,则必须在冬季有效地利用排气余热,否则会降低微燃机DES的全年运行效率。此外,城市天然气管网的配气压力亦很难满足微燃机的要求。以TurbecT100型微燃机为例,当使用天然气增压器时可接受的最低压力为(0.002~0.1)MPa,当供气压力提高到(0.6~0.7)MPa时则无需增压器。上海天然气管道中心城区的配气管线压力最高为0.4MPa,因此许多大中城市需配置天然气增压设备,此时必须在管道上设置缓冲装置,以避免对管道和周边其它用户造成压力波动。

四、结束语

我国的分布式能源系统的发展起步比较晚,相对于欧美等国家还有一定的差距,分布式能源系统自身的优势导致了它在能源系统方面会有大的作为,因此,应加强分布式能源系统发展力度。

参考文献:

[1]华贲.分布式能源与天然气产业在中国协同发展的历史机遇[J].能源政策研究,2009.

[2]冯志兵,金红光.燃气轮机冷热电联产系统及其热力分析[J].动力工程,2013(4):487-492.

分布式能源系统的热力学分析

作者:张海洁

作者单位:华电分布式能源工程技术有限公司

刊名:

城市建设理论研究(电子版)

英文刊名:ChengShi Jianshe LiLun Yan Jiu

年,卷(期):2013(28)

本文链接:https://www.360docs.net/doc/202379972.html,/Periodical_csjsllyj201328326.aspx

分布式能源系统在新机场的应用

利用分布式能源系统建立新建机场能源站实施方案(采用BOT联合体或EPC形式)的探讨 长沙黄花国际机场分布式能源站正式实现商业运营 长沙黄花国际机场分布式能源站项目是湖南省第一个分布式能源项目,也是我国民航系统第一个采用BOT方式建设的能源供应项目,实现了分布式能源从项目开发到设计、建设、商业化运营的一体化服务模式。 分布式能源站主要为15.4万m2新建航站楼提供全年冷、热以及部分电力供应。能源站采用以燃气冷热电分布式能源技术为核心,结合常规直燃机、离心式电制冷机组、燃气锅炉、热泵及冰蓄冷(二期工程)等先进能源技术。设计总规模为27MW制冷量,18MW制热量和2×1160KW发电量。能源站一期配备2*1160kW 的燃气内燃发电机组、2*4652kW的烟气热水型余热直燃机、1*4652kW的燃气直燃机、2*4571kW 水冷离心式制冷机组、1*2.8MW燃气热水锅炉。发电机所发电力采用并网不上网的方式运行,供给能源站及黄花机场新航站楼。 在制冷工况运行时,天然气先进入燃气内燃机发电,燃气内燃机排烟和缸套水直接驱动烟气热水型余热直燃机组制冷。燃气发电余热制冷用于满足基本负荷,不足部分采用燃气直燃机组和离心式电制冷机组调峰补充。在制热工况运行时,天然气进入燃气内燃机发电,燃气内燃机排烟驱动烟

气热水型余热直燃机组制热,缸套水直接进入板式换热器,不足部分的热量由燃气直燃机组和燃气锅炉直接燃烧天然气补充。 能源站采用了新奥自主开发的智能平台技术,实现了系统能效数据分析、负荷预测、系统优化运算和设备智能化调度等功能。 黄花机场分布式能源站实现了能源的梯级利用,先将燃气燃烧产生的高温热能转化为高品位的电能,然后再将发电后的中低品位热能回收利用,用于航站楼的冷热供应。与常规能源供应方式相比,一次能源节能率约41%,年节约标煤3640吨,年二氧化碳减排量为8956吨。 黄花机场分布式能源站已于2011年7月8日顺利完成竣工验收,7月19日正式实现商业营运。该项目作为新奥第一个成功交付的分布式能源示范项目,在分布式能源技术应和商业化运营方面均作出了有意的尝试,为分布式能源在湖南、民航系统及全国的发展奠定了坚实的基础。 冷热电三联供系统在浦东国际机场的应用浦东国际机场能源中心是机场规划设计时“大集中,小分散”供冷供热方案中最为关键的“集中”供冷供热主站,通过燃气轮机热电联供系统,采用“汽电共生,冷、热、电三联供”这一新的制冷供热方式,推动这一先进技术在国内

分布式能源简介

分布式能源 一、定义 所谓“分布式能源”(distributed energy resources)是指分布在用户端的能源综合利用系统。一次能源以气体燃料为主,可再生能源为辅,利用一切可以利用的资源;二次能源以分布在用户端的热电冷(值)联产为主,其他中央能源供应系统为辅,实现以直接满足用户多种需求的能源梯级利用,并通过中央能源供应系统提供支持和补充;在环境保护上,将部分污染分散化、资源化,争取实现适度排放的目标;在能源的输送和利用上分片布置,减少长距离输送能源的损失,有效地提高了能源利用的安全性和灵活性。 二、简介 分布式能源是一种建在用户端的能源供应方式,可独立运行,也可并网运行,是以资源、环境效益最大化确定方式和容量的系统,将用户多种能源需求,以及资源配置状况进行系统整合优化,采用需求应对式设计和模块化配置的新型能源系统,是相对于集中供能的分散式供能方式。 国际分布式能源联盟WADE对分布式能源定义为:安装在用户端的高效冷/热电联供系统,系统能够在消费地点(或附近)发电,高效利用发电产生的废能--生产热和电;现场端可再生

