分布式能源系统

合集下载

分布式能源系统的设计与优化

分布式能源系统的设计与优化

分布式能源系统的设计与优化引言随着能源需求的不断增长和传统能源资源的日益稀缺,分布式能源系统逐渐成为满足能源需求的重要方式之一。

分布式能源系统以其灵活性、高效性和可持续性而备受关注。

本文将介绍分布式能源系统的设计与优化问题,并探讨相关的技术和方法。

一、分布式能源系统简介分布式能源系统是指将多种能源资源与能源转换设施集成在一个系统中,通过本地能源产生、转换和利用,提供可靠、高效和环保的能源供应。

分布式能源系统由多个能源源头、分布式能源转换设施和能源利用设施组成,能够满足局部区域的能源需求。

1.1 分布式能源系统的优势分布式能源系统相比传统能源系统具有以下优势: - 灵活性:分布式能源系统可以根据不同地区的能源资源分布和需求特点进行灵活的布局和配置。

- 高效性:分布式能源系统采用本地能源产生和转换,减少了能源的输送损耗,提高了能源利用效率。

- 可持续性:分布式能源系统采用可再生能源和清洁能源作为能源资源,减少了对传统能源资源的依赖,促进了可持续发展。

- 低碳排放:分布式能源系统减少了能源输送过程中的能源损耗和二氧化碳排放,降低了对环境的负面影响。

1.2 分布式能源系统的应用领域分布式能源系统可以广泛应用于以下领域: - 居民住宅区:分布式能源系统可以为住宅区提供电力、热能和冷能,满足居民的能源需求。

- 商业综合体:分布式能源系统可以为商业综合体提供稳定的电力供应,保证商业运营的正常进行。

- 工业园区:分布式能源系统可以为工业园区提供电力、热能和冷能,满足工业生产的能源需求。

- 农村地区:分布式能源系统可以为农村地区提供电力、热能和冷能,改善农村能源供应状况。

- 岛屿和偏远地区:分布式能源系统可以为岛屿和偏远地区提供可靠的能源供应,减少对外界能源来源的依赖。

二、分布式能源系统的设计分布式能源系统的设计是指根据能源资源的分布和能源需求的特点,确定分布式能源系统的结构、配置和运行策略,以实现高效、可靠和经济的能源供应。

《分布式能源系统构造及建模研究》

《分布式能源系统构造及建模研究》

《分布式能源系统构造及建模研究》篇一一、引言随着社会对能源需求日益增长,能源系统的构造与优化已成为国内外学者研究的热点。

传统的集中式能源系统因高成本、低效率等缺陷逐渐暴露,而分布式能源系统(DES, Distributed Energy System)凭借其高灵活性、低成本、高效性等特点受到了广泛的关注。

本文将详细研究分布式能源系统的构造原理、模型建模方法及系统特点,旨在为实际应用提供理论依据和技术支持。

二、分布式能源系统概述分布式能源系统是指以多种不同能源方式为补充和协作,采用分布式管理方式,将能源供应、转换、储存和利用等环节整合在一起,形成一种高效、灵活的能源系统。

其核心思想是利用分散的能源资源,通过优化配置,实现能源的高效利用和环境的可持续发展。

三、分布式能源系统构造(一)构造原理分布式能源系统的构造主要遵循以下原则:1. 多样性原则:系统应采用多种不同的能源方式,如风能、太阳能、生物质能等,以保障能源供应的稳定性和可靠性。

