指数与指数函数(3)

合集下载

指数与指数函数知识点

指数与指数函数知识点

指数与指数函数知识点数学中的指数与指数函数是非常重要且常见的概念。

在我们的日常生活中,指数和指数函数可以用来描述各种自然现象、科学问题以及经济趋势等。

本文将详细介绍指数与指数函数的定义、性质以及一些常见应用,以加深读者对这一概念的理解。

一、指数的定义和性质在数学中,指数是一种表示幂次方的数学运算。

指数是由两个数构成,其中一个为底数,另一个为指数。

底数表示要进行幂运算的数字,指数表示底数要乘以自身多少次。

例如,2的3次方即为2的指数为3的结果,即2x2x2=8。

指数函数是指数的一种特殊形式,即以常数为底数的幂函数。

指数函数的一般形式为y=a^x,其中a是底数,x是指数,y是指数函数的值。

指数函数的图像通常具有特定的特征,例如,当底数大于1时,指数函数呈现递增趋势;当底数在0和1之间时,指数函数呈现递减趋势。

指数有一些基本的性质。

首先,任何数的0次方都等于1,即a^0=1。

其次,任何非零数的负指数都是倒数,即a^(-n)=1/(a^n)。

此外,指数相乘等于底数不变指数相加,即a^m * a^n = a^(m+n)。

二、指数函数的应用指数函数在各个领域都有广泛的应用。

以下是指数函数在生活和科学中的一些常见应用:1. 经济增长:经济学家常常使用指数函数来描述一个国家或地区的经济增长趋势。

经济增长往往呈现指数增长的形式,即以固定的增长率逐渐增加。

指数函数可以帮助经济学家预测未来的经济趋势和制定相应的政策。

2. 生物衰变:在生物学的研究中,指数函数可以用来描述物种的衰变过程。

例如,放射性物质的衰变速度可以用指数函数进行建模。

指数函数的形式可以提供准确地描述和计算物种在特定时间内的衰减情况。

3. 自然增长:人口学家使用指数函数来研究人口的自然增长过程。

指数函数可以帮助人口学家了解一个地区的人口趋势和人口变化的因素,为政府提供人口规划和政策制定方面的参考。

4. 电子电路:在电子学中,指数函数可以用来描述电路中的电流和电压变化。

指数与指数函数知识点

指数与指数函数知识点

指数与指数函数知识点一、指数运算的基本性质1.任何数的0次方等于12.非零数的负指数等于该数的倒数。

3.相同底数的指数之间的乘方运算,底数保持不变,指数相加。

4.相同指数的指数之间的乘方运算,指数保持不变,底数相乘。

二、指数运算的规律1.法则1:a的m次方乘以a的n次方,等于a的m加n次方。

2.法则2:a的m次方除以a的n次方,等于a的m减n次方。

3.法则3:(a的m次方)的n次方,等于a的m乘n次方。

4.法则4:a的m次方的p次方,等于a的m乘p次方。

5.法则5:零的任何正次方都是0,零的0次方没有意义,规定为1三、指数函数的定义与性质指数函数的定义为:y=a^x,其中a>0且a≠1,a为底数,x为指数。

指数函数可以看作是以底数为底,自变量为指数的函数。

指数函数的性质如下:1.底数a大于1时,指数函数是递增的,即自变量x的增大,函数值y也增大。

2.底数a介于0和1之间时,指数函数是递减的,即自变量x的增大,函数值y也减小。

3.指数函数的图象都经过点(0,1),即当x=0时,y=14.指数函数的图象在直线x=0和y=0上均没有交点。

5.指数函数的图象没有水平渐近线,但有一条过点(0,0)的铅直渐近线。

指数函数常见的应用有:1.在金融领域中,指数函数可以用来描述货币的增长规律,例如复利计算。

2.在自然科学领域中,指数函数可以用来描述人口增长、病原体传播等现象。

3.在电路中,指数函数可以用来描述电容、电感等元件的充放电过程。

4.在计算机领域中,指数函数可以用来描述算法的时间复杂度、空间复杂度等特性。

总结:。

高中数学第三章指数运算与指数函数3指数函数第1课时指数函数的概念图象和性质课件北师大版必修第一册

高中数学第三章指数运算与指数函数3指数函数第1课时指数函数的概念图象和性质课件北师大版必修第一册

知识点2 指数函数的图象和性质
1.指数函数的图象和性质
图象和性质
图象
a>1
0<a<1
图象和
性质
a>1
0<a<1
(1)定义域:R
(2)值域:(0,+∞)
(3)过定点(0,1),即x=0时,y=1
性质
(4)当x<0时,0<y<1;
(4)当x<0时,y>1;
当x>0时,y>1
当x>0时,0<y<1
(5)在R上是增函数
f(x)=kag(x)+b(k,a,b均为常数,且k≠0,a>0,且a≠1).若g(m)=0,则f(x)的图象过定
点(m,k+b).即令指数等于0,解出相应的x,y,则点(x,y)为所求定点.
角度2画指数型函数的图象
【例3】 画出下列函数的图象,并说明它们是由函数f(x)=2x的图象经过怎
样的变换得到的.
变式探究
比较下面两个数的大小:
(a-1)1.3与(a-1)2.4(a>1,且a≠2).
解∵a>1,且a≠2,∴a-1>0,且a-1≠1.
若a-1>1,即a>2,则y=(a-1)x是增函数,∴(a-1)1.3<(a-1)2.4.若0<a-1<1,即1<a<2,
则y=(a-1)x是减函数,∴(a-1)1.3>(a-1)2.4.
变式探究
本例中函数改为f(x)=5·a3x-2+4,其他条件不变,求点P的坐标.
解令 3x-2=0,得
2
x= ,此时
3
2
f( )=5×a0+4=9,故函数