能源系统包括利用现场废气、废热以及多余压差来发电的能源循环利用系统。国内由于分布式能源正处于发展过程,对分布式能源认识存在不同的表述。具有代表性的主要有如下两种:第一种是指将冷/热电系统以小规模、小容量、模块化、分散式的方式直接安装在用户端,可独立地输出冷、热、电能的系统。能源包括太阳能利用、风能利用、燃料电池和燃气冷、热、电三联供等多种形式。第二种是指安装在用户端的能源系统,一次能源以气体燃料为主,可再生能源为辅。二次能源以分布在用户端的冷、热、电联产为主,其它能源供应系统为辅,将电力、热力、制冷与蓄能技术结合,以直接满足用户多种需求,实现能源梯级利用,并通过公用能源供应系统提供支持和补充,实现资源利用最大化。

分布式能源系统的热力学分析

分布式能源系统的热力学分析 张海洁 华电分布式能源工程技术有限公司北京100070 【摘要】分布式能源系统,相对于传统的集中供电方式而言,是指分布在用户端的、可独立地输出冷、热、电能的系统。对我国能源系统的发展具有重要意义。文章就分布式能源系统的热力学进行分析探讨。 【关键词】分布式;能源系统;热力学;分析 中图分类号:O414.1文献标识码:A 一、前言 文章对分布式能源系统的定义、主要形式和特点进行了介绍和阐述,通过分析,并结合自身实践经验和相关理论知识,以DES为例,对分布式能源系统的热力学进行了分析和探讨。 二、分布式能源系统概述 1.分布式能源系统的定义 顾名思义,分布式能源系统,是相对于能源集中生产(主要代表形式是大电厂加大电网)而言的。电在已知的二次能源中最为有用,且占有绝对优势。如果没有电,就没有了绝大多数的先进生产力。一切高新技术的研发、应用都要在电力运行的基础上进行。所以,保证充足、安全、有效的电力供应是非常重要的。然而,在目前,我国只有大电厂加大电网才能够比较好地完成此任务。估计这种状态在较长一段时间内不会改变。 分布式能源与上述比较集中的大电厂加大电网正好相反,它是把二次能源供能点分散到很多企业、社区、大厦、医院、学校、写字楼,甚至到个别家庭住宅中去。由于分散,所以每个系统的出力都不会太大,需根据用户的具体要求而定,一般在成百上千kW以下。如上所述,电是最主要的二次能源,所以目前通称的分布式能源系统都至少有电力输出;而只出热、出冷的简单小型供能系统,如仅供热的小锅炉装置、仅供冷的独立空调设备,是极少有人称之为分布式能源系统的。但是,绝大多数的分布式能源系统,是除了供电之外,还同时供热及/或供冷,是多联产系统。当然,也许还可能是多功能系统(意指除多联产输出外,输入的能源也是多种的,例如可以同时有化石能源与可再生能源输入)。 2.分布式能源系统的主要形式 分布式能源系统是一种建在用户端的能源供应方式,可独立运行,也可并网运行,是以资源、

