必修三统计章末检测卷(含答案)

合集下载

(易错题)高中数学必修三第一章《统计》检测卷(包含答案解析)(4)

(易错题)高中数学必修三第一章《统计》检测卷(包含答案解析)(4)

一、选择题1.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A.中位数为83 B.众数为85 C.平均数为85 D.方差为192.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为 ( ) A.45,75,15 B.45,45,45 C.45,60,30 D.30,90,153.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()A.成绩B.视力C.智商D.阅读量4.某赛季甲、乙两名篮球运动员每场比赛得分用茎叶图表示,茎叶图中甲得分的部分数据丢失(如图),但甲得分的折线图完好,则下列结论正确的是()A.甲得分的极差是11B.乙得分的中位数是18.520,30上C.甲运动员得分有一半在区间[]D.甲运动员得分的平均值比乙运动员得分的平均值高5.在2018年1月15日那天,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价元和销售量件之间的一组数据如下表所示:价格99.510.511销售量11865由散点图可知,销售量与价格之间有较强的线性相关关系,其线性回归方程是,且,则其中的()A.10 B.11 C.12 D.10.56.从两个班级各随机抽取5名学生测量身高(单位:cm),甲班的数据为169,162,150,160,159,乙班的数据为180,160,150,150,165.据此估计甲、乙两班学生的平,x乙及方差2s甲,2s乙的关系为( )均身高x甲A.x甲>x乙,2s甲>2s乙 B.x甲>x乙,2s甲<2s乙 C.x甲<x乙,2s甲<2s乙 D.x甲<x乙,2s甲>2s乙7.有200人参加了一次会议,为了了解这200人参加会议的体会,将这200人随机号为001,002,003,…,200,用系统抽样的方法(等距离)抽出20人,若编号为006,036,041,176, 196的5个人中有1个没有抽到,则这个编号是()A.006 B.041 C.176 D.1968.通过实验,得到一组数据如下:2,5,8,9,x,已知这组数据的平均数为6,则这组数据的方差为( )A.3.2 B.4 C.6 D.6.59.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是A.甲地:总体均值为3,中位数为4 B.乙地:总体均值为1,总体方差大于0 C.丙地:中位数为2,众数为3 D.丁地:总体均值为2,总体方差为3 10.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是( ) A .31号B .32号C .33号D .34号11.已知x ,y 的取值如表: x 2 6 7 8y若x ,y 之间是线性相关,且线性回归直线方程为,则实数a 的值是A .B .C .D .12.为了考察两个变量x 和y 之间的线性相关性,甲.乙两个同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1和l 2.已知在两个人的试验中发现对变量x 的观测数据的平均值恰好相等,都为s ,对变量y 的观测数据的平均值也恰好相等,都为t.那么下列说法正确的是( ) A .直线l 1和l 2有交点(s ,t)B .直线l 1和l 2相交,但是交点未必是点(s ,t)C .直线l 1和l 2由于斜率相等,所以必定平行D .直线l 1和l 2必定重合二、填空题13.下列说法正确的是__________(填序号)(1)已知相关变量(),x y 满足回归方程ˆ24yx =-,若变量x 增加一个单位,则y 平均增加4个单位(2)若,p q 为两个命题,则“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件(3)若命题0:p x R ∃∈,20010x x -+<,则:p x R ⌝∀∉,210x x -+≥(4)已知随机变量()22X N σ~,,若()0.32P X a <=,则()40.68P X a >-=14.某市有A 、B 、C 三所学校,各校有高三文科学生分别为650人,500人,350人,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B 校学生中抽取______人.15.上海市普通高中学业水平等级考成绩共分为五等十一级,各等级换算成分数如表所示: 等级A + AB + BB -C + CC -D + DE 分数 7067646158555249464340上海某高中2018届高三()1班选考物理学业水平等级考的学生中,有5人取得A +成绩,其他人的成绩至少是B 级及以上,平均分是64分,这个班级选考物理学业水平等级考的人数至少为______人.16.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________.17.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.18.下表为生产A 产品过程中产量x (吨)与相应的生产耗能y (吨)的几组相对应数据:x3 4 5 6y 23.555.5根据上表提供的数据,得到y 关于x 的线性回归方程为0.7y x a =+,则a =__________. 19.已知某市A 社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是________人.20.某校高一年级10个班级参加国庆歌咏比赛的得分(单位:分)如茎叶图所示,若这10个班级的得分的平均数是90,则19a b+的最小值为__________.三、解答题21.已知某校6个学生的数学和物理成绩如下表: 学生的编号i 1 2 3 4 5 6 数学i x 89 87 79 81 78 90 物理i y797577737274(1)若在本次考试中,规定数学在80分以上(包括80分)且物理在75分以上(包括75分)的学生为理科小能手.从这6个学生中抽出2个学生,设X 表示理科小能手的人数,求X 的分布列和数学期望;(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系,在上述表格是正确的前提下,用x 表示数学成绩,用y 表示物理成绩,求y 与x 的回归方程.参考数据和公式:ˆˆˆybx a =+,其中1122211()()ˆ()nniii ii i nniii i x x y y x y nx yb x x xnx====---⋅==--∑∑∑∑,ˆˆay bx =-. 22.某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:(1)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠? 附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.23.2018年,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.某读书APP 抽样调查了非一线城市M 和一线城市N 各100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为“活跃用户”.(1)请填写以下22⨯列联表,并判断是否有99.5%的把握认为用户活跃与否与所在城市有关?活跃用户 不活跃用户 合计城市M 城市N 合计(2)以频率估计概率,从城市M 中任选2名用户,从城市N 中任选1名用户,设这3名用户中活跃用户的人数为ξ,求ξ的分布列和数学期望.(3)该读书APP 还统计了2018年4个季度的用户使用时长y (单位:百万小时),发现y 与季度(x )线性相关,得到回归直线为ˆ4ˆyx a =+,已知这4个季度的用户平均使用时长为12.3百万小时,试以此回归方程估计2019年第一季度(5x =)该读书APP 用户使用时长约为多少百万小时. 附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.025 0.010 0.005 0.00124.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:25.某快递公司招聘快递骑手,该公司提供了两种日工资方案:方案(1)规定每日底薪50元,快递骑手每完成一单业务提成3元;方案(2)规定每日底薪150元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快递公司记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为[)25,35、[)35,45、[)45,55、[)55,65、[)65,75、[)75,85、[]85,95七组,整理得到如图所示的频率分布直方图.(1)求直方图中a 的值;(2)若仅从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由(同组中的每个数据用该组区间的中点值代替);(3)假设公司中所有骑手都选择了你在(2)中所选的方案,已知公司现有骑手400人,某骑手希望自己的收入在公司众骑手中处于前100名内,求他每天的平均业务量至少应达多少单?26.某企业广告费支出与销售额(单位:百万元)数据如表所示: 广告费x 6 4 8 2 5 销售额y5040703060(1)求销售额y 关于广告费x 的线性回归方程;(2)预测当销售额为76百万元时,广告费支出为多少百万元. 回归方程y bx a =+中斜率和截距的最小二乘估计公式分别为:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:A 选项,中位数是84;B 选项,众数是出现最多的数,故是83;C 选项,平均数是85,正确;D 选项,方差是,错误.考点:•茎叶图的识别 相关量的定义2.C解析:C 【解析】因为共有学生2700,抽取135,所以抽样比为1352700,故各年级分别应抽取135900452700⨯=,1351200602700⨯=,135600302700⨯=,故选C. 3.D解析:D 【解析】试题分析:由表中数据可得 表1:()25262210140.00916362032K ⨯⨯-⨯=≈⨯⨯⨯;表2: ()2524201216 1.76916362032K ⨯⨯-⨯=≈⨯⨯⨯;表3: ()252824128 1.316362032K ⨯⨯-⨯=≈⨯⨯⨯;表4: ()25214302623.4816362032K ⨯⨯-⨯=≈⨯⨯⨯.其中23.48最大,所以阅读量与性别有关联的可能性最大.故D 正确. 考点:独立性检验.4.D解析:D 【分析】根据茎叶图和折线图依次判断每个选项得到答案. 【详解】A. 甲得分的极差是28919-=,A 错误;B. 乙得分的中位数是161716.52+=,B 错误; C. 甲运动员得分在区间[]20,30上有3个,C 错误; D. 甲运动员得分的平均值为:912131315202628178+++++++=,乙运动员得分的平均值为:914151617181920168+++++++=,故D 正确.故选:D . 【点睛】本题考查了茎叶图和折线图,意在考查学生的计算能力和理解能力.5.A解析:A 【解析】 【分析】由表求得,,代入回归直线方程,联立方程组,即可求解,得到答案.【详解】由题意,5家商场的售价元和销售量件之间的一组数据, 可得,,又由回归直线的方程,则,即,又因为,解得,故选A. 【点睛】本题主要考查了回归直线方程的特征及其应用,其中解答中熟记回归直线方程的特征,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.6.C解析:C 【解析】 【分析】利用公式求得x 甲和x 乙,从而得到x 甲和x 乙的大小,观察两组数据的波动程度,可以得到2s 甲与2s 乙的大小,从而求得结果.【详解】 甲班平均身高1691621501601591605x ++++==甲,乙班平均身高1801601501501651615x ++++==乙,所以x x <甲乙,方差表示数据的波动,当波动越大时,方差越大,甲班的身高都差不多,波动比较小,而乙班身高差距则比加大,波动比较大,所以22s s >乙甲,故选C. 【点睛】该题考查的是有关所给数据的平均数与方差的比较大小的问题,涉及到的知识点有平均数的公式,观察数据波动程度来衡量方差的大小,属于简单题目.7.B解析:B 【解析】 【分析】求得抽样的间隔为10,得出若在第1组中抽取的数字为6,则抽取的号码满足104n -,即可出判定,得到答案. 【详解】由题意,从200人中用系统抽样的方法抽取20人,所以抽样的间隔为2001020=, 若在第1组中抽取的数字为006,则抽取的号码满足6(1)10104n n +-⨯=-,其中n N +∈,其中当4n =时,抽取的号码为36;当18n =时,抽取的号码为176;当20n =时,抽取的号码为196,所以041这个编号不在抽取的号码中,故选B. 【点睛】本题主要考查了系统抽样的应用,其中解答中熟记系统抽样的抽取方法是解答的关键,着重考查了运算与求解能力,属于基础题.8.C解析:C 【解析】分析:利用平均数的公式,求得6x =,得到数据2,5,8,9,6,再利用方差的计算公式,即求解数据的方差.详解:由题意,一组数据2,5,8,9,x 的平均数为6,即258924655x xx +++++===,解得6x =,所以数据2,5,8,9,6的方差为2222221[(26)(56)(86)(96)(66)]65s =-+-+-+-+-=,故选C.