指数与指数函数

指数与指数函数

§2.7 指数与指数函数考试要求 1.理解有理数指数幂的含义,了解实数指数幂的意义,掌握指数幂的运算性质. 2.通过实例,了解指数函数的实际意义,会画指数函数的图象.3.理解指数函数的单调性、特殊点等性质,并能简单应用.知识梳理 1.根式(1)一般地,如果x n =a ,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. (2)式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数. (3)(na )n =a .当n 为奇数时,na n =a ,当n 为偶数时,na n =|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.2.分数指数幂正数的正分数指数幂:m na =na m (a >0,m ,n ∈N *,n >1). 正数的负分数指数幂:m n a-=1m na=1na m(a >0,m ,n ∈N *,n >1).0的正分数指数幂等于0,0的负分数指数幂没有意义. 3.指数幂的运算性质a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r (a >0,b >0,r ,s ∈Q ). 4.指数函数及其性质(1)概念:一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,定义域是R .(2)指数函数的图象与性质a >10<a <1图象定义域R值域 (0,+∞)性质过定点(0,1),即x =0时,y =1当x >0时,y >1; 当x <0时,0<y <1当x <0时,y >1; 当x >0时,0<y <1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数常用结论1.指数函数图象的关键点(0,1),(1,a ),⎝⎛⎭⎫-1,1a . 2.如图所示是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,则c >d >1>a >b >0,即在第一象限内,指数函数y =a x (a >0,且a ≠1)的图象越高,底数越大.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)4(-4)4=-4.( × )(2)2a ·2b =2ab .( × )(3)函数y =⎝⎛⎭⎫13x-1的值域是(0,+∞).( × ) (4)若a m <a n (a >0,且a ≠1),则m <n .( × ) 教材改编题1.已知函数y =a ·2x 和y =2x+b都是指数函数,则a +b 等于( )A .不确定B .0C .1D .2 答案 C解析 由函数y =a ·2x 是指数函数,得a =1, 由y =2x +b 是指数函数,得b =0,所以a +b =1.2.计算:()(222327130π--+--________.答案 1 解析 原式=2333⎛⎪⨯⎫⎝⎭-+1-3-2=3-2+1-3-2=1.3.若指数函数f (x )=a x (a >0,且a ≠1)在[-1,1]上的最大值为2,则a =________.答案 2或12解析 若a >1,则f (x )max =f (1)=a =2;若0<a <1,则f (x )max =f (-1)=a -1=2,得a =12.题型一 指数幂的运算 例1 计算: (1)(-1.8)0+⎝⎛⎭⎫32-2·3⎝⎛⎭⎫3382-10.01+93; (2)()3112123324140.1aba b----⎛⎫⋅ ⎪⎝⎭⋅(a >0,b >0).解 (1)(-1.8)0+⎝⎛⎭⎫32-2·3⎝⎛⎭⎫3382-10.01+93 =1+2233222710938⎛⎫⎛⎫⋅-+ ⎪ ⎪⎝⎭⎝⎭=1+⎝⎛⎭⎫232·⎝⎛⎭⎫322-10+33 =1+1-10+27=19.(2)()3112123324140.1aba b----⎛⎫⋅ ⎪⎝⎭⋅=331322223322240.1a b a b--⋅⨯⨯=2×1100×8=425.思维升华 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加. ②运算的先后顺序.(2)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.跟踪训练1 计算: (1)933713332÷·aa a a -- ;(2)()13633470.001+16+238-⎛⎫-⋅ ⎪⎝⎭.解 (1)因为a -3有意义,所以a >0,所以原式=7139333322a a a a --⋅÷⋅=3a 3÷a 2=a ÷a =1.(2)原式=()()61113343234101+2+23-⎛⎫-⋅ ⎪⎝⎭-=10-1+8+23·32=89. 题型二 指数函数的图象及应用例2 (1)(多选)已知非零实数a ,b 满足3a =2b ,则下列不等关系中正确的是( ) A .a <bB .