2. 高效性原则:系统应通过先进的控制技术和管理策略,实现能源的高效利用和优化配置。

3. 灵活性原则:系统应具备高度的灵活性,能够适应不同环境和需求的变化。

(二)主要组成部分分布式能源系统主要由以下几个部分组成:1. 能源供应部分:包括风能发电、太阳能光伏发电、生物质能等。

2. 能源转换部分:包括电力转换、热力转换等。

3. 能源储存部分:包括电池储能、热储能等。

4. 管理系统:负责整个系统的管理和控制,包括监控、调度和优化等。

四、分布式能源系统建模方法(一)物理模型建模物理模型建模主要是通过构建系统各部分之间的物理关系,描述系统的运行过程和特点。

这种建模方法可以直观地反映系统的运行状态和性能。

(二)数学模型建模数学模型建模则是通过建立系统的数学方程或算法,描述系统的运行规律和特点。

这种建模方法可以更加精确地描述系统的运行过程和结果,便于进行定量分析和优化。

(三)混合建模方法混合建模方法则是结合物理模型建模和数学模型建模的优点,综合运用两种建模方法,以更全面地描述系统的运行过程和特点。

分布式能源系统的优势

分布式能源系统的优势

分布式能源系统的优势随着社会的发展和能源需求的增长,传统的集中式能源系统面临诸多挑战,如能源浪费、环境污染、能源安全等问题日益凸显。

为了应对这些挑战,分布式能源系统逐渐成为人们关注的焦点。

分布式能源系统是指将能源生产设备分布在不同地点,通过互联网等技术进行集成管理的能源系统。

相比传统的集中式能源系统,分布式能源系统具有诸多优势,本文将从经济、环保、安全等方面进行探讨。

首先,分布式能源系统在经济方面具有明显优势。

传统的集中式能源系统需要大量的基础设施建设和维护成本,而分布式能源系统可以根据实际需求进行规模化建设,灵活性更强。

此外,分布式能源系统可以更好地利用可再生能源,如太阳能、风能等,降低能源生产成本。

通过分布式能源系统,用户可以自行生产部分或全部所需能源,实现自给自足,减少能源采购成本,从而降低能源消费支出。

其次,分布式能源系统在环保方面也具有显著优势。

传统的集中式能源系统往往依赖于化石能源,如煤炭、石油等,会产生大量的二氧化碳等温室气体,加剧全球气候变暖问题。

而分布式能源系统主要利用可再生能源,减少对化石能源的依赖,降低温室气体排放,有利于改善环境质量,保护生态平衡。

此外,分布式能源系统可以减少能源传输过程中的能量损耗,提高能源利用效率,减少能源浪费,有利于可持续发展。

再次,分布式能源系统在能源安全方面也具备独特优势。

传统的集中式能源系统容易受到自然灾害、恐怖袭击等因素的影响,一旦发生故障,可能导致大范围的停电事故,影响社会稳定。

而分布式能源系统具有分散性和弹性,即使某一部分系统发生故障,其他部分仍然可以正常运行,保障能源供应的连续性和稳定性。

此外,分布式能源系统可以促进能源多元化,降低对某一种能源的过度依赖,提高能源供应的安全性。

综上所述,分布式能源系统在经济、环保、安全等方面具有诸多优势,是未来能源发展的重要方向。

随着技术的不断进步和政策的支持,相信分布式能源系统将在未来发挥越来越重要的作用,为人类创造更加清洁、高效、安全的能源未来。

分布式能源系统的优势

分布式能源系统的优势

分布式能源系统的优势1. 引言分布式能源系统是指将可再生能源资源(如太阳能、风能、水能等)通过分散的、独立的小型能源系统进行收集、转换和利用的一种能源系统。

与传统的集中供电系统相比,分布式能源系统具有许多优势。

本文将详细探讨分布式能源系统的优势。

2. 独立性和可靠性分布式能源系统允许个人和机构独立地生成、使用和储存能源,不依赖于传统的公共电力网。

这使得用户在面临公共电力网故障或停电时依然可以正常使用电力。