点睛:本题主要考查了数据的数字特的计算,其中熟记数据的平均数的公式和数据的方差的计算公式是解答的关键,着重考查了推理与运算能力,属于基础题.9.D解析:D 【详解】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差10.C解析:C 【解析】 【分析】根据系统抽样知,组距为604=15÷,即可根据第一组所求编号,求出各组所抽编号. 【详解】÷,学生60名,用系统抽样的方法,抽取一个容量为4的样本,所以组距为604=15+=号,已知03号,18号被抽取,所以应该抽取181533故选C.【点睛】本题主要考查了抽样,系统抽样,属于中档题.11.B解析:B【解析】【分析】根据所给的两组数据,做出横标和纵标的平均数,写出这组数据的样本中心点,根据线性回归方程一定过样本中心点,得到线性回归直线一定过的点的坐标.【详解】根据题意可得,,由线性回归方程一定过样本中心点,.故选:B.【点睛】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.12.A解析:A【分析】由题意知,两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,所以两组数据的样本中心点是(s,t),回归直线经过样本的中心点,得到直线l1和l2都过(s,t).【详解】∵两组数据变量x的观测值的平均值都是s,对变量y的观测值的平均值都是t,∴两组数据的样本中心点都是(s,t)∵数据的样本中心点一定在线性回归直线上,∴回归直线l1和l2都过点(s,t)∴两条直线有公共点(s,t)故选A.【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点.二、填空题13.【分析】(1)由回归方程知相关变量与成负相关(2)为假命题则同时为假命题为假命题则中至少有一假命题(3)全称命题与特称命题转换条件不变结论变相反(4)由正态曲线的对称性可解【详解】(1)由回归方程知 解析:(2)【分析】(1)由回归方程ˆ24yx =-知相关变量y 与x 成负相关,(2) “p q ∨”为假命题则,p q 同时为假命题,“p q ∧”为假命题则,p q 中至少有一假命题(3)全称命题与特称命题转换条件不变,结论变相反 (4)由正态曲线的对称性可解. 【详解】(1)由回归方程ˆ24yx =-知相关变量y 与x 成负相关,若变量x 增加一个单位,则y 平均增加4-个单位,故(1)错误(2) “p q ∨”为假命题则,p q 同时为假命题,“p q ∧”为假命题则,p q 中至少有一假命题,所以“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件是正确的.故(2)正确 (3)全称命题与特称命题转换条件不变,结论变相反,故(3)错误 (4)由正态曲线的对称性知,随机变量()22X N σ~,,若()0.32P X a <=,对称轴是2x = ,则()40.32P X a >-=,故(4)错误. 故答案为; (2) 【点睛】利用正态曲线的对称性求概率是常见的正态分布应用问题.解题的关键是利用对称轴=x μ确定所求概率对应的随机变量的区间与已知概率对应的随机变量的区间的关系,必要时可借助图形判断.对于正态分布2()N μσ,,由=x μ是正态曲线的对称轴知:(1)对任意的a ,有()()P X a P X a μμ<->+=; (2)()001;()P X x P X x -≥=<;(3)()()=()P a X b P X b P X a <<<≤-.14.40【分析】设应从B 校抽取n 人利用分层抽样的性质列出方程组能求出结果【详解】设应从B 校抽取n 人某市有ABC 三所学校各校有高三文科学生分别为650人500人350人在三月进行全市联考后准备用分层抽样的解析:40 【分析】设应从B 校抽取n 人,利用分层抽样的性质列出方程组,能求出结果. 【详解】设应从B 校抽取n 人,某市有A 、B 、C 三所学校,各校有高三文科学生分别为650人,500人,350人, 在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,120n650500350500∴=++,解得n 40=.故答案为40. 【点睛】本题考查应从B 校学生中抽取人数的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题.15.15【解析】【分析】设取得A 成绩的x 人取得成绩的y 人取得B 成绩的z 人由题意可得:解得:结合xy 可求的最【详解】设取得A 成绩的x 人取得成绩的y 人取得B 成绩的z 人则即又xy 即当且仅当时取得最小值15取得解析:15 【解析】 【分析】设取得A 成绩的x 人,取得B +成绩的y 人,取得B 成绩的z 人,由题意可得:()70567x 64y 61z 645x y z ⨯+++=⨯+++,解得:z x 10-=,结合x ,y ,z N ∈,可求5x y z +++的最. 【详解】设取得A 成绩的x 人,取得B +成绩的y 人,取得B 成绩的z 人, 则()70567x 64y 61z 645x y z ⨯+++=⨯+++, 即z x 10-=, 又x ,y ,z N ∈,即当且仅当x 0=,y 0=,z 10=时,5x y z +++取得最小值15, 取得A 成绩的0人,取得B +成绩的0人,取得B 成绩的10人, 这个班级选考物理学业水平等级考的人数至少为15人, 故答案为15 【点睛】本题考查了实际问题通过数学问题解决,考查了阅读理解及数学建模的能力,属中档题.16.2【解析】【分析】根据系统抽样的概念结合可得最后结果为2【详解】学生总数不能被容量整除根据系统抽样的方法应从总体中随机剔除个体保证整除∵故应从总体中随机剔除个体的数目是2故答案为2【点睛】本题主要考解析:2 【解析】 【分析】根据系统抽样的概念结合2544262=⨯+,可得最后结果为2. 【详解】学生总数不能被容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除.∵2544262=⨯+,故应从总体中随机剔除个体的数目是2,故答案为2.【点睛】本题主要考查系统抽样,属于基础题;从容量为N的总体中抽取容量为n的样本,系统抽样的前面两个步骤是:(1)将总体中的N个个体进行编号;(2)当Nn为整数时,抽样距即为Nn;当Nn不是整数时,从总体中剔除一些个体,使剩下的总体中的个体的个数N'能被n整除.17.【分析】首先从茎叶图中找到出现次数最多的数从而得到甲组数据的众数找出乙组数据的最大值和最小值两者作差求得极差得到结果【详解】根据众数的定义可以断定甲组数据的众数是21;从茎叶图中可以发现其最大值为其解析:21,43【分析】首先从茎叶图中找到出现次数最多的数,从而得到甲组数据的众数,找出乙组数据的最大值和最小值,两者作差求得极差,得到结果.【详解】根据众数的定义,可以断定甲组数据的众数是21;从茎叶图中可以发现,其最大值为52,其最小值为9,所以极差为52943-=,故答案为21,,43.【点睛】该题考查的是茎叶图的应用,涉及到的知识点有一组数据的众数和极差的概念,只要明确众数是数据中出现次数最多的数,极差是最大值和最小值的差距,从而求得结果. 18.【解析】分析:首先求得样本中心点然后利用回归方程的性质求得实数a 的值即可详解:由题意可得:线性回归方程过样本中心点则:解得:点睛:本题主要考查线性回归方程的性质及其应用等知识意在考查学生的转化能力和解析:0.85【解析】分析:首先求得样本中心点,然后利用回归方程的性质求得实数a的值即可.详解:由题意可得:34569==42x+++,2 3.55 5.544y+++==,线性回归方程过样本中心点9,42⎛⎫⎪⎝⎭,则:940.72a=⨯+,解得:0.85a=.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.19.【解析】根据题意可得抽样比为则这次抽样调查抽取的人数是即答案为140解析:140【解析】根据题意可得抽样比为501,75015= 则这次抽样调查抽取的人数是()114507509002100140,1515++=⨯= 即答案为140.20.2【解析】由茎叶图及10个班级的得分的平均数是90可得∴当且仅当即时取等号故答案为2解析:2 【解析】由茎叶图及10个班级的得分的平均数是90可得8a b += ∴1911919191()()(19)(10)(1023)28888b a b a a b a b a b a b a b +=⨯++=+++=++≥+⨯=,当且仅当9b aa b=,即36b a ==时,取等号 故答案为2三、解答题21.(1)见解析;(2)129155y x =+ 【分析】(1)由题意得1号学生、2号学生为理科小能手,从而得到X 的可能取值为0,1,2,分别求出相应的概率,由此能求出X 的分布列和数学期望;(2)利用最小二乘法分别求出ˆb,ˆa ,由此能求出y 与x 的回归直线方程. 【详解】(1)由题意得1号学生、2号学生为理科小能手.X 的可能取值为:0,1,2P (X =0)242625C C ==,P (X =1)112426815C C C ==, P (X =2)2226115C C ==,X 的分布列为()0+1+2=515153E X =⨯⨯⨯(2)84,75x y ==,61i =∑x i y i=37828,61i =∑x i2=42476, ∴ˆb=(61i ii x y =-∑6xy )÷(62216i n x x =-∑) 2378286847542476684-⨯⨯=-⨯ 15=, ˆˆay bx =-=75﹣15×84=2915, 回归方程为129155y x =+ 【点睛】本题考查离散型随机变量的分布列和数学期望的求法,考查回归直线方程的求法,是中档题,解题时要认真审题,注意最小二乘法的合理运用. 22.(1)532y x =-;(2)线性回归方程是可靠的. 【分析】(1)根据最小二乘法公式,分别将数据代入计算,即可得答案;(2)选取的是4月1日与4月30日的两组数据,即10x =和8x =代入判断即可; 【详解】解:(1)由数据得12x =,27y =,3972x y =,23432x =; 又31977i ii x y==∑,321434i i x ==∑;97797254344322b -==-,5271232a =-⨯=-;所以y 关于x 的线性回归方程为:532y x =-. (2)当10x =时,5103222y =⨯-=,22232-<; 当8x =时,583222y =⨯-=,17162-<, 所得到的线性回归方程是可靠的. 【点睛】本题考查最小二乘法求回归直线方程及利用回归方程进行判断拟合效果,考查数据处理能力,求解时注意回归直线必过样本点中心的应用. 23.(1)见解析;(2)见解析;(3) 22.3百万小时 【分析】(1)根据频率分布直方图求数据填入对应表格,再根据卡方公式求2K ,最后对照数据作判断,(2)先确定随机变量取法,再判断从M 城市中任选的2名用户中活跃用户数服从二项分布,从N 城市中任选的1名用户中活跃用户数服从两点分布,进而求得对应概率,列表得分布列,最后根据数学期望公式得期望,(3)先求均值,解得ˆa,再估计5x =对应函数值. 【详解】(1)由已知可得以下22⨯列联表:计算()2220060208040200K 9.5247.8791001001406021⨯⨯-⨯==≈>⨯⨯⨯ , 所以有99.5%的把握认为用户是否活跃与所在城市有关. (2)由统计数据可知,城市M 中活跃用户占35,城市N 中活跃用户占45, 设从M 城市中任选的2名用户中活跃用户数为X ,则3~2,5X B ⎛⎫ ⎪⎝⎭设从N 城市中任选的1名用户中活跃用户数为Y ,则Y 服从两点分布,其中()415P Y ==. 故0,1,2,3ξ=,()()()20221400055125P P X P Y C ξ⎛⎫===⋅==⋅= ⎪⎝⎭; ()()()()()2012224321*********555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅+⋅⋅⋅=⎪⎝⎭;()()()()()2122223431572112055555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅⋅+⋅⋅= ⎪⎝⎭;()()()222343632155125P P X P Y C ξ⎛⎫===⋅==⋅= ⎪⎝⎭. 故所求ξ的分布列为ξ0 1 2 3P4125 28125 57125 36125()428573601232125125125125E ξ=⨯+⨯+⨯+⨯=. (3)由已知可得 2.5x =,又12.3y =,可得12.34ˆ2.5a=⨯+,所以ˆ 2.3a =,所以4 2.3ˆy x =+. 以5x =代入可得ˆ22.3y=(百万小时), 即2019年第一季度该读书APP 用户使用时长约为22.3百万小时. 【点睛】本题考查频率分布直方图、回归直线方程以及分布列和数学期望,考查基本分析求解能力,属中档题. 24.(I )没有的把握认为“古文迷”与性别有关;(II )“古文迷”的人数为3,“非古文迷”有2;(III )分布列见解析,期望为95. 【详解】 (I )由列联表得所以没有的把握认为“古文迷”与性别有关.(II )调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,则“古文迷”的人数为人,“非古文迷”有人.即抽取的5人中“古文迷”和“非古文迷”的人数分别为3人和2人(III )因为为所抽取的3人中“古文迷”的人数,所以的所有取值为1,2,3.,,.所以随机变量ξ的分布列为1 2 3。