若a <0,则b <a <0C .|a |<|b |D .若0<a <log 32,则a b <b a 答案 BCD 解析 如图,由指数函数的图象可知,0<a <b 或者b <a <0,所以A 错误,B ,C 正确; D 选项中,0<a <log 32⇒0<a <b <1,则有a b <a a <b a ,所以D 正确.(2)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________. 答案 (0,2)解析 在同一平面直角坐标系中画出y =|2x -2|与y =b 的图象,如图所示.∴当0<b<2时,两函数图象有两个交点,从而函数f(x)=|2x-2|-b有两个零点.∴b的取值范围是(0,2).思维升华对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.跟踪训练2(多选)函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a>1B.0<a<1C.b>0D.b<0答案BD解析由函数f(x)=a x-b的图象可知,函数f(x)=a x-b在定义域上单调递减,∴0<a<1,故B正确;分析可知,函数f(x)=a x-b的图象是由y=a x的图象向左平移所得,如图,∴-b>0,∴b<0,故D正确.题型三指数函数的性质及应用命题点1比较指数式大小例3设a=30.7,b=2-0.4,c=90.4,则()A .b <c <aB .c <a <bC .a <b <cD .b <a <c答案 D解析 b =2-0.4<20=1,c =90.4=30.8>30.7=a >30=1, 所以b <a <c .命题点2 解简单的指数方程或不等式例4 (2023·青岛模拟)已知y =4x -3·2x +3的值域为[1,7],则x 的取值范围是( ) A .[2,4] B .(-∞,0) C .(0,1)∪[2,4] D .(-∞,0]∪[1,2]答案 D解析 ∵y =4x -3·2x +3的值域为[1,7], ∴1≤4x -3·2x +3≤7. ∴-1≤2x ≤1或2≤2x ≤4. ∴x ≤0或1≤x ≤2.命题点3 指数函数性质的综合应用例5 已知函数f (x )=8x +a ·2x a ·4x (a 为常数,且a ≠0,a ∈R ),且f (x )是奇函数.(1)求a 的值;(2)若∀x ∈[1,2], 都有f (2x )-mf (x )≥0成立,求实数m 的取值范围. 解 (1)f (x )=1a ×2x +12x ,因为f (x )是奇函数, 所以f (-x )=-f (x ),所以1a ×12x +2x =-⎝⎛⎭⎫1a ×2x +12x , 所以⎝⎛⎭⎫1a +1⎝⎛⎭⎫2x +12x =0, 即1a +1=0,解得a =-1. (2)因为f (x )=12x -2x ,x ∈[1,2],所以122x -22x ≥m ⎝⎛⎭⎫12x -2x ,所以m ≥12x +2x ,x ∈[1,2],令t =2x ,t ∈[2,4],由于y =t +1t 在[2,4]上单调递增,所以m ≥4+14=174.思维升华 (1)利用指数函数的性质比较大小或解方程、不等式,最重要的是“同底”原则,比较大小还可以借助中间量.(2)求解与指数函数有关的复合函数问题,要明确复合函数的构成,涉及值域、单调区间、最值等问题时,要借助“同增异减”这一性质分析判断.跟踪训练3 (1)(多选)(2023·杭州模拟)已知函数f (x )=3x -13x +1,下列说法正确的有( )A .f (x )的图象关于原点对称B .f (x )的图象关于y 轴对称C .f (x )的值域为(-1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)-f (x 2)x 1-x 2<0答案 AC解析 对于A 中,由f (-x )=3-x -13-x +1=-3x -13x +1=-f (x ),可得函数f (x )为奇函数,函数f (x )的图象关于原点对称,故选项A 正确,选项B 错误;对于C 中,设y =3x -13x +1,可得3x =1+y 1-y ,所以1+y 1-y >0,即1+yy -1<0,解得-1<y <1,即函数f (x )的值域为(-1,1),所以C 正确;对于D 中,对∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)-f (x 2)x 1-x 2<0,可得函数f (x )为减函数,而f (x )=3x -13x +1=1-23x +1为增函数,所以D 错误.(2)已知函数f (x )=24313ax x ⎛⎫ ⎪⎝⎭-+,若f (x )有最大值3,则a 的值为________.答案 1解析 令g (x )=ax 2-4x +3,则f (x )=⎝⎛⎭⎫13g (x ), ∵f (x )有最大值3,∴g (x )有最小值-1,则⎩⎨⎧a >0,3a -4a =-1,解得a =1.课时精练1.若m =5(π-3)5,n =4(π-4)4,则m +n 的值为( ) A .-7 B .