此外,由于分布式能源系统是基于分散的小型能源系统构建的,这种系统本身就具有高度的可靠性,即使某个系统故障,其他系统仍然可以正常运行。

3. 可持续性和环保性分布式能源系统采用可再生能源资源作为主要的能源来源,如太阳能和风能。

相比之下,传统的集中供电系统主要依赖于化石燃料,并且会产生大量的二氧化碳等温室气体排放。

而可再生能源不仅减少了对化石燃料的依赖,还显著降低了温室气体的排放量,对环境更加友好。

4. 能源效率和节约成本分布式能源系统通常采用近距离输电方式,减少了输电过程中的能量损耗。

同时,分布式能源系统还可以利用机会捕捉到传统集中供电系统无法利用的废热等副产品。

这种废热利用提高了整体的能源效率,并降低了运行成本。

此外,由于用户可以直接生成自己所需的电力,无需向公共电力公司购买电力,在长期运行中也可以实现节约成本。

5. 网络安全和抗灾性传统的集中供电系统通常存在着网络安全的隐患,一旦遭受黑客攻击或其他恶意行为,则可能导致整个供电系统瘫痪。

而分布式能源系统由于其分散性和独立性,使得单个节点遭受攻击或故障不会影响整个系统的正常运行。

这种抗灾性使得分布式能源系统在面对自然灾害和网络威胁时更为可靠。

6. 地区经济发展和社会效益采用分布式能源系统可以促进地区经济发展。

分布式能源资源的充分利用可以提供更多就业机会,并吸引投资者进入地区,进一步推动当地产业发展。

同时,由于分布式能源系统减少了对传统集中供电公司的依赖,降低了用户用电成本,增加了人们对清洁环保电力的认知和使用意愿,从而带来了良好社会效益。

分布式能源系统的优势

分布式能源系统的优势

分布式能源系统的优势随着全球能源危机的加剧和环境问题的日益突出,分布式能源系统逐渐成为当前能源领域的重要发展方向。

分布式能源系统是指在用户侧或接近用户侧的地方,通过小型、分散的发电设备为用户提供电力的一种新型能源供应方式。

这种系统不仅可以提高能源利用效率,还可以增加能源的安全性和可再生性。

本文将从多个方面探讨分布式能源系统的优势。

提高能源效率分布式能源系统通过将发电源尽量靠近负荷中心,使得能量传输损耗降到最低。

传统的集中式发电模式通常需要通过长距离输电线路将发电产生的能量输送到消费地点,这在一定程度上导致了能量损耗。

例如,在长途输电过程中,因线路阻抗造成的能量损失很容易达到10%或更多。

而分布式能源系统通过就近发电,不仅显著减少了输电损耗,还能有效降低运营成本。

此外,某些分布式能源系统,例如联合供热与电(CHP)系统,能够同时提供热水和电力,提高了整体能源利用效率。

CHP系统利用同一燃料来源,最大化能源转换效率,相比于分别发电和供热,可以提高总效率达70%以上。

提升可再生能源比例分布式能源系统非常适合集成可再生能源,例如太阳能、风能等。

由于这些新能源资源在地理位置上分布广泛,分布式能源系统允许用户在家中或附近安装小型的太阳能发电装置或风力发电机,从而直接利用自然资源。

在当前大力倡导低碳经济和绿色发展的背景下,分布式可再生能源的发展,将进一步提升整个社会对可再生能源的使用比例,有助于实现减排目标。

例如,在一些国家和地区,通过政府政策支持以及技术进步,大面积推广屋顶光伏电池板,使得居民家庭和商业建筑能够自给自足,减轻对化石燃料的依赖。

增强能量安全性与韧性传统集中式发电厂通常面临单点故障风险,一旦发生意外事故,会对大面积区域造成停电。

而分布式能源系统由于其特点,每个小型发电单元独立运行,因此即使个别设备出现故障,其余设备仍然可以继续正常工作。

这种冗余设计,不仅提高了供电的可靠性,还增强了整个电网的韧性。

分布式能源

分布式能源

分布式能源一、引言分布式能源是指通过各种可再生能源技术(如太阳能、风能、水能等)将能源资源分散地分布在不同的地区或建筑物中,利用当地的能源资源满足能源需求。