分布式能源系统优化与设计思路研究

分布式能源系统优化与设计思路研究 发表时间:2018-08-06T16:56:35.523Z 来源:《电力设备》2018年第11期作者:刘菲燕 [导读] 摘要:为充分发挥分布式能源系统高效、节能、环保的优势,系统的优化规划与设计至关重要。 (宁夏回族自治区电力设计院有限公司宁夏银川 750001) 摘要:为充分发挥分布式能源系统高效、节能、环保的优势,系统的优化规划与设计至关重要。基于分布式能源系统的发展与演变历程,针对分布式热电联产系统、多能互补分布式能源系统和分布式能源互联网的优化规划与设计问题,对国内外相关研究内容进行了全面梳理,明确了当前的研究现状,并指出了未来可能的研究方向。 关键词:分布式能源系统;优化;多能互补;分布式能源互联网 引言 近年来,在国家能源局、国家电网公司、地方燃气公司等多方积极推动下,分布式能源的应用在中国渐成气候,但仍需依赖政府补贴维持生存,尚未走上完全市场化的道路。 作为一种系统性、复杂性节能减排方案,自分布式能源概念提出以来,系统优化规划和设计问题便引起了能源学者的足够关注。随着分布式能源系统内涵的不断深化和外延的不断衍生,其系统优化的范畴也在不断扩大,优化层次不断深入、优化方法不断创新。但总体而言,既往研究大多着重于优化方法层面的探讨,而对分布式能源系统自身的发展演变及其与之适应的优化规划设计问题的思考则略显不足。 在分布式能源的发展历程中,为了适应社会经济条件的变化,其系统应用形式也在不断推陈出新。总体而言,分布式能源的发展动因由节能主导、减排主导已过渡到安全、智能主导;与之相对应,分布式能源系统的结构模式也由早期的分布式热电联产系统、多能互补分布式能源系统,发展到现在的区域型分布式能源互联网。基于上述发展与演变历程,本文针对其不同发展阶段所面临的系统优化问题,综述了国内外的研究状况。同时,在对既有研究分析评述的基础上,提出了未来分布式能源系统优化研究的可能方向和关键课题。 1分布式热电联产系统优化 基于中国著名工程热物理学家吴仲华院士所提出的总能系统的理念,率先展开了对冷热电三联供系统的特性分析与优化设计相关研究工作。针对不同类型分布式热电联产技术的供能特性,提出了具有针对性的系统运行优化方法。基于遗传算法,建立了楼宇型分布式热电联产系统优化模型。基于混合整数非线性规划理论,构建了微型冷热电三联供系统的多目标运行优化模型。通过引入惩罚函数,构建了冷热电三联供系统的多目标优化模型。则在微燃机冷热电三联供系统仿真模型的基础上,建立了经济性优化模型。20多年来,国内外学者对分布式热电联产系统优化进行了大量的研究,取得了一系列创新性研究成果。本文从系统运行策略优化、设备配置与运行策略协同优化2个方面进行概述。 1.1运行策略优化 作为一种多产联供系统,分布式热电联产系统的能量调控与运行管理十分复杂,其运行调控对系统综合效益的实现至关重要。基于生命周期法,对楼宇型分布式能源系统“以热定电”和“以电定热”2种运行模式进行了优化分析。提出了一种跟随混合电热负荷的分布式热电联产系统优化运行策略,所提出的优化运行策略较传统“以热定电”或“以电定热”运行模式可取得更好的经济、环境和节能效益。考虑相关设备的变工况运行特性,通过耦合应用TRNSYS和Matlab构成联合仿真平台并引入遗传算法,对考虑部分负荷特性的小型冷热电三联供系统的运行策略进行优化,得到了逐时最佳运行工况。综上所述,围绕分布式热电联产系统运行策略优化,相关研究已突破“以热定电”、“以电定热”的常规运行模式,通过赋以优化模型足够的自由度,实现了供需两侧的互动、耦合。同时,设备部分负荷特性的考虑,也使得优化结果更具可靠性。 1.2设备配置与运行策略协同优化 分布式热电联产系统的经济性、节能性和环保性优势除了取决于系统的运行策略,受设备容量配置的影响也较大。设备的容量配置过大,不仅会使设备初投资过大,而且会导致系统长期低负荷运行;而设备容量配置过小,存在能源供应不足的软肋,二者都不能充分发挥分布式能源系统高效用能的优势。 近年来,分布式热电联产系统的优化范畴不断扩大,研究重点已从运行策略优化发展到设备配置与运行策略的协同优化。同时,优化方法不断创新,从早期的线性规划、混合整数线性规划,发展到粒子群算法、遗传算法等智能优化方法。 2多能互补分布式能源系统优化 与常规单体型分布式能源系统相比,耦合可再生能源和化石能源互补利用所构建的多能互补分布式能源的优化决策问题则更为复杂,其包含了从系统能流结构设计和设备类型选择、容量和数量配置到运行策略的整个优化过程。 2.1耦合可再生能源和化石能源的分布式能源系统优化 多能互补分布式能源系统在解决可再生能源供能不连续、缓解化石能源紧张和减少环境污染等方面具有巨大的优势。然而,目前多能互补分布式能源系统的优化研究工作中,对实际运行中可再生能源出力间歇性和随机性以及负荷需求的不稳定性的考虑较少。因此,加强可再生能源出力预测和需求侧负荷预测是今后的研究重点。 2.2基于微网的多能互补分布式能源系统优化 在多能互补分布式能源系统中,增加储能装置是解决可再生能源出力不连续、不稳定的有效措施。微网是指由多种分布式电源、储能装置、能量转换装置、相关负荷和监控、保护装置汇集而成的新兴发配电系统。微网不仅能消纳大量随机性和间歇性的可再生能源,还能在保证电能质量的前提下,满足区域内负荷需求。因此,微网为多能互补分布式联供系统提供了一个易于调节的平台,在满足热(冷)负荷的情况下,更有效的分配和储存电能,进一步提高能源利用率。所以,基于微网的多能互补联供技术具有重要的研究意义和广阔的应用前景;同时,在此基础上的系统优化研究成为当前的又一个研究热点。 3区域型分布式能源互联网优化 迄今为止,分布式能源系统的优化研究大多以楼宇型分布式能源为研究对象。即使是针对覆盖多个用户的区域型分布式能源系统,在优化建模过程中也大多沿用了供给侧能源垂直化管理的传统“中心”主义思维,假设全部能源负荷集中于某一节点,通过集中能源站满足其用能需求。基于以上假定,系统优化研究的重点主要集中在原动机的配置、冷热电负荷平衡调节等方面,而未能充分考虑供给侧分布式能

分布式能源

分布式能源研究概述 The Research Overview Of Distributed Energy System

摘要 分布式能源系统是采集包括清洁能源、化学能源和辐射能源等在内的一系列能源资源,并加以利用的分布式供能装置。分布式能源系统主要体现在对用户需求侧热电冷能量的供应,以实现对能量的梯级利用和对资源的综合利用的能量供应系统,该系统的发展和利用模式集节能、环保、经济和供能安全可靠性于一体,并根据本地资源情况,选择适当技术与设备,并经过周密设计以满足客户的具体要求。分布式能源系统在我国有着十分广阔的发展前景,对实现我国经济可持续发展具有十分重大的意义。 本文阐述了分布式能源系统的研究背景及国内外研究现状,介绍了分布式能源的概念、技术特点以及分布式能源系统区别于传统集中式供能系统的优点,着重介绍了燃气轮机冷热电联产供能系统。 关键词:分布式能源;热电冷联产;燃气轮机

Abstract Distributed energy system is a kind of distributed power device which takes advantage of a series of collected energy resources including clean energy, chemical energy and radiation energy and a kind of energy supply system which mainly supplies for the heating, electricity and refrigeration of the user, in order to realize the cascade utilization of energy and the comprehensive utilization of resources. The development and utilization model of this kind of system is a perfect combination of energy saving, environmental protection, economic and the utilization of energy safety and reliability. Besides, the system selects the appropriate technology and equipment, and meets the specific requirements of the clients with thorough design. Distributed energy system has a very broad development prospect in our country and it plays a significent role in the process of sustainable development of our country. The research background and status both at home and abroad of distributed energy system is expounded and the concept, technical features and the advantages differing from traditional centralized power system of distributed energy system is introduced. This paper focuses on the combinative system of heating, electricity and refrigeration of gas turbine. Keywords: Distributed Energy System, The Production Of Heating, Electricity And Refrigeration, Gas Turbine