-1 C .1 D .7 答案 C解析 m +n =π-3+|π-4|=π-3+4-π=1.2.已知指数函数f (x )=(2a 2-5a +3)a x 在(0,+∞)上单调递增,则实数a 的值为( ) A.12 B .1 C.32 D .2 答案 D解析 由题意得2a 2-5a +3=1,∴2a 2-5a +2=0,∴a =2或a =12.当a =2时,f (x )=2x 在(0,+∞)上单调递增,符合题意; 当a =12时,f (x )=⎝⎛⎭⎫12x 在(0,+∞)上单调递减,不符合题意. ∴a =2.3.函数y =a x -1a(a >0,且a ≠1)的图象可能是( )答案 D解析 当a >1时,0<1a <1,函数y =a x 的图象为过点(0,1)的上升的曲线,函数y =a x -1a 的图象由函数y =a x 的图象向下平移1a个单位长度可得,故A ,B 错误;当0<a <1时,1a >1,函数y =a x 的图象为过点(0,1)的下降的曲线,函数y =a x -1a 的图象由函数y =a x 的图象向下平移1a 个单位长度可得,故D 正确,C 错误.4.已知1122x x-+=5,则x 2+1x的值为( )A .5B .23C .25D .27 答案 B 解析 因为1122x x-+=5,所以21122x x ⎛⎫ ⎪⎝⎭-+=52,即x +x -1+2=25,所以x +x -1=23,所以x 2+1x =x +1x=x +x -1=23.5.(多选)(2023·泰安模拟)已知函数f (x )=|2x -1|,实数a ,b 满足f (a )=f (b )(a <b ),则( ) A .2a +2b >2B .∃a ,b ∈R ,使得0<a +b <1C .2a +2b =2D .a +b <0 答案 CD解析 画出函数f (x )=|2x -1|的图象,如图所示.由图知1-2a =2b -1,则2a +2b =2,故A 错,C 对. 由基本不等式可得2=2a +2b >22a ·2b =22a +b ,所以2a +b <1,则a +b <0,故B 错,D 对.6.(2023·枣庄模拟)对任意实数a >1,函数y =(a -1)x -1+1的图象必过定点A (m ,n ),f (x )=⎝⎛⎭⎫n m x 的定义域为[0,2],g (x )=f (2x )+f (x ),则g (x )的值域为( ) A .(0,6] B .(0,20] C .[2,6] D .[2,20]答案 C解析 令x -1=0得x =1,y =2,即函数图象必过定点(1,2), 所以m =1,n =2,f (x )=⎝⎛⎭⎫n m x=2x,由⎩⎪⎨⎪⎧0≤x ≤2,0≤2x ≤2,解得x ∈[0,1],g (x )=f (2x )+f (x )=22x +2x ,令t =2x , 则y =t 2+t ,t ∈[1,2], 所以g (x )的值域为[2,6]. 7.计算化简: (1)()1123232770.02721259-⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭=________;(2)2312a ---⎛÷=________.答案 (1)0.09 (2)1566a b -解析 (1)112323277(0.027)21259-⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭=(30.027)2+312527-259=0.09+53-53=0.09.232a --÷=2211333212113332a bb a a ba b ---⨯=2112112132332333·ab+-----=1566.a b -8.已知函数f (x )=3x +1-4x -5,则不等式f (x )<0的解集是________. 答案 (-1,1)解析 因为函数f (x )=3x +1-4x -5, 所以不等式f (x )<0即为3x +1<4x +5,在同一平面直角坐标系中作出y =3x +1,y =4x +5的图象,如图所示,因为y =3x +1,y =4x +5的图象都经过A (1,9),B (-1,1),所以f (x )<0,即y =3x +1的图象在y =4x +5图象的下方,所以由图象知,不等式f (x )<0的解集是(-1,1).9.已知定义域为R 的函数f (x )=a x -(k -1)a -x (a >0,且a ≠1)是奇函数.(1)求实数k 的值;(2)若f (1)<0,判断函数f (x )的单调性,若f (m 2-2)+f (m )>0,求实数m 的取值范围. 解 (1)∵f (x )是定义域为R 的奇函数,∴f (0)=a 0-(k -1)a 0=1-(k -1)=0,∴k =2,经检验k =2符合题意,∴k =2.(2)f (x )=a x -a -x (a >0,且a ≠1),∵f (1)<0,∴a -1a<0,又a >0,且a ≠1, ∴0<a <1,从而y =a x 在R 上单调递减,y =a -x 在R 上单调递增,故由单调性的性质可判断f (x )=a x -a -x 在R 上单调递减,不等式f (m 2-2)+f (m )>0可化为f (m 2-2)>f (-m ),∴m 2-2<-m ,即m 2+m -2<0,解得-2<m <1,∴实数m 的取值范围是(-2,1).10.