与传统的集中式能源系统相比,分布式能源具有更强的灵活性和可持续性,可以降低对传输线路的依赖,同时减少能源损耗和环境污染。

二、分布式能源技术1. 太阳能太阳能是当前应用较为广泛的分布式能源技术之一。

利用光伏发电技术,太阳能光伏板将太阳辐射转化为电能,通过逆变器将直流电转化为交流电供电使用。

分布式太阳能系统可以安装在房屋屋顶、停车棚等地方,发电功率可以根据需求进行灵活配置。

2. 风能风能是另一种常见的分布式能源技术。

通过风力发电机将风能转化为电能,供应到当地的用电网上。

风能资源广泛分布于地球表面,尤其是在近海地区和高海拔地区,可以根据当地风速情况选址安装风力发电机组。

分布式风能系统的安装也可以考虑在建筑物的屋顶、高处山丘等地。

3. 生物质能生物质能是通过利用生物质燃料(如农作物秸秆、木材废料等)进行燃烧或发酵,产生热能或发电。

分布式生物质能系统可以将生物质燃料在当地进行生产和利用,减少对能源的长距离运输,降低运输损耗和环境影响。

4. 水能水能是一种常见的分布式能源技术,通过利用水流或水位差来驱动水轮机发电。

分布式水能系统可以建设在河流、湖泊等水源附近,利用自然水能资源进行发电。

此外,分布式水能系统还可以与其他能源技术结合,如与太阳能光伏板结合建设浮动式光伏发电系统。

三、分布式能源的优势1. 能源供给可靠性分布式能源系统将能源资源分散地分布在各个地区或建筑物中,减少了对传输线路和中心能源供应系统的依赖。

即使某个区域或建筑物的能源系统出现故障,其他区域的分布式能源系统仍然可以继续供应能源,提高了能源供给的可靠性。

2. 能源损耗减少传统的集中式能源系统需要将能源从发电厂输送到用户,这个过程中会有能源的损耗。

而分布式能源系统更接近用户,能够减少能源输送过程中的损耗,提高能源利用效率。

分布式能源系统

分布式能源系统

3.3 中国分布式发电产业前景展望
截止2014年底全国天然气分布式能源项目总装机容量约 3.8GW,而政府规划到 2020年天然气分布式能源总装机容量达50GW, 缺口约为45GW,目前天然气
分布式能源项目投资单价约500万元/MW, 因此2016到2020年间天然气分布式
能源项目总投资规模达2250亿元。国务院发展研究中心资源与环境政策研究所 编写的《中国气体清洁能源发展报告2015》预计到2020年中国天然气消费量可 达4000亿立方米,在一次能源消费中的占比达到10%以上。其中,城市燃气为 1040亿立方米(占26%),工业燃料用料1560 亿立方米(占39%),发电用 气为920亿立方米(占23%),化工用气为480亿立方米(占20%)。假设发电 用气920亿方中60%为天然气分布式项目且天然气机组年用气量为200万方/MW, 则 2020年天然气分布式能源的装机容量为27.6GW。假设天然气分布式能源项 目投资单价约500万元/MW,2020年间天然气分布式能源的预计投资为 1190亿 元,发展前景非常乐观。
2.2 美国分布式发电产业现状
分布式能源技术起源于美国。美国是世界上开发新能源和可再生分布式能源发 电最多的国家,也是全球绝大多数的商用分布式电源设备的主要提供商。1978 年美国开始发展小型热电联产 , 并且逐步走向冷热电联供。截止到2010年,美 国分布式能源站6000 多座,总装机达到9200万kW,占全国发电量14%。美国 分布式能源项目又以天然气分布式为主,以天然气为原料的热电联产装机容量 占热电联产总装机容量的 73%。美国政府为了增加分布式能源站的开发利用, 为其设置了投 资税减免、审批简化、支持并网等扶持政策,并于1999年提出了 《分布式能源创意》和《分布式能源2020年纲领》,明确提出力争到2020年实 现50%的新建商用建筑和15%的现有商用建筑采用“分布式热电联产”。