天然气分布式能源简介

天然气分布式能源简介 一、天然气分布式能源概念概述 所谓“分布式能源”(Distributed Energy Sources)是指分布在用户端的能源综合利用系统。一次能源以气体燃料为主,可再生能源为辅,利用一切可以利用的资源;二次能源以分布在用户端的热电冷联产为主,其他中央能源供应系统为辅,实现以直接满足用户多种需求的能源梯级利用,并通过中央能源供应系统提供支持和补充。 天然气分布式能源是指利用天然气为燃料,通过冷热电三联供等方式实现能源的梯级利用,综合能源利用效率在70%以上,并在负荷中心就近实现能源供应的现代能源供应方式,是天然气高效利用的重要方式。建筑冷热电联产(Building Cooling Heating &Power, BCHP),是解决建筑冷、热、电等全部能源需要并安装在用户现场的能源中心,是利用发电废热制冷制热的梯级能源利用技术,能源利用效率能够提高到80%以上,是当今世界高能效、高可靠、低排放的先进的能源技术手段,被各国政府、设计师、投资商所采纳。 二、国家对天然气分布式能源的政策及未来发展方向 2011年10月9日,国家发改委、财政部、住房城乡建设部、国家能源局联合发布《天然气分布式能源指导意见》,分布式能源将由此迎来发展的春天. 相应政策主要体现在以下五个方面:

规划先行:政府制定天然气分布式能源专项规划,并与城镇燃气、供热发展规划统筹协调。 标准配套:政府部门制定电力并网规程和申办程序、科学合理的环保规定以及配套适用的消防条件。 投资补贴:对分布式能源项目适当给予投资补贴。 政策倾斜:政府土地部门给予优惠价格提供土地。政府在上网、电价、气价、供热价格等方面给予优惠。在近期内还可以给予分布式能源设备进口免税优惠。 金融支持:金融系统大力支持分布式能源发展,积极贷款,保证资金供应,在利息上给予一定的优惠政策。 未来5-10年发展方向 “十二五”初期启动一批天然气分布式能源示范项目,“十二五”期间建设1000个左右天然气分布式能源项目,并拟建设10个左右各类典型特征的分布式能源示范区域。未来5-10年内在分布式能源装备核心能力和产品研制应用方面取得实质性突破。初步形成具有自主知识产权的分布式能源装备产业体系。 2015年前完成天然气分布式能源主要装备研制。通过示范工程应用,当装机规模达到500万千瓦,解决分布式能源系统集成,装备自主化率达到60%;当装机规模达到1000万千瓦,基本解决中小型、微型燃气轮机等核心装备自主制造,装备自主化率达到90%。到2020年,在全国规模以上城市推广使用分布式能源系统,装机规模达到5000万千瓦,初步实现分布式能源装备产业化。 三、天然气分布式能源优势及可行性分析

分布式能源系统的现状与发展前景分析

分布式能源系统的现状与发展前景分析一)行业概况 所谓“分布式能源”(distributed energy sources)是指分布在用户端的能源综合利用系统。一次能源以气体燃料为主,可再生能源为辅,利用一切可以利用的资源;二次能源以分布在用户端的热电冷(植)联产为主,其他中央能源供应系统为辅,实现以直接满足用户多种需求的能源梯级利用,并通过中央能源供应系统提供支持和补充;在环境保护上,将部分污染分散化、资源化,争取实现适度排放的目标。 分布式能源系统(DistributedEnergySystem)在许多国家、地区已经是一种成熟的能源综合利用技术,它以靠近用户、梯级利用、一次能源利用效率高、环境友好、能源供应安全可靠等特点,受到各国政府、企业界的广泛关注、青睐。 二)行业发展的历史回顾 分布式能源系统的概念是从1978年美国公共事业管理政策法公布后,在美国开始推广,然后被其他发达国家所接受,分布式能源系统是位于或临近电负荷中心、生产的电能不是以大规模、远距离输送为目的的电能生产系统,或建立在其基础上的冷热电联产系统。 国际能源机构(IEA)正在进行一个包括33个国家在内的国际性能源技术研发合作计划,进行能源生产、能源消费领域的技术发

展与改进,当前已有40个研究项目在进行,包括化石燃料技术、分布式能源系统、终端用户的能效技术等等。IEEE 经过评估认为,到2010年分布式能源系统将占新增发电容量的30%。 三)行业的基本状况分析 美国:电力公司必须收购热电联产的电力产品,其电价和收购电量以长期合同形式固定。为热电联产系统提供税收减免和简化审批等优惠政策。截止2002年末,美国分布式能源站已近6000座。美国政府把进一步推进“分布式热电联产系统”的发展列为长远发展规划,并制定了明确的战略目标:力争在2010年,20%的新建商用或办公建筑使用“分布式热电联产”供能模式;5%现有的商用写字楼改建成“冷热电联产”的“分布式热电联产”模式。2020年在50%的新建办公楼或商用楼群中,采用“分布式热电联产”模式,将15%现有建筑的“供能系统”改建成“分布式热电联产”模式。有报道称,美国能源部计划在2010年削减460亿美元国家电力投资,采取的办法是加快分布式能源发展。美国能源部计划,2010年20%的新建商用建筑使用冷热电三联供发展计划,2020年50%的新建商用建筑使用冷热电三联供发展计划。 欧盟:据1997年资料统计,欧盟拥有9000多台分布式热电联产机组,占欧洲总装机容量的13%,其中工业系统中的分布式热电联产装机总容量超过了33GW,约占热电联产总装机容量的45%,欧盟决定到2010 年将其热电联产的比例增加1倍,提高