(2023·武汉模拟)函数f (x )=a 2x +a x +1(a >0,且a ≠1)在[-1,1]上的最大值为13,求实数a 的值.解 由f (x )=a 2x +a x +1,令a x =t ,则t >0,则y =t 2+t +1=⎝⎛⎭⎫t +122+34, 其对称轴为t =-12. 该二次函数在⎣⎡⎭⎫-12,+∞上单调递增. ①若a >1,由x ∈[-1,1],得t =a x ∈⎣⎡⎦⎤1a ,a ,故当t =a ,即x =1时,y max =a 2+a +1=13,解得a =3或a =-4(舍去).②若0<a <1,由x ∈[-1,1],可得t =a x ∈⎣⎡⎦⎤a ,1a , 故当t =1a,即x =-1时, y max =⎝⎛⎭⎫1a 2+1a +1=13.解得a =13或a =-14(舍去). 综上可得,a =3或13.11.(多选)(2022·哈尔滨模拟)已知函数f (x )=a ·⎝⎛⎭⎫12|x |+b 的图象经过原点,且无限接近直线y =2,但又不与该直线相交,则下列说法正确的是( )A .a +b =0B .若f (x )=f (y ),且x ≠y ,则x +y =0C .若x <y <0,则f (x )<f (y )D .f (x )的值域为[0,2)答案 ABD解析 ∵函数f (x )=a ·⎝⎛⎭⎫12|x |+b 的图象过原点, ∴a +b =0,即b =-a ,f (x )=a ·⎝⎛⎭⎫12|x |-a ,且f (x )的图象无限接近直线y =2,但又不与该直线相交,∴b =2,a =-2,f (x )=-2·⎝⎛⎭⎫12|x |+2,故A 正确; 由于f (x )为偶函数,故若f (x )=f (y ),且x ≠y ,则x =-y ,即x +y =0,故B 正确;由于在(-∞,0)上,f (x )=2-2·2x 单调递减,故若x <y <0,则f (x )>f (y ),故C 错误;∵⎝⎛⎭⎫12|x |∈(0,1],∴f (x )=-2·⎝⎛⎭⎫12|x |+2∈[0,2),故D 正确. 12.(2022·长沙模拟)若e x -e y =e ,x ,y ∈R ,则2x -y 的最小值为________.答案 1+2ln 2解析 依题意,e x =e y +e ,e y >0,则e 2x -y =e 2x e y =(e y +e )2e y =e y +e 2e y +2e ≥2e y·e 2e y +2e =4e , 当且仅当e y=e 2e y ,即y =1时取“=”, 此时,(2x -y )min =1+2ln 2,所以当x =1+ln 2,y =1时,2x -y 取最小值1+2ln 2.13.(2023·龙岩模拟)已知函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x ),且f (0)=3,则f (b x )与f (c x )的大小关系为( )A .f (c x )≥f (b x )B .f (c x )≤f (b x )C .f (c x )>f (b x )D .f (c x )=f (b x )答案 A解析 根据题意,函数f (x )=x 2-bx +c 满足f (x +1)=f (1-x ),则有b 2=1,即b =2, 又由f (0)=3,得c =3,所以b x =2x ,c x =3x ,若x <0,则有c x <b x <1,而f (x )在(-∞,1)上单调递减,此时有f (b x )<f (c x ),若x =0,则有c x =b x =1,此时有f (b x )=f (c x ),若x >0,则有1<b x <c x ,而f (x )在(1,+∞)上单调递增,此时有f (b x )<f (c x ),综上可得f (b x )≤f (c x ).14.(2023·宁波模拟)对于函数f (x ),若在定义域内存在实数x 0满足f (-x 0)=-f (x 0),则称函数f (x )为“倒戈函数”.设f (x )=3x +m -1(m ∈R ,m ≠0)是定义在[-1,1]上的“倒戈函数”,则实数m 的取值范围是________.答案 ⎣⎡⎭⎫-23,0 解析 ∵f (x )=3x +m -1是定义在[-1,1]上的“倒戈函数”,∴存在x 0∈[-1,1]满足f (-x 0)=-f (x 0),∴03x -+m -1=-03x -m +1,∴2m =-03x --03x +2,构造函数y =-03x --03x+2, x 0∈[-1,1], 令t =03x ,t ∈⎣⎡⎦⎤13,3,则y =-1t-t +2=2-⎝⎛⎭⎫t +1t 在⎣⎡⎦⎤13,1上单调递增, 在(1,3]上单调递减,∴当t =1时,函数取得最大值0,当t =13或t =3时, 函数取得最小值-43,∴y ∈⎣⎡⎦⎤-43,0, 又∵m ≠0,∴-43≤2m <0, ∴-23≤m <0.。