分布式能源系统介绍

分布式能源系统介绍

分布式能源系统介绍分布式能源系统是一种能够在小范围内产生、转换、存储、分配和管理能源的系统。

它利用分散的能源资源,将能源产生和消耗相结合,实现能源的高效利用和可持续发展。

分布式能源系统与传统的集中式能源系统相比,具有更好的灵活性、可靠性、可持续性和环境友好性。

首先是能源产生。

分布式能源系统可以利用多种能源资源进行能源产生,如太阳能、风能、水能和生物能。

这些能源资源广泛分布于各个地区,可以充分利用当地的资源优势。

例如,利用太阳能光伏发电系统可以直接将太阳能转化为电能,而无需传输电能,不仅节约能源,还可以减少能源的损耗和环境污染。

其次是能源转换。

分布式能源系统将能源从一种形式转化为另一种形式,以适应不同的能源需求。

例如,将太阳能转化为电能,或者将生物能转化为液体燃料等。

能源转换可以实现能源的多样化利用,增加能源的可持续性和可靠性。

第三是能源储存。

分布式能源系统通过能源储存技术将多余的能源存储起来,以便在需要时使用。

能源储存可以解决能源供需不平衡的问题,提高能源系统的灵活性和可靠性。

例如,利用电池技术可以将太阳能发电系统产生的电能储存起来,以备不时之需。

第四是能源分配。

分布式能源系统将产生的能源分配给需要的地方,并保证能源的稳定供应。

能源分配可以通过能源网络、智能电网和能源交易市场等方式进行。

例如,利用微网技术可以将太阳能发电系统产生的电能分配给附近的用户,从而实现电能的局部供应和需求平衡。

最后是能源管理。

分布式能源系统通过能源管理技术对能源进行监测、控制和优化,以实现能源的高效利用和减少能源的浪费。

能源管理可以通过智能电表、能源监测系统和能源管理软件等进行。

例如,利用智能电表可以实时监测电能的使用情况,根据需要进行调整,以减少能源的浪费。

总之,分布式能源系统是一种灵活、可靠、可持续和环境友好的能源系统。

它能够利用分散的能源资源,满足不同地区和不同用户的能源需求,同时减少能源的损耗和环境污染,促进能源的可持续发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分布式能源系统分布式能源系统是相对传统的集中式供能的能源系统而言的,传统的集中式供能系统采用大容量设备、集中生产,然后通过专门的输送设施(大电网、大热网等)将各种能量输送给较大范围内的众多用户;而分布式能源系统则是直接面向用户,按用户的需求就地生产并供应能量,具有多种功能,可满足多重目标的中、小型能量转换利用系统。

一、分布式能源系统的特征作为新一代供能模式,分布式能源系统是集中式供能系统的有力补充。

它有以下四个主要特征:[1]①作为服务于当地的能量供应中心,它直接面向当地用户的需求,布置在用户的附近,可以简化系统提供用户能量的输送环节,进而减少能量输送过程的能量损失与输送成本,同时增加用户能量供应的安全性。

②由于它不采用大规模、远距离输出能量的模式,而主要针对局部用户的能量需求,系统的规模将受用户需求的制约,相对目前传统的集中式供能系统而言均为中、小容量。

③随着经济、技术的发展,特别是可再生能源的积极推广应用,用户的能量需求开始多元化;同时伴随不同能源技术的发展和成熟,可供选择的技术也日益增多。

分布式能源系统作为一种开放性的能源系统,开始呈现出多功能的趋势,既包含多种能源输入,又可同时满足用户的多种能量需求。

④人们的观念在不断转变,对能源系统不断提出新的要求(高效、可靠、经济、环保、可持续性发展等),新型的分布式能源系统通过选用合适的技术,经过系统优化和整合,可以更好地同时满足这些要求,实现多个功能目标。

二、分布式能源系统的优缺点1.分布式能源系统的优点[2]分布式能源系统的最主要优点是用在冷热电联产中。

联产符合总能系统的“梯级利用”的准则,会得到很好的能源利用率,具有很大的发展前景。

大型(热)电厂虽然电可远距离输送,但需建设电网、变电站和配电站并有输电损耗,而对于热,尤其是冷,就不像电能那样可以较长距离有效地输送。

所以,除非事先特殊设计、安排好,否则,难以达到输送冷、热能的目的。

因为大电厂选址有其自身的要求,一般来说,附近难以有足够大量的、合适的冷、热能用户,无法进行有效的联产。

分布式能源系统却正好相反,按需就近设置,可以尽可能与用户配合好,也没有远距离输送冷、热能的问题,大电网的输电损失问题也不存在了。

所以,虽然分布式能源系统纯动力装置本身效率低、价钱贵,但可以充分发挥其联产的优点,体现出它的优越之处。

分布式能源系统还可以让使用单位本身有较大的调节、控制与保证能力,保证使用单位的各种二次能源能够充分供应,非常适合对发展中区域及商业区和居民区、乡村、牧区及山区提供电力、供热及供冷,大量减少环保压力。

总之,分布式能源系统可满足特殊场合的需求,为能源的综合梯级利用提供了可能,为可再生能源的利用开辟了新的方向,并可为提高能源利用率、改善安全性与解决环境污染方面做出突出贡献。

这也是一个很重要的优点。

2.分布式能源系统的缺点分布式能源系统的主要不足在于,由于它是分散供能,单机功率很小,比起最大电厂单机功率有百万千瓦以上、单厂功率近千万千瓦而言,发电效率显然比不上后者。