分布式能源系统

分布式能源系统 分布式能源系统是相对传统的集中式供能的能源系统而言的,传统的集中式供能系统采用大容量设备、集中生产,然后通过专门的输送设施(大电网、大热网等)将各种能量输送给较大范围内的众多用户;而分布式能源系统则是直接面向用户,按用户的需求就地生产并供应能量,具有多种功能,可满足多重目标的中、小型能量转换利用系统。 一、分布式能源系统的特征 作为新一代供能模式,分布式能源系统是集中式供能系统的有力补充。它有以下四个主要特征:[1] ①作为服务于当地的能量供应中心,它直接面向当地用户的需求,布置在用户的附近,可以简化系统提供用户能量的输送环节,进而减少能量输送过程的能量损失与输送成本,同时增加用户能量供应的安全性。 ②由于它不采用大规模、远距离输出能量的模式,而主要针对局部用户的能量需求,系统的规模将受用户需求的制约,相对目前传统的集中式供能系统而言均为中、小容量。 ③随着经济、技术的发展,特别是可再生能源的积极推广应用,用户的能量需求开始多元化;同时伴随不同能源技术的发展和成熟,可供选择的技术也日益增多。分布式能源系统作为一种开放性的能源系统,开始呈现出多功能的趋势,既包含多种能源输入,又可同时满足用户的多种能量需求。 ④人们的观念在不断转变,对能源系统不断提出新的要求(高效、可靠、经济、环保、可持续性发展等),新型的分布式能源系统通过选用合适的技术,经过系统优化和整合,可以更好地同时满足这些要求,实现多个功能目标。 二、分布式能源系统的优缺点 1.分布式能源系统的优点[2] 分布式能源系统的最主要优点是用在冷热电联产中。联产符合总能系统的“梯级利用”的准则,会得到很好的能源利用率,具有很大的发展前景。大型(热)电厂虽然电可远距离输送,但需建设电网、变电站和配电站并有输电损耗,而对于热,尤其是冷,就不像电能那样可以较长距离有效地输送。所以,除非事先特殊设计、安排好,否则,难以达到输送冷、热能的目的。因为大电厂选址有其自

汽轮机火用分析方法的热力系统计算

汽轮机火用分析方法的热力系统计算 前言 在把整个汽轮机装置系统划分成若干个单元的过程中,任何一个单元由于某些因素而引起的微弱变化,都会影响到其它单元。这种引起某单元变化的因素叫做“扰动”。也就是说,某单元局部参量的微小变化(即扰动),会引起整个系统的“反弹”,但是它不会引起系统所有参数的“反弹”。就汽轮机装置系统而言,系统产生的任何变化,都可归结为扰动后本级或邻近级抽汽量的变化,从而引起汽轮机装置系统及各单元的火用损变化。因此,在对电厂热力系统进行经济性分析时,仅计算出某一工况下各单元火用损失分布还是不够的,还应计算出当某局部参量变化时整个热力系统火用效率变化情况。 1、火用分析方法 与热力系统的能量分析法一样,可以把热力系统中的回热加热器分为疏水放流式和汇集式两类(参见图1和图2),并把热力系统的参数整理为3类:其一是蒸汽在加热器中的放热火用,用q’表示;其二是疏水在加热器中的放热火用,用y 表示;其三是给水在加热器中的火用升,以r’表示。其计算方法与能量分析法类似。

对疏水式加热器: 对疏水汇集式加热器: 式中,e f、e dj、e sj分别为j级抽汽比火用、加热器疏水比火用和加热器出口水比火用。1.1 抽汽有效火用降的引入 对于抽汽回热系统,某级回热抽汽减少或某小流量进入某加热器“排挤”抽汽量,诸如此类原因使某级加热器抽汽产生变化(一般是抽汽量减少),如果认为此变化很小而不致引起加热器及热力系统参数变化,那么便可基于等效焓降理论引入放热火用效率来求取某段抽汽量变化时对整个系统火用效率的影响。 为便于分析,定义抽汽的有效火用降,在抽汽减少的情况下表示1kg排挤抽汽做功的增加值;在抽汽量增加时,则表示做功的减少值;用符号Ej来表示。当从靠近凝汽器侧开始,研究各级抽汽有效火用降时,Ej的计算是从排挤l kg抽汽的火用降(e j-e c)ηej中减去某些固定