指数与指数函数

指数与指数函数
∴ a 2+ a -2=47.
47 .

方法总结
指数幂运算的一般原则
1.有括号的先算括号里的,无括号的先进行指数运算.
2.先乘除后加减,负指数幂化成正指数幂的倒数.
3.底数是负数的,先确定符号;底数是小数的,先化成分数.底数是带分数
的,先化成假分数.
4.若是根式,则化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运
为选项C.
考点三
指数函数的性质及应用
◉角度(一) 比较指数式的大小或解不等式
例3
(1)(2024·吉林白山模拟)已知 a =0.310.1, b =0.310.2, c =
0.320.1,则(
D )
A. a > b > c
B. b > a > c
C. c > b > a
D. c > a > b
由 y =0.31 x 单调递减可知0.310.1>0.310.2,即 a > b ;
即b<a<c.
C )
6.
2 −4
1

不等式 3
> 的解集为
27
−∞,1 ∪ 3,+∞
2 −4
1

由3
> =3-3,所以 x 2-4 x >-3,即
27
<1或 x >3.
.
− 1 − 3 >0,解得 x
7. 函数 y =
1
1

+1在区间[-3,2]上的值域是
4
2
因为 x ∈[-3,2],所以若令 t =
关键能力
重点探究
课时作业
巩固提升
必备知识 自主梳理
[知识梳理]
知识点一 幂的运算
1. 指数与指数运算

指数函数(3)

指数函数(3)

x 练习: 1.方程4
3 2
x 1
16 0的解为________

2.已知关于x的方程2a ( 1 )求实数a的值;
2 x2
9a
2 x2
x 1
4 0有一根为2.
x 1
(2)若0 a 1, 求不等式2a
9a
4 0的解集.
9.解指数方程及图像间交点问题:
x
x
例6
作出下列函数的图像并 求出其单调区间: ( 1 )y 3x 1
(3) y 3
x2
(2) y 3 x 1 2
1
1 x (4) y ( ) 1 3
9.解指数方程及图像间交点问题:
例7 解指数方程
பைடு நூலகம்
3
x2
3
2 x
80
评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根.
x
1 x2 例4. 作出 y ( ) 的图像,并指出其单调 区间. 2
练习:求下列函数的单 调区间: ( 1 )f ( x) 2
x 1
1 x 2 2 x (2)f ( x) ( ) 3 1 x2 x2 (3) y ( ) 2
抓住复合函数:
同增异减
注意:定义域优先
拓展:
y dx yc
x
y
y b
x
ya
x
0 c d 1 a b
0

x
指数函数在同一直角坐标系下的底数大小的判断方法:
方法1:作直线x=1 方法2:在第一象限,底数越大,图像越靠近y轴
x x
恒有f (1 m) f (1 m ) 0, 求m的取值范围。