这是因为现有动力设备都是机组越大,效率越高。

40万千瓦的、以燃气轮机为主的联合循环装置效率比40kW回热燃气轮机的效率要高1倍。

“麻雀虽小,五脏俱全”,因此大机组单位功率的售价相比小机组要低得多,相差近几倍。

大机组集中在一起,有专门高级技工运行维护,安全性、工作寿命都应该更有保证。

所以,要对纯发电成本和单位千瓦初投资作比较,分布式能源系统的经费投入肯定要大大高于现在的大电力系统。

另外,分布式能源系统对当地使用单位的技术要求要比简单使用大电网供电高,要有相应的技术人员与适合的文化环境。

三、分布式能源系统的适用1.分布式能源系统适用的设备与系统[2]分布式能源系统首先得有一台动力设备。

经典蒸汽动力装置不适合用于出力较小的情况,所以一般不用。

现在文献上提到的有燃气轮机、活塞式内燃机、燃料电池与斯特林发动机等。

其中燃料电池与斯特林发动机在工程应用上严格说都还不够成熟,未达到广泛商业实用的程度,只可作为示范中试装置。

燃料电池适合用于小机组,且变工况性能也好。

但比较成熟的技术对燃料要求较高,正在研制中的高温燃料电池则要与热机联合才能获得较高效率。

目前,实际广泛应用的是广义的内燃机——叶轮机械式(燃气轮机)与活塞式的,尤其是回热燃气轮机。

应该说,燃气轮机与活塞式内燃机相比,前者较适宜于功率较大的情况,后者则正相反。

在适用于分布式能源系统的功率范围内,目前两者能达到的发电效率均在30%以上。

从价格上来看,活塞式内燃机造价会便宜一些。

但实际应用还是以燃气轮机为多,原因可能是使用分布式能源的地方都是经济比较发达的地区,能够承受昂贵的费用。

而燃气轮机在减振、消声、降低排放污染、重量轻、占地小等方面都有潜在的优势。

另外,它的供热能力也比活塞式内燃机大。

分布式能源系统的优势在于冷热电联产,所以除了动力设备外,还得有一个系统。

例如,最常规的办法是利用广义的内燃机的排气余热通过余热锅炉产生蒸汽供热,同时通过吸收式制冷设备供冷。

通常是简单或回热循环燃气轮机的冷热电联产。

但要保证联产系统能满足很大范围变工况下的任意冷、热、电输出需求(这是联产系统的关键科技课题之一),上述系统是难以做到的。

这时可用程循环(回注蒸汽循环,有时也称STIG循环)加上补燃,就可以使热电联产系统能够在电为设计点的5/3到0、热为设计点的近3倍到0的任意热、电数值的匹配要求下,高效安全运行。

对冷、热、电联产的情况,为达到广阔范围的冷、热、电输出,上述程循环加补燃在原则上也是合适的,但可用范围的具体数字尚待研究。

2.适合用分布式能源系统的地区由于分布式能源系统的初投资大,要用好燃料;同时要有比较稳定的冷、热、电用户,主要是第三产业和住宅用户;要求具有环保性能较好的特点等等,所以,它在我国比较适合应用的地区显然是经济比较发达的地区。

从地域分布来说,主要是珠江三角洲、长江三角洲、环渤海地区等等。

这些地方是我国现在经济高速发展的黄金宝地,也是应该“先环保起来”的地区,而且经济上也确是有可能适宜使用分布式能源系统的地方。

另外,分布式能源系统既然是“分布”,也就是说与大电厂、大电网不一样,不是由一小批经验丰富的技术人员集中运行管理,而是分散式运行管理,这就要求使用区域的总体科技文化水平和素养较高。