最新新能源及分布式发电技术期末复习

新能源及分布式发电复习 1.什么是新能源? 常规能源:技术比较成熟,已被广泛利用,在生产生活中起着重要作用的能源。(水是常规能源,可再生能源) 新能源:目前尚未被大规模利用,有待进一步研究实验与开发利用的能源。 2.为什么要开发利用新能源? (1)发展新能源经济是当今世界的历史潮流和必然选择 (2)发展新能源经济可为我国经济又好又快发展提供支撑 3.新能源分类?哪些能源属于新能源? (1)大中型水电;(2)可再生能源,包括小水电、太阳能、风能、现代生物质能、地热能、海洋能;(3)传统生物质能。 4.再生能源配额制。 再生能源配额制:指各省(区、市)均需达到使用可再生能源的基本指标,在电源中强制规定必须有一定的可再生能源配额。 考核范围:除水电之外的可再生能源电力,包括风力发电、太阳能发电、生物质能发电、地热发电和海洋能发电等。 配额制具有一定的强制性;配额制带有一定的问责条款。 5.太阳能发电优点。 安全可靠;使用寿命长;运行费用少;维护简单;随处可见,不需要远距离输送;没有活动部件、不容易损坏;无噪声;不需要燃料;不污染环境。 6.太阳能发电系统组成。 分类:利用太阳热能直接发电;将太阳热能通过热机带动发电机发电。 太阳能集热子系统;吸热与输送热量子系统;蓄热子系统;蒸汽发生系统;动力子系统;发电子系统。 槽式太阳能热发电系统:利用槽式抛物面反射镜聚光的太阳能热发电系统。 塔式太阳能热发电系统:采用多个平面反射镜来会聚太阳光,这些平面反射镜称为定日镜。由定日镜阵列,中心接收器,控制中心和发电系统组成。 碟式太阳能热发电系统——主要由碟式聚光镜、接收器、斯特林发动机、发电机组成,目前峰值转换效率可达30%以上。 7.用硼掺杂的叫P型硅,用磷掺杂的叫N型硅。 8.独立光伏发电系统组成。 光伏发电系统是太阳能电池方阵、控制器、电能储存及变换环节构成发电与电能变换系统。(按与电力系统的关系分为:增网型和并网型) 各元件作用:(1)太阳能电池方阵:将太阳能电池单体进行串并联并封装后,可以单独作为电源使用。(2)防反充二极管:其作用是避免由于太阳能电池方阵在阴雨天和夜晚不发电时或出现短路故障时,蓄电池组通过太阳能电池方阵放电。(3)蓄电池组:贮存电能并可随时向负载供电。(4)控制器:判断蓄电池是否已经达到过充点或过放点。(5)逆变器:将直流电变换为交流电的设备。 9.并网太阳能光伏发电系统,可逆流系统,不可逆流系统的区别。 并网光伏系统发的电直接被分配到住宅内的用电负载上,多余或不足的电力通过连接电网来调节;可逆流系统,为光伏系统的发电能力大于负载或发电时间同负载用电时间不相匹配而设计。不可逆流系统,指光伏系统的发电量始终小于或等于负荷的用电量,电量不够时由电网提供,即光伏系统与电网形成并联向负载供电。

迪士尼分布式能源站项目简介

上海国际旅游度假区核心区天然气分布式 能源站项目情况简介 一、项目背景 上海国际旅游度假区核心区天然气分布式能源站项目由华电新能源发展有限公司、上海申迪(集团)有限公司、上海益流能源(集团)有限公司按照45%、35%、20%股比共同组建的上海国际旅游度假区新能源有限公司负责投资、建设、运营、管理。 该项目为上海区域第一家按照以冷、热定电余电上网的原则规划,实现就近集中向核心区内娱乐设施、酒店、零售餐饮等提供冷媒水、采暖热水、生活热水以及压缩空气动力的能源站项目。 二、项目概况 该项目位于上海国际旅游度假区核心区,占地面积约2万平方米,总装机容量约35.2MW,按照园区冷热负荷逐年需求情况,布置8台4.4MW燃气内燃机,分两期安装,一期安装5台、二期安装3台,并留有扩建余地。 该项目最大限度利用发电余热制冷制热,实现能源梯级利用,保持系统的效率最高。在保障稳定、可靠的冷热供应前提下,采用多余电力上网的方式。为保证园区供能安全,本项目还具备黑启动功能。项目建成后一次能源利用率可达

到80%以上,年上网电量约为1.7万kWh,每年可节约标准煤约2.15万吨,每年可减少二氧化碳排放量约6万吨。 三、项目特点 1、采用多系统集成技术 该项目采用能源站集中控制系统与用户侧能源管理系统有效集成,保证站内各系统始终处于高效运行状态;采用了大温差制冷技术,可实现9.9℃大温差,降低了系统的整体能耗,提高余热设备效率;采用了冷热调峰设备满足了用户侧不同时段的能源需求,同时通过水蓄冷、蓄热技术的低谷收集高峰释放,提高整个系统的能源利用效率。 2、彰显绿色环保价值 该项目符合国家和上海市关于大力扶持天然气分布式发电的政策导向,采用燃气内燃机配套余热设备和蓄能设备,实现了能源梯级利用,不仅能提高能源利用效率,有效降低能源消耗,而且对于保护地区生态环境、实现“绿色低碳园区”的建设目标具有重大意义。 3、保障区域电网安全 该项目以高效、环保、节能的方式集中向园区供能,改善了区域用能方式,保护了核心区电网的安全运行。同时,在区域电网故障时,本项目的黑启动功能可以保证区域内用户的用能安全,避免过分依赖区域外的能源供应,可在关键时对区域电网起到较强的支撑作用。