(典型题)高中数学必修三第一章《统计》检测卷(含答案解析)(1)

(典型题)高中数学必修三第一章《统计》检测卷(含答案解析)(1)

一、选择题1.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元2.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件3.已知变量x ,y 的关系可以用模型kx y ce =拟合,设ln z y =,其变换后得到一组数据下:由上表可得线性回归方程4z x a =-+,则( ) A .4-B .4e -C .109D .109e4.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生5.在一段时间内,某种商品的价格x (元)和销售量y (件)之间的一组数据如下表:销售量y (件)3 5 8 910若y 与x 呈线性相关关系,且解得回归直线ˆˆˆybx a =+的斜率0.9b ∧=,则a ∧的值为( ) A .0.2 B .-0.7 C .-0.2 D .0.76.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-. A .①②③ B .①③④C .①②④D .②③④7.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元)8.28.610.011.311.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元 B .11.8万元C .12.0万元D .12.2万元8.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和929.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[]401,755 的人数为( ) A .10B .11C .12D .1310.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据:11(,)x y ,22(,)x y ,33(,)x y ,44(,)x y ,55(,)x y .根据收集到的数据可知12345150x x x x x ++++=,由最小二乘法求得回归直线方程为0.6754.9y x =+,则12345y y y y y ++++的值为( )A .75B .155.4C .375D .466.211.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .1112.下列说法:①设有一个回归方程35y x =-,变量x 增加一个单位时,y 平均增加5个单位;②线性回归直线ˆybx a =+必过必过点(),x y ;③在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0B .1C .2D .3二、填空题13.已知数据1x ,2x ,…,10x 的方差为1,且()()()222123222x x x -+-+-()2102170x ++-=,则数据1x ,2x ,…,10x 的平均数是________.14.对两个变量y 和x 进行回归分析,得到一组样本数据()11,x y ,()22,x y ,…,(),n n x y ,则下列说法中正确的序号是______.①由样本数据得到的回归直线方程y bx a =+必过样本点的中心 ②残差平方和越小的模型,拟合的效果越好③用相关指数2R 来刻画回归效果,2R 越小说明拟合效果越好④若变量y 和x 之间的相关系数为0.946r =-,则变量y 和x 之间线性相关性强 15.如图,这是某校高一年级一名学生七次数学测试成绩(满分100分)的茎叶图. 去掉一个最高分和一个最低分后,所剩数据的方差是 _____16.为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为____.17.对具有线性相关关系的变量,x y ,有一组观测数据(,)i i x y (1,2,3,,10i =),其回归直线方程是3ˆ2ˆybx =+,且121012103()30x x x y y y +++=+++=,则b =______. 18.设一个回归方程为0.4 1.8y x =-,则当25x =时,y 的估计值是_______.19.一组样本数据按从小到大的顺序排列为:1-,0,4,x ,y ,14,已知这组数据的平均数与中位数均为5,则其方差为__________.20.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.三、解答题21.某学校进行体验,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50个身高介于155cm 到195cm 之间),现将抽取结果按如下方式分成八组:第一组[155,160),第二组[160,165),...,第八组[190,195],并按此分组绘制如图所示的频率分布直方图,其中第六组[180,185)和第七组[185,190)还没有绘制完成,已知第一组与第八组人数相同,第六组和第七组人数的比为5:2.(1)补全频率分布直方图;(2)根据频率分布直方图估计这50位男生身高的中位数;(3)用分层抽样的方法在身高为[170,180]内抽取一个容量为5的样本,从样本中任意抽取2位男生,求这两位男生身高都在[175,180]内的概率.22.某微商对某种产品每天的销售量(单位:件)进行为期一个月(按30天计算)的数据统计分析,并得出了这种产品该月销售量的频率分布直方图(如图).假设用直方图中所得的频率来估计相应事件发生的概率.(Ⅰ)求频率分布直方图中a 的值;(Ⅱ)若微商在一天的销售量不低于25件,则上级商企会给微商赠送100元的礼金,估计该微商在一年内获得的礼金数.23.假设关于某设备的使用年限x 和所支出的维修费用y (万元),有如下的统计资料:x2 3 4 5 6 y 2.23.85.56.57.0若由资料可知y 对x 呈线性相关关系,试求: (1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?(参考:1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-)24.2018年,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.某读书APP 抽样调查了非一线城市M 和一线城市N 各100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为“活跃用户”.(1)请填写以下22⨯列联表,并判断是否有99.5%的把握认为用户活跃与否与所在城市有关?活跃用户 不活跃用户 合计城市M 城市N 合计(2)以频率估计概率,从城市M 中任选2名用户,从城市N 中任选1名用户,设这3名用户中活跃用户的人数为ξ,求ξ的分布列和数学期望.(3)该读书APP 还统计了2018年4个季度的用户使用时长y (单位:百万小时),发现y 与季度(x )线性相关,得到回归直线为ˆ4ˆyx a =+,已知这4个季度的用户平均使用时长为12.3百万小时,试以此回归方程估计2019年第一季度(5x =)该读书APP 用户使用时长约为多少百万小时. 附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.025 0.010 0.005 0.00125.现有某高新技术企业年研发费用投入x (百万元)与企业年利润y (百万元)之间具有线性相关关系,近5年的年科研费用和年利润具体数据如下表:(1)画出散点图;(2)求y 对x 的回归直线方程;(3)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?参考公式:用最小二乘法求回归方程ˆˆˆybx a =+的系数ˆˆ,a b 计算公式: 1221ˆˆˆ·,ni ii nii x y nx y bay bx xnx ==-==--∑∑ 26.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的列联表,并根据列联表,判断是否有多少的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由已知求得 x , y ,进一步求得 a ,得到线性回归方程,取16x =求得y 值即可. 【详解】8.38.69.911.1512.1 10x +++=+=, 5.97.88.18.49.858y ++++==.又 0.78b =,∴ 80.78100.2a y bx --⨯===. ∴ 0.780.2y x =+.取16x =,得 0.78160.212.68y ⨯+==万元,故选A . 【点睛】本题主要考查线性回归方程的求法,考查了学生的计算能力,属于中档题.2.D解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58y x =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.3.D解析:D 【分析】由已知求得x 与z 的值,代入线性回归方程求得a ,再由kxy ce =,得()kx kx lny ln ce lnc lne lnc kx ==+=+,结合z lny =,得z lnc kx =+,则109lnc =,由此求得【详解】 解:1617181917.54x +++==,50344131394z +++==. 代入4z x a =-+,得39417.5a =-⨯+,则109a =.∴4109z x =-+,由kxy ce =,得()kx kx lny ln ce lnc lne lnc kx ==+=+,令z lny =,则z lnc kx =+,109lnc ∴=,则109c e =. 故选:D . 【点睛】本题考查回归方程的求法,考查数学转化思想方法,考查计算能力,属于中档题.4.C解析:C 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.5.C解析:C 【解析】 【分析】由题意利用线性回归方程的性质计算可得a 的值. 【详解】 由于468101285x ++++==,35891075y ++++==,由于线性回归方程过样本中心点(),x y ,故:70.98a =⨯+, 据此可得:0.2a =-. 故选C .本题主要考查线性回归方程的性质及其应用,属于中等题.6.C解析:C【分析】利用线性回归方程系数的几何意义,圆锥曲线离心率的范围,椭圆的性质,逐一判断即可.【详解】①设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的线性回归方程为y∧=0.85x﹣85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg,正确;②关于x的方程x2﹣mx+1=0(m>2)的两根之和大于2,两根之积等于1,故两根中,一根大于1,一根大于0小于1,故可分别作为椭圆和双曲线的离心率.正确;③设定圆C的方程为(x﹣a)2+(x﹣b)2=r2,其上定点A(x0,y0),设B(a+r cosθ,b+r sinθ),P(x,y),由12OP =(OA OB+)得22x a rcosxy b rsinyθθ++⎧=⎪⎪⎨++⎪=⎪⎩,消掉参数θ,得:(2x﹣x0﹣a)2+(2y﹣y0﹣b)2=r2,即动点P的轨迹为圆,∴故③不正确;④由22143x y+=,得a2=4,b2=3,∴1c==.则F(﹣1,0),如图:过F作垂直于x轴的直线,交椭圆于A(x轴上方),则x A=﹣1,代入椭圆方程可得32Ay=.当P为椭圆上顶点时,P(0FPk=32OAk=-,∴当直线FP时,直线OP的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,.当P为椭圆下顶点时,P(0,∴当直线FP时,直线OP,32),综上,直线OP(O为原点)的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,∪(8,32).故选C【点睛】本题以命题真假的判断为载体,着重考查了相关系数、离心率、椭圆简单的几何性质等知识点,属于中档题.7.B解析:B 【解析】 试题分析:由题,,所以.试题 由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.8.A解析:A 【解析】8个班参加合唱比赛的得分从小到大排列分别是87,89,90,91,92,93,94,96,中位数是91,92,的平均数91.5,平均数是87+89+90+91+92+93+94+968=91.59.C解析:C 【分析】由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n =30n ﹣19,由401≤30n ﹣21≤755,求得正整数n 的个数,即可得出结论. 【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列, 又某组抽到的号码为41,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列, ∴等差数列的通项公式为a n =11+(n ﹣1)30=30n ﹣19, 由401≤30n ﹣19≤755,n 为正整数可得14≤n ≤25, ∴做问卷C 的人数为25﹣14+1=12, 故选C . 【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.10.C解析:C 【分析】首先求得x 的值,然后利用线性回归方程过样本中心点的性质求解12345y y y y y ++++的值即可. 【详解】由题意可得:12345305x x x x x x ++++==,线性回归方程过样本中心点,则:0.6754.975y x =⨯+=,据此可知:12345y y y y y ++++5375y ==. 本题选择C 选项. 【点睛】本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.11.D解析:D 【解析】分析:一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;;依此规律求解即可.