新教材高中数学第三章指数运算与指数函数3指数函数第1课时指数函数的图象和性质课件北师大版必修第一册

新教材高中数学第三章指数运算与指数函数3指数函数第1课时指数函数的图象和性质课件北师大版必修第一册
图象
①当 x<0 时,__a__x>__b_x_>__1___; 大小 ②当 x=0 时,ax=bx=1;
③当 x>0 时,__0_<__a_x_<__b_x<__1____
知识点4 指数函数的图象和性质 0<a<1
图象
a>1
性质
0<a<1
a>1
(1)定义域:R
(2)值域:(0,+∞)
(3)过定点____(_0_,1_)___,即x=0时,y=_____1
(4)当x<0时,____y_>__1__;
(4) 当 x < 0 时 , ____0_<__y_<__1__ ;
当x>0时,_____0_<__y_<__1_
当x>0时,_____y_>__1_
(5)__减____函数
(5)定是指数函数的是
A.y=2x+1
(B) (C)
[解析] (1)函数 y=(-4)x 的底数-4<0,故 A 中函数不是指数函数;
函数 y=πx 的系数为 1,底数 π>1,故 B 中函数是指数函数;
函数 y=-4x 的系数为-1,故 C 中函数不是指数函数;
函数 y=ax+2=a2·ax 的系数为 a2,故 D 中函数不是指数函数,故选 B.
B.y=x2
C.y=3-x
D.y=-2·3x
(C)
[解析] 只有 y=3-x=(31)x 符合指数函数的概念,A,B,D 选项中函 数都不符合 y=ax(a>0,且 a≠1)的形式.
2.按复利计算利率的储蓄,存入银行2万元,如果年息3%,5年后支取,
本利和为人民币
(B )
A.2(1+0.3)5万元
基础知识
知识点1 指数函数 (1)定义:给定正数a,且a≠1时,_______y_=__a是x 一个定义在实数集上的

新教材高中数学第三章指数运算与指数函数1指数幂的拓展2指数幂的运算性质课件北师大版必修第一册

新教材高中数学第三章指数运算与指数函数1指数幂的拓展2指数幂的运算性质课件北师大版必修第一册

3
1
A.8
B.8
C.
答案 A
解析 由

3
)
2
=
2
3 =4(x>0),得
-
1
3
x2
=4,
1
1
2 1
,∴x = ,∴x= .
4
64
8
4
4
3
D.2 2
探究点二 根式的化简(求值)
【例2】 求下列各式的值:
5
6
(1)( -) +( - )6(b>a);
5
(2) 2 -2 + 1 − 2 + 6 + 9(-3<x<3).
y2=a4+a-4-2=(a2+a-2)2-4=72-4=45.
所以 y=±3 5,即 a2-a-2=±3 5.
规律方法 解决条件求值问题的一般方法——整体法
对于条件求值问题,一般先化简代数式,再将字母取值代入求值.当字母的
取值未知或不易求出时,可将所求代数式恰当地变形,构造出与已知条件相
同的结构,从而通过“整体法”巧妙地求出代数式的值.利用“整体法”求值时
=
16
.
15
5
9
37
+100+
-3+
=100.
3
16
48
10
1
1
1
+0.1= 4 -1+16 + 8 + 10
3 +
-1
1
2
3 -1
2
1
2
-
=
143
.
80
10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数与指数函数080612 一、考题选析:
例1、(07江苏)设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,
()31x f x =-,则有( )
A.132323f f f ⎛⎫
⎛⎫⎛⎫
<< ⎪
⎪ ⎪⎝⎭⎝⎭⎝⎭
B.231323f f f ⎛⎫⎛⎫⎛⎫
<<
⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ C.213332f f f ⎛⎫⎛⎫⎛⎫
<<
⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
D.321233f f f ⎛⎫⎛⎫⎛⎫
<<
⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
例2、(07上海春)若21,x x 为方程1
1
)2
1(2+-=x x
的两个实数解,则=+21x x ;
例3、(05全国Ⅱ)设函数11
()2
x x f x +--=,求使()f x ≥x 取值范围.
例4、(05江西10)已知实数a , b 满足等式,)3
1()2
1
(b
a
=下列五个关系式 ①0<b <a ②a <b <0
③0<a <b
④b <a <0 ⑤a =b
其中不可能...成立的关系式有( ) A .1个
B .2个
C .3个
D .4个
例5、(06湖北21)设3x =是函数2
3()()()x
f x x ax b e x R -=++∈的一个极值点。