分布式能源智能调度及管理系统软件设计说明书复习课程

第一章系统概述 “分布式能源智能调度及管理系统软件”简单的说就是把生产企业的能源消耗如:水、气(汽)、风、电的使用过程数据,监测、记录、分析、指导。实时监控企业各种能源的详细使用情况,为节能降耗提供直观科学的依据,为企业查找能耗弱点,促进企业管理水平的进一步提高及运营成本的进一步降低。使能源使用合理,控制浪费,达到节能减排,节能降耗,再创造效益的目的。通过数据分析,可以帮助企业对每条生产线、每个工作班组以及主要耗能设备进行实时考核,杜绝浪费,并可以帮助企业进一步优化工艺,以降低单位能耗成本,提高企业综合竞争力。为企业生产管理、计量管理、节能管理提高到一个新的概念。“分布式能源智能调度及管理系统软件”的开发应用是我们对节能减排、节能降耗实现的一种行之有效的解决方案。 在自动化技术和信息技术基础上建立的分布式能源智能调度及管理系统软件,以客观数据为依据,是冶金、化工、热力、电厂等能源消耗企业,实施节能降耗最根本的办法。推广先进的分布式能源智能调度及管理系统软件应用理念。改变传统的能源无科学依据的生产管理方式,是现代化大、中、小型企业先进的行之有效的重大管理措施,正成为各大公司各级管理者的共识。建立能源管理中心系统的基本目的就是要在提高能源系统的运行、管理效率的同时,找到生产工艺能源消耗最佳工艺数据,为企业提供一个成熟的、有效的、使用方便的能源系统整体管控解决方案;一套先进的、可靠的、安全的能源系统运行、操作和管理平台。并实现安全稳定、经济平衡、优质环保、监督考核的基本目标。 完善能源信息的采集、存储、管理和利用完善的能源信息采集系统,便于获得第一手运行工艺数据,实时掌握系统运行情况、及时采取调度措施,使系统尽可能运行在最佳状态,并将事故的影响降到最低。在企业能源管理部门的指导下,对能源系统采用分散控制和集中管理。针对能源工艺系统的分散和能源管理要求集中的特点 , 建立“分布式能源智能调度及管理系统”可以满足能源工艺系统特点的分散控制和集中管理 , 使企业的能源管理水平适应企业的战略发展需要。

火用分析方法及其应用

[?]分析方法及其应用 摘要:本文从?的定义出发,给出了?的定义以及分析的意义。?传递研究?的传递和转换规律,系经典热力学在从热静力学向热动力学过渡的过程中产生的研究新领域。阐述了静态的?分析方法的特点,分析了?传递的产生与发展现状,指出?传递的学科属性及其应用。 关键词:热力学;?;?分析;?传递 1 引言 热力学第一定律“能量守恒定律”只是从数量上说明了能量在转化过程中的总量守恒关系,它可以发现装置或循环中哪些设备、部位能量损失大,但未顾及到能量质量的变化,不能发现耗能的真正原因。而热力学第二定律阐述了孤立系统熵增原理,从能的本性的高度,规定过程发生的方向性与限制,特别是指出了能量转化的条件和限制,指出能量在转移过程中具有部分地乃至全部地失去其使用价值的客观规律。为提高火电机组的发电效率,减少在电力生产过程中排放物对环境的影响,人们对火电机组的热力系统性能开展了大量的理论与试验研究。从热力学观点,所从事的这些研究大体可分为能量分析与?分析两类方法。传统的研究主要基于热力学第一定律的能量分析,它们从能的“量”方面评价热力设备和系统,而近年来广泛开展的?分析法则是基于热力学第二定律,它们从能的“量”与“质”2个方面进行评价。后者既能辨别?损的性质,即内部不可逆性与外部排放性,也能揭示?损的分布规律,从而能很好地指明系统性能改进方向。 2 ?的概念及其定义 表征物质所含热量多少的状态参数之一的焓,只表达了单位质量物质所含热量的多少,但并未表明热量质量的优劣。能源是有级别的,相同的热能量,其有效作功的能力并不相同。最能说明这一问题的是:稍高于环境温度的锅炉排出的烟气,尽管其量很大,但其热量很难加以利用。