详解::∵一组数据12,,,n x x x 的平均数为3, ∴另一组数据1232,32,,32n x x x +++的平均数121211323232[32]33211n n x x x x x x n n n =++++⋯++=++⋯++=⨯+=()(), 故选D.点睛:本题考查了平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.12.C解析:C 【解析】分析:利用回归方程和独立性检验对每一个命题逐一判断.详解:对于①,一个回归方程35y x =-,变量x 增加一个单位时,y 应平均减少5个单位,所以该命题是错误的;对于②,线性回归直线ˆybx a =+必过必过点(),x y ,是正确的;对于③,在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,并不能说明他有99%的可能患肺病,所以该命题是错误的. 故答案为:C.点睛:本题主要考查回归方程和独立性检验,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.或6【分析】由数据…的方差为1且把所给的式子进行整理两式相减得到关于数据的平均数的一元二次方程解方程即可【详解】数据…的方差为1①②将②-①得解得或故答案为:或6【点睛】本题主要考查一组数据的平均数解析:2-或6. 【分析】由数据1x ,2x ,…,10x 的方差为1,且()()()()2222123102222170x x x x -+-+-++-=,把所给的式子进行整理,两式相减,得到关于数据的平均数的一元二次方程,解方程即可. 【详解】数据1x ,2x ,…,10x 的方差为1,()()()()22221231010x x x x x x x x∴-+-+-++-=,()()22221210121010210x x x x x x x x ∴++++-+++=,()222212101010x x x x ∴+++-=,①()()()()2222123102222170x x x x -+-+-++-=, ()()22212101210440170x x x x x x ∴+++-++++=,()22212104040170x x x x ∴+++-+=,②将②-①得24120x x --=,解得2x =-,或6x =, 故答案为:2-或6. 【点睛】本题主要考查一组数据的平均数的求法,解题时要熟练掌握方差的计算公式的灵活运用,属于中档题.14.①②④【分析】根据两个变量线性相关的概念及性质逐项判定即可求解【详解】由题意根据回归直线方程的特征可得线性回归直线方程一定过样本中心所以①正确;根据残差的概念可得残差平方和越小的模型拟合效果越好所以解析:①②④ 【分析】根据两个变量线性相关的概念及性质,逐项判定,即可求解. 【详解】由题意,根据回归直线方程的特征,可得线性回归直线方程一定过样本中心,所以①正确;根据残差的概念,可得残差平方和越小的模型,拟合效果越好,所以②正确; 根据相关指数的概念,可得2R 越大说明拟合效果越好,所以③不正确;若变量y 和x 之间的相关系数为0.946r =-,则变量y 和x 之间负相关,且线性相关性强,所以④正确;故答案为:①②④. 【点睛】本题主要考查了两个变量的线性相关性的概念与判定,其中解答中熟记线性相关的基本概念和结论是解答的关键,属于基础题.15.或【分析】利用平均数与方差公式直接求解即可【详解】由题去掉最高与最低分后的测试成绩为8284848689则平均数方差故答案为:或【点睛】本题考查茎叶图考查平均数与方差的计算是基础题解析:5.6或285【分析】利用平均数与方差公式直接求解即可 【详解】由题去掉最高与最低分后的测试成绩为82,84,84,86,89,则平均数8284848689855x ++++==方差()()()()()2222221288582858485848586858955s ⎡⎤=-+-+-+-+-=⎣⎦ 故答案为:5.6或285【点睛】本题考查茎叶图,考查平均数与方差的计算,是基础题16.【分析】利用频率分布直方图中频率和为1求a 值根据7080)的频率求出在此区间的人数即可【详解】由1﹣005﹣035﹣02﹣01=03故a =003故阅读的时间在7080)(单位:分钟)内的学生人数为: 解析:900【分析】利用频率分布直方图中频率和为1求a 值,根据[70,80)的频率求出在此区间的人数即可. 【详解】由1﹣0.05﹣0.35﹣0.2﹣0.1=0.3, 故a =0.03,故阅读的时间在[70,80)(单位:分钟)内的学生人数为:0.3×3000=900, 故答案为900. 【点睛】本题考查频率分布直方图中的有关性质的应用,考查直方图中频率和频数的求法.17.【解析】【分析】由题意求得样本中心点代入回归直线方程即可求出的值【详解】由已知代入回归直线方程可得:解得故答案为【点睛】本题考查了线性回归方程求出横坐标和纵坐标的平均数写出样本中心点将其代入线性回归解析:16-【解析】 【分析】由题意求得样本中心点,代入回归直线方程即可求出b 的值 【详解】 由已知,()12101210330x x x y y y +++=+++=()12101310x x x x ∴=⨯+++= ()12101110y y y y =⨯+++=代入回归直线方程可得:3132b =+ 解得16b =-故答案为16- 【点睛】本题考查了线性回归方程,求出横坐标和纵坐标的平均数,写出样本中心点,将其代入线性回归方程即可求出结果18.2【解析】分析:直接利用回归方程将代入即可求得的估计值详解:∵回归方程为∴当时的估计值为故答案为82点睛:本题考查回归方程的运用考查学生的计算能力属于基础题解析:2 【解析】分析:直接利用回归方程,将25x =代入,即可求得y 的估计值. 详解:∵回归方程为0.4 1.8y x =-,∴当25x =时,y 的估计值为 0.425 1.88.2y =⨯-=.故答案为8.2.点睛:本题考查回归方程的运用,考查学生的计算能力,属于基础题.19.【解析】分析:根据中位数为求出是代入平均数公式可求出从而可得出平均数代入方差公式得到方差详解中位数为这组数据的平均数是可得这组数据的方差是故答案为点睛:本题主要考查平均数与方差属于中档题样本数据的算 解析:743【解析】分析:根据1,0,4,,,14x y -中位数为5,,求出x 是6 ,代入平均数公式,可求出7y =,从而可得出平均数,代入方差公式,得到方差. 详解1,0,4,,7,14x -中位数为45,52x+∴=,6x ∴=,∴这组数据的平均数是10461456y -+++++=,7y =可得这组数据的方差是()17436251148163+++++=,故答案为743. 点睛:本题主要考查平均数与方差,属于中档题.样本数据的算术平均数公式为12n 1(x +x +...+x )x n=.样本方差2222121[()()...()]n s x x x x x x n =-+-++-,标准差222121[()()...()]n s x x x x x x n=-+-++-. 20.【解析】 三、解答题21.(1)见解析;(2)174.5cm ;(3)0.3. 【详解】试题分析:(1)先分别算出第六组和第七组的人数,进而算出其频率与组距的比,补全直方图;(2)利用中位数两边频率相等,求出中位数的值;(3)先借助分层抽样的特征求出第四、第五组的人数,再运用列举法列举出所有可能数及满足题设的条件的数,运用古典概型的计算公式求解:解:(1)第六组与第七组频率的和为:∵第六组和第七组人数的比为5:2.∴第六组的频率为0.1,纵坐标为0.02;第七组频率为0.04,纵坐标为0.008.(2)设身高的中位数为,则∴估计这50位男生身高的中位数为174.5(3)由于第4,5组频率之比为2:3,按照分层抽样,故第4组中应抽取2人记为1,2,第5组应抽取3人记为3,4,5则所有可能的情况有:{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5}, {3,4},{3,5},{4,5}共10种满足两位男生身高都在[175,180]内的情况有{3,4},{3,5},{4,5}共3种, 因此所求事件的概率为.22.(Ⅰ)0.02;(Ⅱ)10800元. 【分析】(Ⅰ)由频率分布直方图中小矩形面积和为1能求出a .(Ⅱ)根据频率分布直方图,日销售量不低于25件的天数为(0.040.02)5309+⨯⨯=,一个月可获得的奖励为900元,由此可以估计一年内获得的礼金数. 【详解】(Ⅰ)由题意可得1[1(0.010.060.070.04)5]0.025a =-+++⨯=. (Ⅱ)根据频率分布直方图知,日销售量不低于25件的天数为:()0.040.025309+⨯⨯=(天),一个月可获得的礼金数为9100900⨯=(元),依此可以估计该微商一年内获得的礼金数为9001210800⨯=元. 【点睛】本题考查频率的求法,考查频率分布直方图的性质等基础知识,考查样本估计总体以及运算求解能力、数形结合思想的应用,是基础题.23.(1) 1.2308ˆ.0yx =+;(2)12.38万元.. 【分析】(1)由已知表格中的数据,易计算出变量x ,y 的平均数,及2i x ,i i x y 的累加值,代入回归直线系数公式1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-,即可求出回归直线的系数,进而求出回归直线方程.(2)把使用年限10代入回归直线方程,即可估算出维修费用的值. 【详解】 (1)4x =,5y=,52190ii x==∑,51112.3i i i x y ==∑,12215 1.235ni ii nii x yxyb xx ==-==-∑∑,0.08a y bx =-=, 所以回归直线方程为 1.2308ˆ.0yx =+; (2) 1.23100.0812.3ˆ8y=⨯+=, 即估计用10年时维修费约为12.38万元. 【点评】本题考查回归直线的方程求解,关键是要求出回归直线方程的系数,由已知的变量x ,y 的值,我们计算出变量x ,y 的平均数,及2i x ,i i x y 的累加值,代入回归直线系数公式1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-,即可求出回归直线的系数,进而求出回归直线方程.属于中等题.24.(1)见解析;(2)见解析;(3) 22.3百万小时 【分析】(1)根据频率分布直方图求数据填入对应表格,再根据卡方公式求2K ,最后对照数据作判断,(2)先确定随机变量取法,再判断从M 城市中任选的2名用户中活跃用户数服从二项分布,从N 城市中任选的1名用户中活跃用户数服从两点分布,进而求得对应概率,列表得分布列,最后根据数学期望公式得期望,(3)先求均值,解得ˆa,再估计5x =对应函数值. 【详解】(1)由已知可得以下22⨯列联表:计算()2220060208040200K 9.5247.8791001001406021⨯⨯-⨯==≈>⨯⨯⨯ , 所以有99.5%的把握认为用户是否活跃与所在城市有关. (2)由统计数据可知,城市M 中活跃用户占35,城市N 中活跃用户占45,设从M 城市中任选的2名用户中活跃用户数为X ,则3~2,5X B ⎛⎫ ⎪⎝⎭设从N 城市中任选的1名用户中活跃用户数为Y ,则Y 服从两点分布,其中()415P Y ==. 故0,1,2,3ξ=,()()()20221400055125P P X P Y C ξ⎛⎫===⋅==⋅= ⎪⎝⎭; ()()()()()2012224321*********555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅+⋅⋅⋅=⎪⎝⎭;()()()()()2122223431572112055555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅⋅+⋅⋅= ⎪⎝⎭;()()()222343632155125P P X P Y C ξ⎛⎫===⋅==⋅= ⎪⎝⎭. 故所求ξ的分布列为()428573601232125125125125E ξ=⨯+⨯+⨯+⨯=. (3)由已知可得 2.5x =,又12.3y =,可得12.34ˆ2.5a=⨯+,所以ˆ 2.3a =,所以4 2.3ˆy x =+. 以5x =代入可得ˆ22.3y=(百万小时), 即2019年第一季度该读书APP 用户使用时长约为22.3百万小时. 【点睛】本题考查频率分布直方图、回归直线方程以及分布列和数学期望,考查基本分析求解能力,属中档题.25.(1)见解析(2) 1.1.7ˆ0yx =+(3)9.5百万元 【解析】试题分析:(1)根据表格中的数据,在坐标系中描出点,将点连起来,就画出了散点图;(2)根据题目中的数据计算出 1.1,0.ˆˆ7ba ==,代入平均值3,4x y ==,即可得到回归方程;(3)将8x =,代入回归方程即可得到预测值. (1)散点图(2)由题意可知,12345234473,455x y ++++++++====,51122334445771i ii x y==⨯+⨯+⨯+⨯+⨯=∑,522222211234555i i x ==++++=∑,根据公式,可求得2715341.1,4 1.130.ˆˆ75553ba-⨯⨯===-⨯=-⨯, 故所求回归直线的方程为 1.1.7ˆ0y x =+; (3)令8x =,得到预测值 1.1809.5ˆ.7y=⨯+=(百万元) 答:如果该企业某年研发费用投入8百万元,预测该企业获得年利润为9.5百万元. 26.(1)概率分别为:43100,27100,21100,9100;(2)350;(3)填表见解析;有95%的把握认为锻炼的人次与该市的空气质量有关.【分析】(1)用频率估计概率,从而得到估计该市一天的空气质量等级为1,2,3,4的概率; (2)利用频率分布直方图估计样本平均值的方法可得得答案; (3)完善列联表,由公式计算卡方的值,从而查表即可, 【详解】解:(1)该市一天的空气质量等级为1的概率为:2162543100100++=;该市一天的空气质量等级为2的概率为:5101227100100++=;该市一天的空气质量等级为3的概率为:67821100100++=;该市一天的空气质量等级为4的概率为:7209100100++=; (2)由题意可得:一天中到该公园锻炼的平均人次的估计值为:1000.203000.355000.45350x =⨯+⨯+⨯=;(3)根据所给数据,可得下面的22⨯列联表,由表中数据可得:2 5.820 3.841()()()()70305545K a b c d a c b d ==≈>++++⨯⨯⨯, 所以有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查了独立性检验与频率估计概率,估计平均值的求法,属于中档题.。