四、分布式能源系统的种类(一)太阳能发电[3]1.太阳光伏发电太阳光伏发电是一种利用固体(半导体)的光生伏打效应,把光能直接变为电能的发电方式。

太阳光伏发电系统由太阳电池板、蓄电池和控制器三部分组成。

随着太阳能电池成本的不断降低(到2020年,预测造价约为每千瓦4000美元),太阳光伏发电将呈现出良好的发展前景。

2.太阳能-蒸汽循环发电该发电系统由集热器、蓄热器和汽轮发电机组所组成。

太阳辐射能被定日镜反射后被集热器(锅炉)所吸收。

集热器中传热介质(水或有机介质、金属钠)吸热而汽化,蒸汽进入汽轮机组作功发电并将电能输入电网。

为保证电站工作稳定,还需设有蓄热器,以供阴云蔽日或阳光不足的傍晚使用。

目前这类太阳能热动力发电系统的总效率可达15%-20%,最高工作温度500℃(水,有机介质)或1000℃(液态钠)。

(二)燃料电池和微型燃气轮机复合系统燃气轮机作为能源利用的前置级,其排气用来加热进入燃料电池的空气和燃料。

燃料电池是固体氧化物,工作温度700-1000℃,用天然气或甲烷作燃料。

该燃料电池和微型燃气轮机复合供电系统具有下列优点:可以在无电力供应的地区使用;系统可保持自稳定运行;启动方便、快捷;SO2 和NO2 的排放量很少,是一种很有发展前景的分布式能源系统。

(三)地热发电地热发电是高温地热利用最重要的方式。

根据地热流体的热量参数和性状,可以有两种不同的发电形式。

1.蒸汽型地热发电站蒸汽型地热发电站是把高温地热蒸汽田中的干蒸汽直接引入汽轮发电机组发电。

在引入之前,先要把地热蒸汽中的水滴、砂粒与岩屑分离和清除干净。

近年来,另一类也是未来地热能的主体——干热岩发电正在试验之中。

在这类地热电站中,人为地将水灌入地下深层的高温热岩层中加热蒸发,再将产生的蒸汽引向地面的蒸汽轮机组。

由于深层地热开采的技术难度很大,这种发电方式近期内还无法进入实用阶段,但前景很好。

2.热水型地热发电热水型地热发电是当前地热发电的主要方式。

目前已采用的循环有两种,它们是:(1)高压热水从地热井中抽至地面闪蒸锅炉内,由于压力突然降低,热水会发生沸腾,闪蒸出蒸汽。

蒸汽进入汽轮发电机组作功发电。

闪蒸后剩下的热水以及汽轮机中的凝结水可以供给其他热用户利用。

利用后的热水再回灌到地层内。

这种系统适合于地热水质较好且不凝气体含量较少的地热资源。

(2)双循环地热发电系统地热水经换热器(锅炉),加热低沸点的工作介质(如氟里昂),使之产生蒸汽,蒸汽进入汽轮发电机组作功发电,凝结水再回到换热器循环使用。

经过换热器的地热水再回流到地层。

这种系统适合于含盐量大,腐蚀性强和不凝气体含量较高的地热资源。

我国的地热资源主要集中在西藏、云南、福建等省。

(四)生物质能生物质是指由植物光合作用而产生的有机物质。

光合作用将太阳能转换为化学能而存储于生物质中。

所以生物质能实际上是物质所具有的化学能。

据测算,地球上每年由光合作用而生成的生物质能达到3×1021 J,它在分布式能源中占有重要的份额。

生物质能的利用与转换,除了效率较低的直接燃烧提供热能以外,主要是通过生物转换(微生物发酵)和化学转换(热解与气化)将生物质变成液体燃料(甲醇、乙醇)、气体燃料(甲烷)或固体燃料(焦炭)。

醇类液体燃料和甲烷气既可以作为发电厂的燃料,又可以作为燃料电池的燃料,从而实现生物质能的动力利用。

由于生物质能量多面广且各地都存在,所以生物质能的开发利用对分布式能源系统的发展有重大意义。

(五)风力发电风是太阳辐射引起的大气对流运动。

地球上可利用的风能为2×107 MW,特别是在临海地区和内陆山口地区,风力资源十分集中。

发电是风能利用的主要形式。

风力发电机既可单独供电,也可与其他发电方式(如柴油机发电、微型燃气轮机等)复合,向一个单位或一个地区供电,或者将电力并入常规电网运行。

我国西部地区风力资源丰富,例如新疆达坂城已建成我国最大的风力发电站,装机容量为3300kW,是地区性分布式能源系统的重要组成之一,将在我国西部大开发中发挥重要作用。

总的说来,以可再生能源为主体且灵活多样化的分布式能源系统是本世纪正在大力发展的能源优化供应模式。

各种新的分布式能源系统正在不断地推出,且随着科学技术的进步和高性能新材料的研制,分布式能源在社会能源结构中将占有愈来愈大的比重,将对社会发展产生举足轻重的影响。

五、分布式能源系统存在的问题在我国,分布式能源系统的应用还存在一些不足之处:[4](1)负荷分析不够全面、准确、细致。

相关文档
最新文档