(Ⅰ)、
求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间;(Ⅱ)、设0a >,
225()()4
x
g x a e =+。

若存在12,[0,4]ξξ∈使得12()()1f g ξξ-<成立,求a 的取值范围。

点评:本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力。

解:(Ⅰ)f `(x)=-[x 2+(a -2)x +b -a ]e 3-
x ,
由f `(3)=0,得 -[32+(a -2)3+b -a ]e 3-3=0,即得b =-3-2a , 则 f `(x)=[x 2+(a -2)x -3-2a -a ]e 3
-x
=-[x 2+(a -2)x -3-3a ]e 3-x =-(x -3)(x +a+1)e 3-
x .
令f `(x)=0,得x 1=3或x 2=-a -1,由于x =3是极值点, 所以x+a+1≠0,那么a ≠-4. 当a <-4时,x 2>3=x 1,则
在区间(-∞,3)上,f `(x)<0, f (x)为减函数;
在区间(3,―a ―1)上,f `(x)>0,f (x)为增函数;
在区间(―a ―1,+∞)上,f `(x)<0,f (x)为减函数。

当a >-4时,x 2<3=x 1,则
在区间(-∞,―a ―1)上,f `(x)<0, f (x)为减函数; 在区间(―a ―1,3)上,f `(x)>0,f (x)为增函数; 在区间(3,+∞)上,f `(x)<0,f (x)为减函数。

(Ⅱ)由(Ⅰ)知,当a >0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间[0,4]上的值域是[min(f (0),f (4) ),f (3)],
而f (0)=-(2a +3)e 3<0,f (4)=(2a +13)e -
1>0,f (3)=a +6, 那么f (x)在区间[0,4]上的值域是[-(2a +3)e 3,a +6]. 又2
25()()4
x
g x a e =+
在区间[0,4]上是增函数, 且它在区间[0,4]上的值域是[a 2+
425,(a 2+4
25)e 4], 由于(a 2+
425)-(a +6)=a 2-a +4
1
=(21-a )2≥0,所以只须仅须
(a 2+
4
25
)-(a +6)<1且a >0,解得0<a <23.
故a 的取值范围是(0,
2
3
)。

二、考题精练: (一)选择题: 1、(06全国Ⅱ)函数y =ln x -1(x >0)的反函数为( )
A 、y =e x +1(x ∈R )
B 、y =e x -
1(x ∈R )
C 、y =e x +1(x >1)
D 、y =e x -
1(x >1)
2、(05全国Ⅲ)设7
1
3=
x
,则( ) A 、-2<x <-1 B 、-3<x <-2 C 、-1<x <0 D 、0<x <1
3、(04天津11)函数1
2
3-=x
y (01<≤-x )的反函数是 A. )31
(log 13≥+=x x y
B. )3
1(log 13≥+-=x x y
C. )13
1(log 13≤<+=x x y
D. )13
1(log 13≤<+-=x x y
4、(04湖北)若函数的图象经过第二且)10(1)(≠>-+=a a b a x f x
、三、四象限,则一定有( )
A .010><<b a 且
B .01>>b a 且
C .010<<<b a 且
D .01<>b a 且
(二)填空是:
5、(07上海4)方程 96370x x -•-=的解是 ;
6、(07湖北15)为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小
时)成正比;药物释放完毕后,y 与t 的函数关系式为
116t a
y -⎛⎫
= ⎪⎝⎭
(a 为常数),如图所示.据图中提供的信息,
回答下列问题:
(I )从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 ;(II )据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么药物释放开始,至少需要经过 小时后,学生才能回到教室;
7、(05江苏16)若3a =0.618,a ∈[),1k k +,k ∈Z ,则k = ;
8、(05全国Ⅰ)若正整数m 满足m m 102105121<<-,则m = 155 ;)3010.02(lg ≈ 9、(04湖南16)若直线y=2a 与函数y=|a x -1|(a >0,且a ≠1)的图象有两个公共点,则a 的取值范围是_______。

(三)解答题: 10、(04全国)解方程4x +|1-2x |=11.。

相关文档
最新文档