高中数学必修3统计测试题及其答案

高中数学必修3统计测试题及其答案

高中数学必修 3 第二章(统计)检测题班级姓名得分一、选择题:(此题共 10 小题,每题 3 分,共 30 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.某单位有老年人28 人,中年人 54 人,青年人 81 人.为了检查他们的身体状况,需从他们中抽取一个容量为36 的样本,最适合抽取样本的方法是( D ).A .简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除一人,而后分层抽样2.10 名工人某天生产同一部件,生产的件数是15,17,14, 10,15, 17,17,16,14,12.设其均匀数为a,中位数为 b,众数为 c,则有 ( D).A .a>b>c B. b>c>a C. c>a>b D.c>b>a3.以下说法错误的选项是 ( B ).A.在统计里,把所需观察对象的全体叫作整体B.一组数据的均匀数必定大于这组数据中的每个数据C.均匀数、众数与中位数从不一样的角度描绘了一组数据的集中趋向D.一组数据的方差越大,说明这组数据的颠簸越大4.以下说法中,正确的选项是 ( C ).A .数据 5,4,4,3,5,2 的众数是 4B.一组数据的标准差是这组数据的方差的平方C.数据 2,3,4,5 的标准差是数据 4,6,8,10 的标准差的一半D.频次散布直方图中各小长方形的面积等于相应各组的频数5.从甲、乙两班分别随意抽出10 名学生进行英语口语测试,其测试成绩的方差分别2 2 .,则.为 S1 , 2A )= 13.2 S =26 26(A .甲班 10 名学生的成绩比乙班10 名学生的成绩齐整B.乙班 10 名学生的成绩比甲班10 名学生的成绩齐整C.甲、乙两班 10 名学生的成绩同样齐整D.不可以比较甲、乙两班10 名学生成绩的齐整程度6.以下说法正确的选项是 ( C ).A.依据样本预计整体,其偏差与所选择的样本容量没关B.方差和标准差拥有同样的单位2 2 2 2 是错的D.假如容量同样的两个样本的方差知足12 ,那么推得整体也知足S1 2S <S <S 7.某同学使用计算器求 30 个数据的均匀数时,错将此中一个数据 105 输人为 15,那么由此求出的均匀数与实质均匀数的差是( B ).A.3.5 B.-3 C. 3 D. -0.58.在一次数学测试中,某小组14 名学生疏别与全班的均匀分85 分的差是: 2,3,-3,-5, 12,12,8,2,-1,4,-10,-2, 5, 5,那么这个小组的均匀分是(B)分.A .97.2 B. 87.29 C. 92.32 D.82.869.某题的得分状况以下:此中众数是 ( C ).得分 /分0 1 2 3 4百分率 /(%) 37.0 8.6 6.0 28.2 20.2A .37.0%B. 20.2%C.0 分D.4 分10.假如一组数中每个数减去同一个非零常数,则这一组数的( 10 ).A .均匀数不变,方差不变B.均匀数改变,方差改变C.均匀数不变,方差改变D.均匀数改变,方差不变11.为检查参加运动会的 1 000 名运动员的年纪状况,从中抽查了 100 名运动员的年纪,就这个问题来说,以下说法正确的选项是A . 1 000 名运动员是整体C.抽取的 100 名运动员是样本( A)B.每个运动员是个体D.样本容量是 10012.为了检查某产品的销售状况,销售部门从部下的92 家销售连锁店中抽取30 家认识情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为( A )A.3,2B.2,3C.2,30D.30,213.某城区有农民、工人、知识分子家庭合计 2 000 家,此中农民家庭 1 800 户,工人家庭100 户.现要从中抽取容量为40 的样本,检查家庭收入状况,则在整个抽样过程中,能够用到以下抽样方法(D)①简单随机抽样;②系统抽样;③分层抽样.A .②③ B.①③ C.③ D.①②③ 14.以下说法不正确的选项是 ( A )A.频次散布直方图中每个小矩形的高就是该组的频次B.频次散布直方图中各个小矩形的面积之和等于 1C.频次散布直方图中各个小矩形的宽同样大D.频次散布直方图能直观地表示样本数据的散布状况15.容量为 20 的样本数据,分组后的频数以下表:分组[10,20) [20,30) [30,40) [40,50) [50,60) [60,70)频数 2 3 4 5 4 2则样本数据落在区间 [10,40)的频次为 ( B )A . 0.35 B.0.45 C.0.55 D.0.6516.已知 10 名工人生产同一部件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为 a,中位数为 b,众数为 c,则有 ( D )A . a>b>c B.a>c>b C.c>a>b D.c>b>a17. 已知一个样本中的数据为1,2,3,4,5,则该样本的标准差为(B )A . 1 B. 2 C. 3 D.218.如图是 2012 年某校举行的元旦诗歌朗读竞赛中,七位评委为某位选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的均匀数和方差分别为(C)A . 84,4.84B .84,1.6C.85,1.6D.85,0.419.某中学有高中生 3500 人,初中生 1500 人.为认识学生的学习状况,用分层抽样的方法从该校学生中抽取一个容量为 n 的样本,已知从高中生中抽取 70 人,则 n 为( A) A.100B .150C .200D .25020.样本容量为100 的频次散布直方图以下图.依据样本的频次散布直方图预计样本数据落在 [6, 10)内的频数为 a,样本数据落在 [2,10)内的频次为 b,则 a, b 分别是 ( A )A .32,0.4 B.8,0.1C. 32,0.1 D.8,0.4二、填空题:(此题共 4 小题,每题 3 分,共 12 分)21.一个企业共有 240 名职工,下设一些部门,要采纳分层抽样方法从全体职工中抽取一个容量为20的样本.已知某部门有 60名职工,那么从这一部门抽取的职工人数是5。

必修三统计章末检测卷(含答案)

必修三统计章末检测卷(含答案)

C.①系统抽样,②简单随机抽样,③分层抽样
D。①分层抽样,②系统抽样,③简单随机抽样
答案 A
解析 ①总体较少,宜用简单随机抽样;②已分段,宜用系统抽样;③各层间差异明显,宜用分
层抽样,故选 A。
7.一组数据中的每一个数据都乘 2,再减去 80,得到一组新数据,若求得新数据的平均数是 1.2,
方差是 4.4,则原来数据的平均数和方差分别是( )
必修三统计章末检测卷(含答案)(word 版可编辑修改)
必修三统计章末检测卷(含答案)(word 版可编辑修改)
编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(必修三统计章末检测卷(含答 案)(word 版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建 议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为必修三统计章末检测卷(含答案)(word 版可编辑修改)的全部内容。
3。一位母亲记录了儿子 3~9 岁的身高,由此建立的身高与年龄的回归方程为Error!=7。19x+
73.93,用这个方程预测这个孩子 10 岁时的身高,正确的叙述是( )
A.身高一定是 145。83 cm
B。身高在 145。83 cm 以上
C。身高在 145.83 cm 以下
D。身高在 145.83 cm 左右
13.甲、乙、丙、丁四名射击手在选拔赛中的平均环数 及其标准差 s 如下表所示,则选送决赛
的最佳人选应是________。
甲 乙 丙丁

必修三数学统计综合训练题及答案

必修三数学统计综合训练题及答案

第二章 统计章末综合检测1一、选择题1.某学校有男、女学生各500名,为了解男、女学生在学习爱好与业余爱好方面是不是存在显著不同,拟从全部学生中抽取100名学生进行调查,那么宜采纳的抽样方式是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法2.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,那么有( )A .a>b>cB .b>c>aC .c>a>bD .c>b>a3.2021年某大学自主招生面试环节中,七位评委为一考生打出分数的茎叶图如图2­1,去掉一个最高分和一个最低分,所剩数据的平均数和方不同离为( )图2­1 A .84,4.84 B .84,1.6C .85,1.6D .85,44甲 乙 丙 丁平均环数x 8.6 8.9 8.9 8.2方差s 2 3.5 3.5 2.1 5.6A .甲B .乙C .丙D .丁5.某校数学教研组为了解学生学习数学的情形,采纳分层抽样的方式从高一600人、高二780人、高三n 人中,抽取35人进行问卷调查,已知高二被抽取的人数为13人,那么n =( )A .660B .720C .780D .8006气温/℃ 18 13 10 4 -1杯数/杯 24 34 39 51 63假设热茶杯数y 与气温( )A .y =x +6B .y =x +42C .y =-2x +60D .y =-3x +787.x 是x 1,x 2,…,x 100的平均数,a 是x 1,x 2,…,x 40的平均数,b 是x 41,x 42,…,x 100的平均数,那么以下各式正确的选项是( )A.x =40a +60b 100B.x =60a +40b 100C.x =a +bD.x =a +b 28.在抽查某产品的尺寸进程中,将其尺寸数据分成假设干组,[a ,b ]是其中一组,抽查出的个体数在该组上的频率是m,该组上的直方图的高为h,那么|a-b|=( )A.h·m B.hmC.mhD.与m,h无关9.图2­5是某县参加2021年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A m(如A2表示身高(单位:cm)在[150,155)内的学生人数).图2­6是统计图中身高在必然范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm,不含180 cm)的学生人数,那么在流程图中的判定框内应填写的条件是( )图2­5图2­6A.i<9? B.i<8? C. i<7? D.i<6?10.图2­2­8是依照某班学生在一次数学考试中的成绩画出的频率散布直方图,假设80分以上为优秀,依照图形信息可知:这次考试的优秀率为( )图2­2­8A.25%B.30%C.35%D.40%11.一个社会调查机构就某地居民的月收入调查了10 000人,并依照所得数据得出样本频率散布直方图(如图2­2­9).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人顶用分层抽样方式抽出100人做进一步伐查,那么在[2500,3000)(单位:元)月收入段中应抽出________人.图2­2­9二、填空题12.以下四种说法中,①数据4,6,6,7,9,3的众数与中位数相等;②一组数据的标准差是这组数据的方差的平方;③数据3,5,7,9的标准差是数据6,10,14,18的标准差的一半;④频率散布直方图中各小长方形的面积等于相应各组的频数.其中正确的有__________(填序号).13.将参加数学竞赛的1000名学生编号如下:0001,0002,003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方式把编号分成50个部份,若是第一部份编号为0001,0002,0003,…,0020,第一部份随机抽取一个号码为0015,那么抽取的第40个号码为________.14.超速行驶已成为马路上最大杀手之一,已知某中段属于限速路段,规定通过该路段的汽车时速不超过80 km/h,不然视为违规.某天,有1000辆汽车通过了该路段,通过雷达测速取得这些汽车运行时速的频率散布直方图如图2­7,那么违规的汽车大约为________辆.图2­715.已知回归直线斜率估量值为1.23,样本点中心为(4,5),那么回归方程是____________.三、解答题16.某校文学社开展“红五月”征文活动,作品上交时刻为5月2号~5月22号,评委从收到的作品中抽出200,经统计,其频率散布直方图如图2­2­16.(1)样本中的作品落在[6,10)内的频数是多少?(2)估量众数、中位数和平均数各是多少?17.对甲、乙两名自行车赛手在相同条件下进行了8次测试,测得他们的最大速度(单位:m/s)的数据如下表:甲2738303735312450乙3329383428364345(1)画出茎叶图。