分布式能源系统的热力学分析_史凯

科技信息2011年第19期 SCIENCE&TECHNOLOGY INFORMATION 1研究现状综述 1.1分布式能源系统简介 分布式能源是指安装在用户端的高效冷热电联供系统濉溪。分布式能源主要包括农村小水电、小型独立电站、废弃生物质发电、煤矸石发电,以及余热、余气、余压发电等。利用可再生能源(风能、太阳能、水能、生物质能、地热能、海洋能等非化石能源)的发电也属于分布式能源的范畴。分布式能源也称分布式供能、分散式发电、分布式供电。分布式能源系统也叫做冷热电三联供系统。目前,分布式能源系统主要是以燃气作为能源,将制冷、供热(采暖和供热水)及发电过程一体化的多联产系统。主要是相对于大型的区域电厂而言,广义上是指小型的能量梯级利用系统,在用户现场或靠近用户现场的小型和微型独立输出电、热(冷)能的系统[1]。主要设备包括燃机、余热锅炉、非电制热制冷机组等。 1.2分布式能源系统的特点 目前国际上分布式能源系统是采用天然气作为主要能源,它先利用天然气发电,将发电后的余热用于供热制冷,再将更低温度的废热供应生活热水。现在世界上一些发达国家的热电效率已经达到了96%以上,可将天然气的所有能量吃光用尽。这一技术带来的好处是:①能源利用效率大幅度提高;②由于兼并发电,经济效益好;③冬夏实现天然气供应的平衡;④燃气价格承受能力大幅度提高。大型发电厂中集中式热电联产是一种成熟的能源供应形式,然而我国大部分地区夏季都有空调制冷需求,并且空调制冷负荷占了相当比例的夏季电负荷,造成用电紧张,因此发展各种形式的冷热电联产系统,对一次能源进行有效的梯级利用是解决当前能源短缺问题的一种途径。此外,分布式能源,相对于大型集中式能源系统拥有高效,灵活,可靠性高,面向用户等优点,在世界范围内掀起能源供应形式的革命其中分布式冷热电联产系统与分布式可再生能源系统一起,在这场革命中获得了广泛的应用,拥有光明的发展前景[2]。所以,分布式冷热电联产系统的实验与理论研究对于解决我国能源问题,提供能源政策的依据等方面有着重要的意义。 1.3我国分布式能源实现热电冷联产的现状及发展方向 1)现状 目前以天然气为燃料的分布式能源建设,已由学术研讨,进入工程开发,在北京,上海、广东已有一批工程实现热、电、冷产,以其自身优势和经济效益显示其强大生命力。目前我国北京、上海、广东省已有一批分布式热、电、冷工程投入运行,取得明显的经济效益、环保效益和社会效益。我国的供电系统从规模上分为集中输电网络系统、配电网络系统和分布式能源系统3类。集中输电网络系统和配电网络系统是国家级,省级电力部门以及地方级电力部门所经营的集中供电系统,分布式能源系统(Distributing Energy System)[3]。这是相对于集中供电网络系统而言的一种分散布置的小型供电热冷站,由用户所经营。分布式能源系统靠近负荷(电、热、冷),采用较小型的能源机组向所在小区域联供热电冷。它所采用的机组一般是以天然气为主要燃料(燃油为备用燃料)。由于分布式能源系统可热电冷联供,使燃料得到梯级利用,其热效率可达70%~85%,电损耗低(2%~3%)。分布式能源系统是一种以燃气作为能源,将制冷、供热(采暖和供热水)及发电过程一体化的多联产系统,通常由发电机组、溴化锂吸收式冷(热)水机组和换热设备组成。该系统是将高品位热能用于发电,发电机排放的低品位能源(烟气余热、热水余热)用于供热或制冷,以实现能源的梯级利用,目的在于提高能源利用效率,减少碳化物及有害气体的排放。 2)发展趋势 我们必须提高天然气能源的利用效率。应当注意到,发达国家在能源价格升高的压力下,多年来一直在不断地努力提高能源利用效率。分布式能源系统,就是美国在第一次能源危机的1973年之后不久开始发展的。进入本世纪以来,美、欧、日等国都加快了发展分布式能源的步伐。美国能源部计划2010年DES/CCHP的发电装机容量达到92GW,占全国总用电量的14%;2010~2020年,还会新增95GW,使其装机容量占到全国总用电量的29%。2000年英国新CCHP项目共1536个,总装机容量达到4176GW,计划到2010年可以达到10 GW,增加1倍[4]。相比之下,我国面临的能源环境形势比他们更严峻,因此应当学习他们的经验,利用他们的成果,在提高能源利用效率方面做出更大的努力。综上所述,中国面临着大力发展天然气DES/CCHP,快速提高能效、改善环境的极好机遇,从而可以从容应对能源环境严峻形势的挑战。 天然气的利用规划进行协调整合的重点是:是DES/CCHP为主的用户有承受国际LNG市场价格的能力;可以推动天然气产业快速发展。LNG/管输天然气规划必须与产业、电力、城镇等规划协调整合。作为天然气主要下游用户的工业和城镇建筑物的DES/CCHP,如果没有在上述各个规划层面上与天然气供应和规划密切配合,是根本不可能实现的。DES/CCHP与电力发展规划的关系更为密切。美国到2010年DES/CCHP发电将占总发电量的14%;2020年DES/CCHP发电将占总发电量的29%。而我国目前的电力发展规划基本上排斥DES,实际上也就是在排斥天然气的高效利用。这个问题,如果不先在观念、法律和规划层面上解决,DES/CCHP是难以发展的。DES/CCHP 规划是节能减排规划最有力的保证之一。天然气多了,DES/CCHP快速发展了,工业和建筑物的能效即可得以大幅度提高,环境也会大大改善。因此在节能减排规划中,必须把发展DES/CCHP列为重要的内容。当然,推动天然气产业、DES/CCHP技术和其他机遇的协调整合,还需要法律、政策等各方面举措的支持和配合。例如,在错综复杂的相互影响的各因素中,电力法的修改和电力体制改革的加速就是一个很关键的因素。但是,只有在领导的认识和规划的层面上加以落实,才能够有力地促进其他政策、法律方面的前进。历史给中国发展天然气产业和分布式能源提供了技术,积累了经验,能源和环境的挑战也给中国协调和同步发展分布式能源和天然气产业创造了历史的机遇。因此中国必须利用后发优势,跨越发展,用十几年的时间完成发达国家几十年走过的提高能效、改善环境的历程。 分布式能源系统的热力学分析 史凯许运礼 (济南热电有限公司山东济南250021) 【摘要】分布式能源系统,相对于传统的集中供电方式而言,是指分布在用户端的能源综合利用系统,即将冷热电系统以小规模、小容量、模块化、分散式的方式布置在用户附近,可独立地输出冷、热、电能的系统。介绍了以燃气作为能源的分布式能源系统的原理,国内发展现状,并对分布式能源系统的冷热电三联供系统进行了热力学分析,以微型燃气轮机(微燃机)分布式能源系统(DES)为例确定了各组件的热力学过程和火用损失的计算方法,与传统的冷、热、电分产系统进行比较,以推动我国分布式能源事业的健康发展。 【关键词】微型冷热电三联供系统;分布式能源系统,热力学分析;能量分析,火用分析 【Abstract】Compared with the traditional centralized supply power mode,the distributed energy is referred to the energy comprehensive utilization system that distributes at the user end.It’s such a system that the heating and power system is arranged near the use r with small scale, small capacity,modularization,dispersed mode.And the cold,thermal and electricity can be putout independently.The distributed energy system that takes the gas as its energy,Thermodynamic analysis on combined cooling heating and power system of distributed energy system was given,the thermodynamic process and calculation method of energy loss of each component for distributed energy system(DES)with micro gas turbine have been determined,so as to promote the healthy development of distributed energy enterprise in our country. 【Key words】M icro combined cooling;H eating and power system;T he distributed energy system;E nergy and exergy analysis ○电力与能源○ 765

相关文档
最新文档