新教材高中数学章末综合检测三成对数据的统计分析新人教A版选择性必修第三册

新教材高中数学章末综合检测三成对数据的统计分析新人教A版选择性必修第三册

章末综合检测(三) 成对数据的统计分析A 卷——基本知能盘查卷一、单项选择题1.可用来分析身高与体重有关系的是( ) A .残差分析 B .线性回归模型 C .等高堆积条形图D .独立检验解析:选B 因为身高与体重是两个具有相关关系的变量,所以要用线性回归模型来解决.2.两个变量y 与x 的经验回归模型中,分别选择了四个不同模型来拟合y 与x 之间的关系,它们的相关指数R 2如下,其中拟合效果最好的模型是( )A .模型1 C .模型3D .模型4解析:选A 两个变量y 与x 的经验回归模型中,它们的相关指数R 2越接近于1,这个模型的拟合效果越好,所给出的四个选项中0.98是相关指数最大的值,所以拟合效果最好的模型是模型1.3.已知一组观测值(x 1,y 1),(x 2,y 2),…,(x n ,y n )满足y i =a +bx i +e i (i =1,2,…,n ),若e i 恒为0,则R 2=( )A .0B .0.5C .0.9D .1选D4.如果有95%的把握说事件A 和B 有关系,那么具体计算出的数据为( ) A .χ2>3.841 B .χ2<3.841 C .χ2>6.635D .χ2<6.635解析:选A 由独立性判断的方法可知,如果有95%的把握,即小概率值α=0.05,则χ2>3.841.5.观察两个变量(存在线性相关关系)得如下数据:A.y ^=12x +1B.y ^=xC.y ^=2x +13D.y ^=x +1解析:选 B 根据表中数据得x -=18×(-10-6.99-5.01-2.98+3.98+5+7.99+8.01)=0,y -=18×(-9-7-5-3+4.01+4.99+7+8)=0,所以两变量x ,y 的经验回归方程过样本点的中心(0,0),可以排除A 、C 、D 选项,故选B.6.2020年初,新型冠状病毒(COVID ­19)引起的肺炎疫情爆发以来,各地医疗机构采取了各种针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如下表所示:周数(x ) 1 2 3 4 5 治愈人数(y )2173693142由表格可得y 关于x 的二次回归方程为y ^=6x 2+a ,则此回归模型第4周的残差(实际值与预报值之差)为( )A .5B .4C .1D .0解析:选A 设t =x 2,则t -=15(1+4+9+16+25)=11,y -=15(2+17+36+93+142)=58,a =58-6×11=-8,所以y ^=6x 2-8.令x =4,得e 4=y 4-y ^4=93-6×42+8=5.7.通过随机询问100名性别不同的高二学生是否爱吃零食,得到如下的列联表:喜爱程度 性别合计 男(Y =0) 女(Y =1) 爱好(X =0) 10 40 50 不爱好(X =1)20 30 50 合计3070100参考数据及公式:P (χ2≥x α)0.10 0.05 0.01 x α2.7063.8416.635其中χ2=n ad -bc 2a +bc +d a +cb +d,n =a +b +c +d .则下列结论正确的是( )A .根据小概率值α=0.05的独立性检验,认为爱吃零食与性别有关B .根据小概率值α=0.05的独立性检验,认为爱吃零食与性别无关C .根据小概率值α=0.01的独立性检验,认为爱吃零食与性别有关D .根据小概率值α=0.1的独立性检验,认为爱吃零食与性别无关 解析:选A 零假设为H 0:是否爱吃零食与性别相互独立,即是否爱吃零食与性别无关.根据列联表中的数据,经计算得到 χ2=100×10×30-40×20250×50×30×70≈4.762>3.841=x 0.05,所以依据小概率值α=0.05的独立性检验,推断H 0不成立,即认为是否爱吃零食与性别有关.同理可得,根据小概率值α=0.01的独立性检验,认为爱吃零食与性别无关;根据小概率值α=0.1的独立性检验,认为爱吃零食与性别有关.8.某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查,y 与x 具有相关关系,回归方程为y ^=0.66x +1.562.若某城市居民人均消费水平为7.675千元,估计该城市人均消费额占人均工资收入的百分比约为( )A .83%B .72%C .67%D .66%解析:选A 将y ^=7.675代入回归方程,可计算得x ≈9.262,所以该城市人均消费额占人均工资收入的百分比约为7.675÷9.262≈0.83,即约为83%.二、多项选择题9.下列说法正确的是( )A .自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B .在线性经验回归模型中,相关系数r 的值越大,变量间的相关性越强C .在残差图中,残差点分布的水平带状区域的宽度越狭窄,其模型拟合的精度越高D .在经验回归模型中,R 2为0.98的模型比R 2为0.80的模型拟合的效果好解析:选ACD 由于线性相关系数|r |≤1,且当|r |越大,线性相关性越强,故r <0时,选项B 不正确,A 、C 、D 均正确.10.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,则下列结论正确的是( )A .y 与x 负相关且y ^=2.347x -6.423 B .y 与x 负相关且y ^=-3.476x +5.648 C .y 与x 正相关且y ^=5.437x +8.493 D .y 与x 正相关且y ^=-4.326x -4.578解析:选BC 正相关指的是y 随x 的增大而增大,负相关指的是y 随x 的增大而减小,故正确的为B 、C.11.以下关于线性经验回归的判断中,正确的选项为( )A .若散点图中所有点都在一条直线附近,则这条直线为经验回归直线B .散点图中的绝大多数都线性相关,个别特殊点不影响线性回归,如图中的A ,B ,C 点C .已知线性经验回归方程为y ^=0.50x -0.81,则x =25时,y 的估计值为11.69 D .线性经验回归方程的意义是它反映了样本整体的变化趋势解析:选BCD 能使所有数据点都在它附近的直线不止一条,而据回归直线的定义知,只有按最小二乘法求得回归系数a ^,b ^得到的直线y ^=b ^x +a ^才是回归直线,所以A 错误;B 正确;将x =25代入y ^=0.50x -0.81,得y ^=11.69,所以C 正确;D 正确.12.有两个分类变量X 与Y ,其2×2列联表如下表所示:X Y 合计 Y =0 Y =1X =0 a20-a 20 X =115-a 30+a 45 合计155065其中a,15-a 均为大于5的整数,根据小概率值α=0.05的独立性检验,认为X 与Y 之间有关,则a 等于( )A .7B .8C .9D .6解析:选BC 根据小概率值α=0.05的独立性检验,认为X 与Y 之间有关,需要χ2的值大于或等于3.841,由χ2=65×[a 30+a -20-a15-a ]220×45×15×50=1313a -6025 400≥3.841,解得a ≥7.69或a ≤1.54.而a >5且15-a >5,a ∈Z , 所以a =8或a =9. 三、填空题13.为了研究男子的年龄与吸烟的关系,抽查了100个男子,按年龄超过和不超过40岁,吸烟量每天多于和不多于20支进行分组,如下表:吸烟量年龄合计不超过40岁 (Y =0)超过40岁 (Y =1) 不多于20支/天(X =0) 50 1565多于20支/天 (X =1) 10 25 35 合计6040100则χ2=________(保留到小数点后两位有效数字). 解析:由列联表知χ2=100×10×15-50×25260×40×65×35≈22.16.答案:22.1614.某高校“统计初步”课程的教师随机调查了选该课程的一些学生情况,具体数据如下表:性别专业非统计专业 (Y =0)统计专业 (Y =1) 男(X =0) 13 10 女(X =1)720为了判断主修统计专业是否与性别有关系,根据表中数据,得到χ2=50×13×20-10×7223×27×20×30≈4.844>3.841,所以能根据小概率值α=________,我们断定主修统计专业与性别有关系.解析:因为P (χ2≥3.841)=0.05,所以小概率值α=0.05. 答案:0.0515.下表是降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性经验回归方程y ^=0.7x +0.35,那么表中m 的值为________.x3 4 5 6y2.5 m 4 4.5解析:根据所给的表格可以求出x -=3+4+5+64=4.5,y -=2.5+m +4+4.54=11+m 4,因为这组数据的样本点的中心在线性经验回归直线上, 所以11+m4=0.7×4.5+0.35,所以m =3.答案:3 四、解答题16.(12分)为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干名大学生志愿者,某记者在该大学随机调查了1 000名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:性别 是否愿意做志愿者 合计 愿意(Y =0)不愿意(Y =1)男(X =0)610 女(X =1)90 合计800(1)根据题意完成表格.(2)依据小概率值α=0.05的独立性检验,分析愿意做志愿者工作与性别是否有关? 参考公式及数据:χ2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d .P (χ2≥x α)0.10 0.05 0.01 x α2.7063.8416.635解:(1)性别 是否愿意做志愿者 合计 愿意(Y =0)不愿意(Y =1)男(X =0) 500 110 610 女(X =1) 300 90 390 合计8002001 000(2)零假设为H 0:愿意做志愿者工作与性别是相互独立,即愿意做志愿者工作与性别是无关的.根据列联表中的数据,经计算得到 χ2=1 000×500×90-110×3002610×390×800×200=3 000793≈3.783<3.841=x 0.05, 所以依据小概率值α=0.05的独立性检验,没有充分证据推断H 0不成立,即愿意做志愿者工作与性别是无关的.17.(12分)自从高中生通过高校自主招生可获得加分进入高校的政策出台后,自主招生越来越受到高中生家长的重视.某机构为了调查A 城市和B 城市的高中家长对于自主招生的关注程度,在这两个城市中抽取了100名高中生家长进行了调查,得到下表:城市高中家长是否关注合计关注(Y =0)不关注(Y =1)A 城高中家长(X =0)2050B 城高中家长(X =1) 20 合计100(1)完成上面的列联表;(2)根据上面列联表的数据,能否根据小概率值α=0.05的独立性检验,判断家长对自主招生关注与否与所处城市有关系;(3)为了进一步研究家长对自主招生的看法,该机构从关注的学生家长里面,按照分层随机抽样方法抽取了5人,并再从这5人里面抽取2人进行采访,求所抽取的2人恰好A ,B 两城市各一人的概率.参考公式:χ2=n ad -bc 2a +bc +d a +cb +d(其中n =a +b +c +d ).附表:P (χ2≥x α)0.10 0.05 0.010 x α2.7063.8416.635解:(1)列联表如下: 城市高中家长是否关注合计关注(Y =0) 不关注(Y =1)A 城高中家长(X =0)203050B 城高中家长(X =1) 30 20 50 合计 5050100(2)零假设为H 0:家长对自主招生关注与否与所处城市相互独立,即家长对自主招生关注与否与所处城市无关.根据列联表中的数据,经计算得到 χ2=100×20×20-30×30250×50×50×50=4>3.841.所以根据小概率值α=0.05的独立性检验,我们推断H 0不成立,即认为家长对自主招生的关注与否与所处城市是有关的.(3)关注的人共有50人,按照分层随机抽样的方法,A 城市2人,B 城市3人,从5人中抽取2人有C 25=10种不同的方法,A ,B 两城市各取一人有C 12C 13=2×3=6种不同的方法,故所抽取的2人恰好A ,B 两城市各一人的概率为C 13C 12C 25=610=0.6.B 卷——高考能力达标卷一、单项选择题1.下列属于相关关系的是( ) A .利息与利率 B .居民收入与储蓄存款 C .电视机产量与苹果产量 D .某种商品的销售额与销售价格解析:选B A 与D 是函数关系,C 中两变量没有关系,B 中居民收入与储蓄存款是相关的,但不具有函数关系.2.已知一个经验回归方程为y ^=1.5x +45,其中x 的取值依次为1,7,5,13,19,则y -=( )A .58.5B .46.5C .60D .75解析:选A x -=1+7+5+13+195=9,因为经验回归直线必过样本点的中心(x -,y -), 所以y -=1.5×9+45=13.5+45=58.5.3.已知每一吨铸铁成本y (元)与铸件废品率x %建立的经验回归方程y ^=56+8x ,则下列说法正确的是( )A .废品率每增加1%,成本每吨增加64元B .废品率每增加1%,成本每吨增加8%C .废品率每增加1%,成本每吨增加8元D .如果废品率增加1%,则每吨成本为56元解析:选C 根据经验回归方程知y 是关于x 的单调增函数,并且由系数知x 每增加一个单位,y 平均增加8个单位.4.某商品销售量y (件)与销售价格x (元/件)负相关,则其经验回归方程可能是( ) A .y =-10x +200 B .y =10x +200 C .y =-10x -200D .y =10x -200解析:选A 由于销售量y 与销售价格x 成负相关,故排除B 、D.又当x =10时,A 中y =100,而C 中y =-300,C 不符合题意.5.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的经验回归方程为y ^=0.85x -85.71,则下列说法错误的是( )A .y 与x 具有正的线性相关关系B .经验回归直线过样本点的中心C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg解析:选D 选项中,若该大学某女生身高为170 cm ,则可断定其体重约为0.85×170-85.71=58.79(kg).故D 选项错误.6.如图所示的是调查某地区男、女中学生喜欢理科的等高堆积条形图,阴影部分表示喜欢理科的百分比,从图中可以看出( )A .性别与喜欢理科无关B .女生中喜欢理科的比例约为80%C .男生比女生喜欢理科的可能性大些D .男生中不喜欢理科的比例约为60%解析:选C 由题图可知女生中喜欢理科的比例约为20%,男生中喜欢理科的比例约为60%,因此男生比女生喜欢理科的可能性大些.7.如图,5个(x ,y )数据,去掉D (3,10)后,下列说法错误的是( )A .相关系数r 变大B .残差平方和变大C .相关指数R 2变大D .解释变量x 与预报变量y 的相关性变强解析:选B 由散点图知,去掉D 后,x 与y 的相关性变强,且为正相关,所以r 变大,R 2变大,残差平方和变小.8.为考察数学成绩与物理成绩的关系,某老师在高二随机抽取了300名学生,得到下面的列联表:物理成绩数学成绩合计85~100分 (Y =0)85分以下 (Y =1) 85~100分(X =0) 37 85 122 85分以下(X =1)35 143 178 合计72228300 根据表中数据,分析数学成绩与物理成绩有关联的出错率不超过( ) A .0.5% B .1% C .0.1%D .5%解析:选D 由表中数据代入公式得 χ2=300×37×143-85×352122×178×72×228≈4.514>3.841=x 0.05,所以判断的出错率不超过5%. 二、多项选择题9.给出下列实际问题,其中用独立性检验可以解决的问题有( ) A .一种药物对某种病的治愈率 B .两种药物治疗同一种病是否有区别 C .吸烟得肺病的概率 D .吸烟与性别是否有关系答案:BD10.对于经验回归方程y ^=b ^x +a ^,下列说法正确的是( ) A .直线必经过点(x -,y -)B .x 增加1个单位时,y 平均增加b ^个单位 C .样本数据中x =0时,可能有y =a ^D .样本数据中x =0时,一定有y =a ^解析:选ABC 经验回归方程是根据样本数据得到的一个近似曲线,故由它得到的值也是一个近似值.11.下列说法中正确的有( ) A .若r >0,则x 增大时,y 也相应增大 B .若r <0,则x 增大时,y 也相应增大C .若r =1或r =-1,则x 与y 的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上D .|r |越接近1,相关关系越强解析:选ACD 若r >0,表示两个相关变量正相关,x 增大时,y 也相应增大,故A 正确.r <0,表示两个变量负相关,x 增大时,y 相应减小,故B 错误.|r |越接近1,表示两个变量相关性越高,|r |=1表示两个变量有确定的关系(即函数关系),故C 正确,D 正确.12.根据如下样本数据:得到的经验回归方程为y =b x +a ,则( ) A.a ^>0 B.a ^<0 C.b ^>0D.b ^<0解析:选AD 根据题意,画出散点图(图略).根据散点图,知两个变量为负相关,且经验回归直线与y 轴的交点在y 轴正半轴,所以a ^>0,b ^<0.三、填空题13.期中考试后,某校高三(9)班对全班65名学生的成绩进行分析,得到数学成绩y 对总成绩x 的回归直线方程为y ^=6+0.4x .由此可以估计:若两名同学的总成绩相差50分,则他们的数学成绩大约相差________分.解析:令两人的总成绩分别为x 1,x 2.则对应的数学成绩估计为y ^1=6+0.4x 1,y ^2=6+0.4x 2,所以|y ^1-y ^2|=|0.4(x 1-x 2)|=0.4×50=20. 答案:2014.为了判断高三年级学生选修文科是否与性别有关,现随机抽取70名学生,得到如图所示2×2列联表:已知P (≈4.667,则在犯错误的概率不大于________的前提下认为选修文科与性别有关.解析:由题意知, χ2≈4.667,因为6.635>4.667>3.841,所以在犯错误的概率不大于0.05的前提下认为选修文科与性别有关.答案:0.0515.已知x ,y 之间的一组数据如下表,对于表中数据,甲、乙两同学给出的拟合直线分别为l 1:y =13x +1与l 2:y =12x +12,利用最小二乘法判断拟合程度更好的直线是______________.解析:用y =13x +1作为拟合直线时,所得y 的实际值与y 的估计值的差的平方和为:S 1=⎝⎛⎭⎪⎫1-432+(2-2)2+(3-3)2+⎝⎛⎭⎪⎫4-1032+⎝⎛⎭⎪⎫5-1132=73.用y =12x +12作为拟合直线时,所得y 的实际值与y 的估计值的差的平方和为:S 2=(1-1)2+(2-2)2+⎝⎛⎭⎪⎫3-722+(4-4)2+⎝⎛⎭⎪⎫5-922=12. 因为S 2<S 1,故用直线l 2:y =12x +12拟合程度更好.答案:y =12x +12四、解答题16.(12分)微信是现代生活进行信息交流的重要工具,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信的时间在一小时以上.若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,则使用微信的人中75%是青年人.如果规定每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中,中年人有40人.(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,请完成下面的2×2列联表;使用微信 年龄合计青年人(Y =0)中年人(Y =1)经常使用微信 (X =0)不经常使用微信(X =1) 合 计(2)根据列联表中的数据,依据小概率值α=0.001的独立性检验分析该公司经常使用微信的员工与年龄的关系.解:(1)由已知可得,该公司员工中使用微信的有200×90%=180(人). 经常使用微信的有180-60=120(人), 使用微信的人中青年人有180×75%=135(人), 故2×2列联表如下:使用微信 年龄合计青年人(Y =0)中年人(Y =1)经常使用微信 (X =0) 8040120不经常使用微信(X =1) 55 5 60 合 计 13545180(2)零假设为H 0:该公司经常使用微信的员工与年龄相互独立,即该公司经常使用微信的员工与年龄无关.将列联表中的数据代入公式可得, χ2=180×80×5-40×552135×45×120×60≈13.333>10.828=x 0.001,所以根据小概率值α=0.001的独立性检验,我们推断H 0不成立,即认为该公司经常使用微信的员工与年龄有关.17.(12分)淘宝网卖家在某商品的所有买家中,随机选择男女买家各50位进行调查,他们的评分等级如下:评分等级 [0,1] (1,2] (2,3] (3,4] (4,5] 女/人 2 7 9 20 12 男/人 3918128(1)从评分等级为(4,5]的人中随机选取2人,求恰有1人是男性的概率;(2)规定:评分等级在[0,3]为不满意该商品,在(3,5]为满意该商品.完成下面列联表,并根据小概率值α=0.05的独立性检验,分析性别与对商品满意度是否有关.性别评分等级合计满意该商品 (Y =0)不满意该商品(Y =1)女(X =0) 男(X =1) 合计解:(1)因为从评分等级(4,5]的20人中随机选取2人,共有C 220=190种选法,其中恰有1人为男性的共有C 112C 18=96种选法,所以所求概率P =96190=4895.(2)列联表如下:性别评分等级合计满意该商品 (Y =0)不满意该商品(Y =1) 女(X =0) 32 18 50 男(X =1) 20 30 50 合计5248100 零假设为H 0:性别与对商品满意度相互独立,即性别与对商品满意度无关.由公式得χ2=100×32×30-20×18250×50×52×48≈5.769>3.841=x 0.05,所以根据小概率值α=0.05的独立性检验,我们推断H 0不成立,即可以认为性别与对商品满意度有关.。

完整版必修三统计章末检测卷含答案

完整版必修三统计章末检测卷含答案

章末检测卷(: 120 分分:150 分)一、 (本大共12 小,每小 5 分,共 60 分 )1.以下各中的两个量拥有有关关系的是()A.方体的体与B.大气与水的沸点C.人着装越,越景气D.球的半径与表面答案C分析 A 、B 、 D 均函数关系, C 是有关关系 .2.已知体容量106,若用随机数法抽取一个容量10 的本 .下面体的号最方便的是 ()A.1,2 ,⋯, 106B.0,1,2,⋯, 105C.00,01,⋯, 105D.000,001 ,⋯, 105答案D分析由随机数抽取原可知 D.^3.一位母了儿子3~ 9 的身高,由此成立的身高与年的回方程y=+,用个方程个孩子10 的身高,正确的表达是 ()A. 身高必然是145.83 cmB. 身高在 145.83 cm 以上C.身高在 145.83 cm 以下D.身高在 145.83 cm 左右答案D分析回直是用来估体的,因此我求的都是估,因此我获取的果也是近似的,只需把自量的代入回方程即可求得果145.83 cm.4.我市上下班交通情况作抽,作出上下班各抽取12 机行速(位:km/h) 的茎叶 (如 ):上下班行速的中位数分()A.28 与B.29 与C.28 与D.29 与答案D22,由此反应 ()5.甲、乙两个样本的方差分别为 甲=,s 乙 =sA. 样本甲的颠簸比样本乙大B. 样本乙的颠簸比样本甲大C.样本甲和样本乙的颠簸大小同样D.样本甲和样本乙的颠簸大小无法确认 答案 B分析方差作为测量样本数据分别程度的工具,方差越大,分别程度越大,颠簸幅度越大.6.现要达成以下3 项抽样检查:①从10 盒酸奶中抽取3 盒进行食品卫生检查.②科技报告厅有32 排,每排有40 个座位,有一次报告会恰巧坐满了听众,报告会结束后,为了听取建议,需要请32 名听众进行会谈 .③东方中学共有160 名教员工,其中一般教师120 名,行政人员16 名,后勤人员 24 名 .为了认识教员工对学校在校务公然方面的建议,拟抽取一个容量为20 的样本 .较为合理的抽样方法是( )A. ①简单随机抽样,②系统抽样,③分层抽样B. ①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样答案A分析 ① 整体较少,宜用简单随机抽样;②已分段,宜用系统抽样;③ 各层间差别明显,宜用分层抽样,应选A.7.一组数据中的每一个数据都乘2,再减去 80,获取一组新数据,若求得新数据的平均数是,方差是,则原来数据的平均数和方差分别是()答案A= 22s 2,s 2=, 分析设原来数据的平均数和方差分别为x 和 s 2,则得2 x - 80=,x = 40.6.8.在查验某产品直径尺寸的过程中, 将某尺寸分红若干组, [a ,b]是其中的一组,抽查出的个体数在该组上的频次为m ,该组在频次散布直方图上的高为h ,则 |a -b|等于 ()m h A. hB. mD. 与 h , m 没关答案 A分析m 因 |a - b|× h = m ,因此 |a - b|=.h9.从寄存号 分 1,2,⋯, 10 的卡片的盒子中,有放回地取 100 次,每次取一 卡片并下号 , 果以下:卡片号 1 2 3 4 5 6 7 8 9 10 取到的次数13 8 576131810119取到号 奇数的 率是()答案A1分析率 100(13+ 5+ 6+ 18+ 11)= 0.53.10.某班 有50 名学生,其中有30 名男生和 20 名女生,随机 了 班五名男生和五名女生在某次数学 中的成 ,五名男生的成 分86,94,88,92,90,五名女生的成 分88,93,93,88,93.以下 法必然正确的选项是 ()A. 种抽 方法是一种分 抽B. 种抽 方法是一种系 抽C. 五名男生成 的方差大于 五名女生成 的方差D. 班男生成 的平均数小于 班女生成 的平均数答案 C分析1 + 94+ 88+ 92+ 90)=90,x 男 = (8651x 女 = 5(88+ 93+93+ 88+93)= 91,s 2= 1[(86 -90)2 +(94 - 90)2+ (88- 90)2 + (92-90) 2 +(90- 90) 2] = 8,男5 s 2= 1[(88 -91)2 +(93 - 91)2+ (93- 91)2 + (88-91) 2 +(93- 91) 2] = 6.女511.从一堆苹果中任取了20 个,并获取它 的 量 ( 位:克 )数据散布表以下:分 [90,100)[100,110)[110,120)[120,130)[130,140)[140,150]数1231031堆苹果中, 量不小于 120 克的苹果数 占苹果 数的 ()A.30%B.70%C.60%D.50%答案 B分析由数据散布表可知,量不小于 120 克的苹果有 10+ 3+1= 14(个 ),占苹果数的1420×100%= 70%.12.一数据x i(i= 1,2,3 ,⋯, n),若是将它改x i+ c(i = 1,2,3,⋯, n),其中c≠0,下面中正确的选项是()A.平均数与方差均不B.平均数了,而方差保持不C.平均数不,而方差了D.平均数与方差均生了化答案B分析原来数据的平均数x ,将它改x i+ c 后平均数x′, x′= x + c,而方差 s′2=112+⋯+ (xn22 n[(x+ c- x - c)+ c- x - c) ]= s .二、填空 (本大共 4小,每小 5 分,共 20 分)13.甲、乙、丙、丁四名射手在拔中的平均数x 及其准差 s 以下表所示,送决的最正确人是 ________.甲乙丙丁x7887s3答案乙分析平均数反应平均水平大小,准差表示定性.准差越小,定性越好 .14.认识球好者小李的投命中率与打球之的关系,下表了小李某月 1 号到 5号每天打球的x(位:小 )与当天投命中率y 之的关系:x12345命中率 y小李 5 天的平均投命中率________;用性回分析的方法,小李月6号打 6小球的投命中率________.答案分析小李 5 天的平均投命中率y=++++=,可求得小李 5 天的平均打球x = 3.依照表中数5^^^据可求得 b =, a =,故回直方程y =+,将 x= 6 代入得 6 号打 6小球的投命中率0.53.15.从某小学随机抽取100 名学生,将他的身高 (位:厘米 )数据制成率散布直方 (如图 ).由图中数据可知 a= ________.若要从身高在 [120,130) , [130,140) ,[140,150] 三组内的学生中,用分层抽样的方法采用18 人参加一项活动,则从身高在[140,150] 内的学生中采用的人数应为 ________.答案3分析∵ 5 个矩形面积之和为1,即+++ a+ 0.035)× 10=1,∴× 10+ 10a=1,∴ a= 0.030.∵三组内学生数的频次分别为:,∴三组内学生的人数分别为30,20,10.因此从 [140,150]内采用的人数为10× 18= 3. 6016.某单位为了认识用电量y 度与气温 x℃之间的关系,随机统计了某 4 天的用电量与当天气温的数据以下表 .气温 x(℃ )141286用电量 y(度 )22263438^^^^由表中数据得回归方程 y = b x+ a中 b=- 2,据此展望当气温为5℃时,用电量的度数约为 ________.答案40分析∵ x =1(14+12+ 8+ 6)= 10,41y =4(22+26+ 34+38) =30,^^∴a = y - b x = 30+2× 10= 50.^∴当 x= 5 时, y =- 2× 5+ 50= 40.三、解答题 (本大题共 6 小题,共 70 分)17.(10 分 )设某校共有118 名教师,为了支援西部的教育事业,现要从中随机地抽出16 名教师组成暑期西部讲课老师团.请用系统抽样法选出讲课老师团成员.解(1) 对 118 名老师编号;118=,不是整数 .(2)计算间隔 k=16从整体中随机剔除 6 个个体,今后再对余下112 名教师从头编号,计算间隔k= 7,分红 16组,每组 7 人;(3)在 1~ 7 之间随机取一个数字,如选5,将 5 加上间隔 7 获取第二个个体编号 12,再加 7获取第三个个体编号19,依次进行下去,直到获取整个样本5,12,19,26,33,40,47,54,61,68,75,82,89,96,103,110. 这些编号所对应的教师即是讲课老师团成员.18.(12 分) 为认识析某个高三学生的学习状态,对其下一阶段的学习供应指导性建议.现对他前7 次考试的数学成绩x、物理成绩y 进行分析 .下表是该学生7 次考试的成绩 .数学888311792108100112物理949110896104101106(1)他的数学成绩与物理成绩哪个更牢固?请给出你的证明.(2)已知该学生的物理成绩y 与数学成绩x 是线性有关的,若该学生的物理成绩达到115 分,请你估计他的数学成绩大概是多少?并请你依照物理成绩与数学成绩的有关性,给出该学生在学习数学、物理上的合理建议.-12-17+ 17-8+ 8+ 12解(1) x = 100+= 100;7-6- 9+ 8- 4+4+ 1+ 6y = 100+7=100;2225022∴ s数学= 142, s物理=,进而 s数学 >s物理,7∴物理成绩更牢固.(2)∵ x 与 y 之间拥有线性有关关系,^^∴b =, a =100-× 100= 50.^∴回归直线方程为y =+ 50.^当 y =115 时, x= 130.估计他的数学成绩大概是130 分.建议:进一步加强对数学的学习,提高数学成绩的牢固性,将有助于物理成绩的进一步提高.19.(12 分 )某工厂甲、乙两个车间包装同一种产品,在自动包装传达带上,每隔30 分钟抽一包产品,称其重量可否合格,分别记录抽查数据以下(单位:千克 ):甲车间: 102,101,99,98,103,98,99;乙车间: 110,115,90,85,75,115,110.(1)这种抽样方法是何种抽样方法;(2)试依照这组数听闻明哪个车间产品较牢固?解(1) 这种方法是系统抽样法.1(2) x 甲 =7(102+ 101+ 99+ 98+ 103+ 98+99)= 100;1x 乙 = 100+ 7(10+ 15- 10- 15- 25+15+ 10)=100.s 2= 1[(102 - 100) 2+ (101 - 100) 2+ ⋯+(99 - 100) 2 ]≈3.428 6 ;甲7 s 2 = 1[(110 - 100) 2+ (115 - 100) 2+ ⋯+(110 - 100) 2] ≈ 228.571 4.乙722∵ s 甲<s 乙 , ∴ 甲 品 定 .20.(12 分) 某中学高一女生共有450 人, 了认识高一女生的身高( 位: cm)情况,随机抽取部分高一女生 量身高,所得数据整理后列出 率散布表以下:数率[145.5,149.5) 8 [149.5,153.5) 6 [153.5,157.5) 14 [157.5,161.5) 10 [161.5,165.5) 8[165.5,169.5]m n合MN(1)求出表中字母 m 、 n 、 M 、 N 所 的数 ;(2)画出 率散布直方 ;(3)估 校高一女生身高在 [149.5,165.5] 范 内的有多少人?解(1) 由 意得8M == 50,落在区 [165.5,169.5] 内的数据 数率 n =, 率N = 1.00.(2) 率散布直方 如.m =50- (8+ 6+14+ 10+8)= 4,(3)该所学校高一女生身高在[149.5,165.5) 之间的比率为+++=,则该校高一女生在此范围内的人数为450×=342.21.(12 分) 为了估计一次性木质筷子的用量,2014 年从某县共600 家高、中、低档饭馆中抽取10家进行检查,获取这些饭馆每天耗资的一次性筷子盒数分别为0.6,3.7,2.2,1.5,2.8,1.7,2.1,1.2,3.2,1.0.(1)经过对样本的计算,估计该市2014 年共耗资了多少盒一次性筷子(每年按 350 个营业日计算 ).(2)2016 年又对该县一次性木质筷子的用量以同样的方式作了抽样检查,检查结果是10 家饭店平均每家每天使用一次性筷子 2.42 盒,求该县2015 年、 2016 年这两年一次性木质筷子用量平均每年增添的百分率.(3)若是让你统计你所在省一年使用一次性木质筷子所耗资的木材量,怎样利用统计知识去做?简单地说明你的做法.解 (1) 样本平均数为120= 2.x =10+++++++++ 1.0)=10由样本平均数为 2估计整体平均数也是2,故 2014 年该县 600 家饭馆共耗资一次性筷子为2× 350× 600= 420 000 盒.(2)由于 2011 年一次性筷子用量是平均每天 2 盒,而 2016 年用量是平均每天 2.42 盒,设平均每年增添的百分率为x,依题意有= 2× (1+ x)2,解得 x== 10%(x=- 2.1 舍去 ),所以该县 2015 年、 2016 年这两年一次性木质筷子的用量平均每年增添10%.(3)先采用简单随机抽样的方法抽取若干县(市 )( 作样本 ),再从这些县(市 )中采用分层抽样的方法抽取若干家饭馆,统计一次性木质筷子用量的平均数,进而估计整体平均数,再进一步计算所耗资的木材总量 .22.(12 分) 为了研究三月下旬的平均气温(x)与四月棉花害虫化蛹顶峰日(y)的关系,某地域察看了 2011 年至 2016 年的情况,获取下面数据:年份201120122013201420152016x(℃ )y19611018已知 x 与 y 之间拥有线性有关关系,据气象展望该地域在2018 年三月下旬平均气温为 27℃,试估计 2018 年四月化蛹顶峰日为哪天?解由题意知:62x ≈, y =,∑ x i=,i =16∑ x i y i=,i= 16-6 xy^∑ i ii =1x y∴ b =6≈ -,∑ i22i = 1x- 6 x^^a = y -bx ≈, ^∴ 回归直线方程为 y =-+ 71.6.^当 x =27 时, y =-× 27+=,据此,可估计该地域 2018年4月12日或 13日为化蛹顶峰日 .。

(压轴题)高中数学必修三第一章《统计》检测题(含答案解析)(1)

(压轴题)高中数学必修三第一章《统计》检测题(含答案解析)(1)

一、选择题1.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x C ︒171382月销售量y (件)24334055由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件2.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号的同学的成绩依次为1A ,216,,A A ⋯,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是( )A .10B .6C .7D .163.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为( )A .48B .60C .64D .724.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生5.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.则说法正确的是( )A .①②B .①③C .②③D .②④6.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3 D .丁地:总体均值为2,总体方差为37.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .918.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位9.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .1810.已知某企业上半年前5个月产品广告投入与利润额统计如下:由此所得回归方程为7.5ˆyx a =+,若6月份广告投入10(万元)估计所获利润为( ) A .97万元B .96.5万元C .95.25万元D .97.25万元11.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .1112.从8名女生4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为( ) A .112种B .100种C .90种D .80种二、填空题13.用系统抽样方法从400名学生中抽取容量为20的样本,将400名学生随机地编号为1~400,按编号顺序平均分为20个组.若第1组中用抽签的方法确定抽出的号码为11,则第17组抽取的号码为________.14.对具有线性相关关系的变量x ,y 有一组观测数据()(),1,2,3,,8i i x y i =,其回归直线方程是12y x a =+,且8116i i x ==∑,8148i i y ==∑,则实数a =__________.15.通过市场调查,得到某种产品的资金投入x (单位:万元)与获得的利润y (单位:万元)的数据,如表所示:根据表格提供的数据,用最小二乘法求线性回归直线方程为0.36ˆˆybx =-,现投入资金15万元,求获得利润的估计值(单位:万元)为_____________.16.已知某市A 社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是________人.17.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.18.总体由编号为01,02,⋅⋅⋅,29,30的30个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第2行的第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为__________.19.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.20.已知一组数据x ,8,7,9,7,若这组数据的平均数为8,则它们的方差为______.三、解答题21.2020年1月末,新冠疫情爆发,经过全国人民的努力,2月中旬,疫情得到了初步的控制,湖北省以外地区的每日新增确诊人数开始减少,某同学针对这个问题,选取他在统计学中学到的一元线性回归模型,作了数学探究:他于2月17日统计了2月7日至16日这十天湖北省以外地区的每日新增确诊人数,表格如下: 日期 2.7 2.8 2.9 2.10 2.11 2.12 2.132.14 2.15 2.16代号x 123 45 6 78910新增确诊人数y558 509444381 377 312 267221166 115y x y x 计算出: 5.5,335x y ==,()()1013955iii x x y y =--=-∑,()210182.5ii x x =-=∑(1)请你帮这位同学计算出y 与x 的线性回归方程(精确到0.1),然后根据这个方程估计湖北省以外地区新增确诊人数为零时的大概日期;附:回归方程y bx a =+中斜率和截距的最小二乘法估计公式分别为:()()()1012101iii ii x x y y b x x ==--=-∑∑,a y bx =-(2)实际上2月17日至2月22日的新增确诊人数如下:出评价.22.据统计某品牌服装专卖店一周内每天获取得纯利润y (百元)与每天销售这种服装件数x (百件)之间有如下一组数据.该专卖店计划在国庆节举行大型促销活动以提高该品牌服装的知名度,为了检验服装的质量,现从厂家购进的500件服装中抽取60件进行检验,(服装进货编号为001-500). (1)利用随机数表抽样本时,如果从随机数表第8行第2列的数开始按三位数连贯向右读取,试写出最先检测的5件服装的编号;(2)求该专卖店每天的纯利y 与每天销售件数x 之间的回归直线方程.(精确到0.01) (3)估计每天销售1200件这种服装时获多少纯利润? 附表:(随机数表第7行至第9行)84421 75331 57245 50688 77047 44767 21763 35025 83921 20676 63016 47859 16955 56719 98105 07185 12867 35807 44395 23879 33211 23429 78645 60782 52420 74438 15510 01342 99660 27954 参考数据:721280i i x==∑,72145309i i y ==∑,713487i i i x y ==∑.参考公式:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-23.某市为了解疫情过后制造业企业的复工复产情况,随机调查了100家企业,得到这些企业4月份较3月份产值增长率x 的频率分布表如下:企业数13 40 35 8 4(1)估计制造业企业中产值增长率不低于60%的企业比例及产值负增长的企业比例; (2)求制造业企业产值增长率的平均数与方差的估计值(同一组中的数据用该组区间的中点值为代表).24.为了解某小卖部冷饮销量与气温之间的关系,随机统计并制作了6天卖出的冷饮的数量与当天最高气温的对照表: 气温()x ℃ 27 29 30 32 33 35 数量y121520272836(1)画出散点图,并求出y 关于x 的线性回归方程;(2)根据天气预报,某天最高气温为36.6℃,请你根据这些数据预测这天小卖部卖出的冷饮数量.附:一组数据11(,)x y ,22(,)x y ,,(,)n n x y 的回归直线y a bx =+的斜率和截距的最小二乘估计为()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆa y bx=- 25.某学校高一100名学生参加数学竞赛,成绩均在40分到100分之间.学生成绩的频率分布直方图如图:(1)估计这100名学生分数的中位数与平均数;(精确到0.1)(2)某老师抽取了10名学生的分数:12310,,,...,x x x x ,已知这10个分数的平均数90x =,标准差6s =,若剔除其中的100和80两个分数,求剩余8个分数的平均数与标准差.(参考公式:221nii xnx s n=-=∑(3)该学校有3座构造相同教学楼,各教学楼高均为20米,东西长均为60米,南北宽均为20米.其中1号教学楼在2号教学楼的正南且楼距为40米,3号教学楼在2号教学楼的正东且楼距为72米.现有3种型号的考试屏蔽仪,它们的信号覆盖半径依次为35,55,105米,每个售价相应依次为1500,2000,4000元.若屏蔽仪可在地下及地上任意位置安装且每个安装费用均为100元,求让各教学楼均被屏蔽仪信号完全覆盖的最小花费.(参考数据:22221044100,19236864,11012100===)26.在社会实践活动中,“求知”小组为了研究某种商品的价格x (元)和需求量y (件)之间的关系,随机统计了11月1日至11月5日该商品价格和需求量的情况,得到如下资料: 日期 11月1日 11月2日 11月3日 11月4日 11月5日 x (元) 14 16 18 20 22 y (件)1210743该小组所确定的研究方案是:先从这五天中选取2天数据,用剩下的3天数据求线性回归方程,再对被选取的2天数据进行检验.(1)若选取的是11月1日与11月5日两天数据,请根据11月2日至11月4日的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2件,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?参考公式:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58y x =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.2.A解析:A 【分析】先弄清楚程序框图中是统计成绩不低于90分的学生人数,然后从茎叶图中将不低于90分的个数数出来,即为输出的结果. 【详解】176A =,1i =,16i ≤成立,190A ≥不成立,112i =+=; 279A =,2i =,16i ≤成立,290A ≥不成立,112i =+=;792A =,7i =,16i ≤成立,790A ≥成立,011n =+=,718i =+=;依此类推,上述程序框图是统计成绩不低于90分的学生人数,从茎叶图中可知,不低于90分的学生数为10,故选A . 【点睛】本题考查茎叶图与程序框图的综合应用,理解程序框图的意义,是解本题的关键,考查理解能力,属于中等题.3.B解析:B 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=, 故选B. 【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.4.C解析:C 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.5.B解析:B 【分析】根据频率分布直方图的性质和频率分布直方图中样本估计总体,准确运算,即可求解. 【详解】由题意,根据频率分布直方图的性质得10(0.0200.0160.0160.0110.006)1m +++++=,解得0.031m =.故①正确;因为不低于140分的频率为0.011100.11⨯=,所以11010000.11n ==,故②错误; 由100分以下的频率为0.00610=0.06⨯,所以100分以下的人数为10000.06=60⨯,故③正确;分数在区间[120,140)的人数占0.031100.016100.47⨯+⨯=,占小半.故④错误. 所以说法正确的是①③. 故选B. 【点睛】本题主要考查了频率分布直方图的应用,其中解答熟记频率分布直方图的性质,以及在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1,着重考查了分析问题和解答问题的能力,属于基础题.6.D解析:D 【详解】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差7.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.8.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位, 即减少1.5个单位,故选C.【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.9.C解析:C【解析】【分析】根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在高三年级中抽取的人数.【详解】 根据题意得,用分层抽样在各层中的抽样比为421105020=, 则在高三年级抽取的人数是14001625⨯=人, 故选C.【点睛】该题所考查的是有关分层抽样的问题,在解题的过程中,需要明确无论采用哪种抽样方法,都必须保证每个个体被抽到的概率是相等的,所以注意成比例的问题. 10.C解析:C【解析】【分析】首先求出x y ,的平均数,将样本中心点代入回归方程中求出a 的值,然后写出回归方程,然后将10x =代入求解即可【详解】()19.59.39.18.99.79.35x =⨯++++= ()19289898793905y =⨯++++= 代入到回归方程为7.5ˆyx a =+,解得20.25a = 7.25ˆ50.2yx ∴=+ 将10x =代入7.50.5ˆ22yx =+,解得ˆ95.25y = 故选C【点睛】本题是一道关于线性回归方程的题目,解答本题的关键是求出线性回归方程,属于基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章末检测卷(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.下列各选项中的两个变量具有相关关系的是( ) A.长方体的体积与边长 B.大气压强与水的沸点 C.人们着装越鲜艳,经济越景气 D.球的半径与表面积 答案 C解析 A 、B 、D 均为函数关系,C 是相关关系.2.已知总体容量为106,若用随机数法抽取一个容量为10的样本.下面对总体的编号最方便的是( ) A.1,2,…,106 B.0,1,2,…,105 C.00,01,…,105 D.000,001,…,105答案 D解析 由随机数抽取原则可知选D.3.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归方程为y ^=7.19x +73.93,用这个方程预测这个孩子10岁时的身高,正确的叙述是( ) A.身高一定是145.83 cm B.身高在145.83 cm 以上 C.身高在145.83 cm 以下 D.身高在145.83 cm 左右 答案 D解析 回归直线是用来估计总体的,所以我们求的值都是估计值,所以我们得到的结果也是近似的,只要把自变量的值代入回归方程即可求得结果为145.83 cm.4.我市对上下班交通情况作抽样调查,作出上下班时间各抽取12辆机动车行驶时速(单位:km/h)的茎叶图(如图):则上下班时间行驶时速的中位数分别为( )A.28与28.5B.29与28.5C.28与27.5D.29与27.5答案 D5.甲、乙两个样本的方差分别为s 2甲=6.6,s 2乙=14.31,由此反映( ) A.样本甲的波动比样本乙大 B.样本乙的波动比样本甲大 C.样本甲和样本乙的波动大小一样 D.样本甲和样本乙的波动大小无法确认 答案 B解析 方差作为测量样本数据分散程度的工具,方差越大,分散程度越大,波动幅度越大. 6.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样 答案 A解析 ①总体较少,宜用简单随机抽样;②已分段,宜用系统抽样;③各层间差异明显,宜用分层抽样,故选A.7.一组数据中的每一个数据都乘2,再减去80,得到一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( ) A.40.6,1.1 B.48.8,4.4 C.81.2,44.4 D.78.8,75.6答案 A解析 设原来数据的平均数和方差分别为x 和s 2,则⎩⎪⎨⎪⎧4.4=22s 2,2x -80=1.2,得⎩⎪⎨⎪⎧s 2=1.1,x =40.6.8.在检验某产品直径尺寸的过程中,将某尺寸分成若干组,[a ,b ]是其中的一组,抽查出的个体数在该组上的频率为m ,该组在频率分布直方图上的高为h ,则|a -b |等于( ) A.m hB.h mC.mhD.与h ,m 无关答案 A解析 因为|a -b |×h =m ,所以|a -b |=m h.9.从存放分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一卡片并记下,统计结果如下:A.0.53B.0.5C.0.47D.0.37 答案 A解析 频率为1100(13+5+6+18+11)=0.53.10.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( ) A.这种抽样方法是一种分层抽样 B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班男生成绩的平均数小于该班女生成绩的平均数 答案 C解析 x 男=15(86+94+88+92+90)=90,x 女=15(88+93+93+88+93)=91,s 2男=15[(86-90)2+(94-90)2+(88-90)2+(92-90)2+(90-90)2]=8,s 2女=15[(88-91)2+(93-91)2+(93-91)2+(88-91)2+(93-91)2]=6.11.从一堆苹果中任取了20个,并得到它们的质量(单位:克)数据分布表如下:则这堆苹果中,质量不小于120克的苹果数约占苹果总数的( ) A.30% B.70% C.60% D.50% 答案 B解析 由数据分布表可知,质量不小于120克的苹果有10+3+1=14(个),占苹果总数的1420×100%=70%.12.对一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是( ) A.平均数与方差均不变 B.平均数变了,而方差保持不变 C.平均数不变,而方差变了 D.平均数与方差均发生了变化 答案 B解析 设原来数据的平均数为x ,将它们改变为x i +c 后平均数为x ′,则x ′=x +c ,而方差s ′2=1n[(x 1+c -x -c )2+…+(x n +c -x -c )2]=s 2.二、填空题(本大题共4小题,每小题5分,共20分)13.甲、乙、丙、丁四名射击手在选拔赛中的平均环数x 及其标准差s 如下表所示,则选送决赛的最佳人选应是________.答案 乙解析 平均数反映平均水平大小,标准差表明稳定性.标准差越小,稳定性越好.14.为了解篮球爱好者小的投篮命中率与打篮球时间之间的关系,下表记录了小某月1号到5号每天打篮球的时间x (单位:小时)与当天投篮命中率y 之间的关系:小这56号打6小时篮球的投篮命中率为________. 答案 0.5 0.53解析 小这5天的平均投篮命中率y =0.4+0.5+0.6+0.6+0.45=0.5,可求得小这5天的平均打篮球时间x =3.根据表中数据可求得b ^=0.01,a ^=0.47,故回归直线方程为y ^=0.47+0.01x ,将x =6代入得6号打6小时篮球的投篮命中率约为0.53.15.从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.答案 0.030 3解析 ∵5个矩形面积之和为1,即(0.005+0.010+0.020+a +0.035)×10=1, ∴0.070×10+10a =1,∴a =0.030. ∵三组学生数的频率分别为:0.3,0.2,0.1, ∴三组学生的人数分别为30,20,10. 因此从[140,150]选取的人数为1060×18=3.16.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温的数据如下表.由表中数据得回归方程y =b x +a 中b =-2,据此预测当气温为5℃时,用电量的度数约为________. 答案 40解析 ∵x =14(14+12+8+6)=10,y =14(22+26+34+38)=30,∴a ^=y -b ^x =30+2×10=50.∴当x =5时,y ^=-2×5+50=40.三、解答题(本大题共6小题,共70分)17.(10分)设某校共有118名教师,为了支援西部的教育事业,现要从中随机地抽出16名教师组成暑期西部讲师团.请用系统抽样法选出讲师团成员. 解 (1)对118名老师编号;(2)计算间隔k =11816=7.375,不是整数.从总体中随机剔除6个个体,然后再对余下112名教师重新编号,计算间隔k =7,分成16组,每组7人;(3)在1~7之间随机取一个数字,如选5,将5加上间隔7得到第二个个体编号12,再加7得到第三个个体编号19,依次进行下去,直到获取整个样本5,12,19,26,33,40,47,54,61,68,75,82,89,96,103,110.这些编号所对应的教师便是讲师团成员.18.(12分)为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x 、物理成绩y 进行分析.下表是该学生7次考试的成绩.(1)(2)已知该学生的物理成绩y 与数学成绩x 是线性相关的,若该学生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该学生在学习数学、物理上的合理建议.解 (1)x =100+-12-17+17-8+8+127=100;y =100+-6-9+8-4+4+1+67=100;∴s 2数学=142,s 2物理=2507,从而s 2数学>s 2物理, ∴物理成绩更稳定.(2)∵x 与y 之间具有线性相关关系,∴b ^=0.5,a ^=100-0.5×100=50.∴回归直线方程为y ^=0.5x +50.当y ^=115时,x =130.估计他的数学成绩大约是130分.建议:进一步加强对数学的学习,提高数学成绩的稳定性,将有助于物理成绩的进一步提高. 19.(12分)某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上,每隔30分钟抽一包产品,称其重量是否合格,分别记录抽查数据如下(单位:千克): 甲车间:102,101,99,98,103,98,99; 乙车间:110,115,90,85,75,115,110. (1)这种抽样方法是何种抽样方法;(2)试根据这组数据说明哪个车间产品较稳定? 解 (1)这种方法是系统抽样法.(2)x 甲=17(102+101+99+98+103+98+99)=100;x 乙=100+17(10+15-10-15-25+15+10)=100.s 2甲=17[(102-100)2+(101-100)2+…+(99-100)2]≈3.428 6;s 2乙=17[(110-100)2+(115-100)2+…+(110-100)2]≈228.571 4.∵s 2甲<s 2乙,∴甲车间产品较稳定.20.(12分)某中学高一女生共有450人,为了了解高一女生的身高(单位:cm)情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:(1)求出表中字母m 、n 、(2)画出频率分布直方图;(3)估计该校高一女生身高在[149.5,165.5]围的有多少人? 解 (1)由题意得M =80.16=50,落在区间[165.5,169.5]的数据频数m =50-(8+6+14+10+8)=4, 频率为n =0.08,总频率N =1.00. (2)频率分布直方图如图.(3)该所学校高一女生身高在[149.5,165.5)之间的比例为0.12+0.28+0.20+0.16=0.76,则该校高一女生在此围的人数为450×0.76=342.21.(12分)为了估计一次性木质筷子的用量,2014年从某县共600家高、中、低档饭店中抽取10家进行调查,得到这些饭店每天消耗的一次性筷子盒数分别为0.6,3.7,2.2,1.5,2.8,1.7,2.1,1.2,3.2,1.0.(1)通过对样本的计算,估计该市2014年共消耗了多少盒一次性筷子(每年按350个营业日计算).(2)2016年又对该县一次性木质筷子的用量以同样的方式作了抽样调查,调查结果是10家饭店平均每家每天使用一次性筷子2.42盒,求该县2015年、2016年这两年一次性木质筷子用量平均每年增长的百分率.(3)假如让你统计你所在省一年使用一次性木质筷子所消耗的木材量,如何利用统计知识去做?简单地说明你的做法.解(1)样本平均数为x=110(0.6+3.7+2.2+1.5+2.8+1.7+2.1+1.2+3.2+1.0)=2010=2.由样本平均数为2估计总体平均数也是2,故2014年该县600家饭店共消耗一次性筷子为2×350×600=420 000盒.(2)由于2011年一次性筷子用量是平均每天2盒,而2016年用量是平均每天2.42盒,设平均每年增长的百分率为x,依题意有2.42=2×(1+x)2,解得x=0.1=10%(x=-2.1舍去),所以该县2015年、2016年这两年一次性木质筷子的用量平均每年增长10%.(3)先采用简单随机抽样的方法抽取若干县(市)(作样本),再从这些县(市)中采用分层抽样的方法抽取若干家饭店,统计一次性木质筷子用量的平均数,从而估计总体平均数,再进一步计算所消耗的木材总量.22.(12分)为了研究三月下旬的平均气温(x)与四月棉花害虫化蛹高峰日(y)的关系,某地区观察了2011年至2016年的情况,得到下面数据:已知x 与y 27℃,试估计2018年四月化蛹高峰日为哪天? 解 由题意知:x ≈29.13,y =7.5,∑6i =1x 2i =5 130.92, ∑6i =1x i y i =1 222.6,∴b ^=∑6i =1x i y i -6x y∑6i =1x 2i -6x2≈-2.2,a ^=y -b ^x ≈71.6,∴回归直线方程为y ^=-2.2x +71.6.当x =27时,y ^=-2.2×27+71.6=12.2,据此,可估计该地区2018年4月12日或13日为化蛹高峰日.。

相关文档
最新文档