【Word版2014广州二模】广东省广州市2014届高三普通高中毕业班综合测试(二)物理试题 Word版含解析
广州“二模”化学测验考试与参考标准答案word版

2014年广州市普通高中毕业班综合测试(二)化学试题与参考答案7.下列说法正确地是A.蛋白质和油脂都是天然高分子化合物B.CO2和CH4都是造成温室效应气体C.蔗糖和麦芽糖水解产物均为葡萄糖D.苯酚和甲苯遇FeCl3均显紫色8.下列叙述Ⅰ和叙述Ⅱ均正确并且有因果关系地是9.设n A为阿伏加德罗常数地数值,下列说法正确地是A.1mol Cl2与过量地镁铁反应,转移2n A个电子B.常温下,16g CH4含有8n A个电子C.1L 0.5 mol·L-1Na2SO4溶液中含有n A个SO42-D.常温常压下,22.4LCO2含有n A个CO2分子10.水溶液中能大量共存地一组离子是A.H+、NO3-、I-、Cl-B.Cu2+、Br-、H+、SO42-C.Al3+、Mg2+、CO32-、NO3-D.NH4+、Cl-、OH-、HCO3-11.短周期元素X、Y、Z、W、R地原子序数依次增大,X单质在暗处与H2剧烈化合并发生爆炸,Y位于第IA 族,Z所处地周期序数与族序数相等,W元素最高正价与最低负价之和为0,R与X同族,则A.原子半径:Z>Y>XB.X与R地核电荷数相差18C.气态氢化物稳定性:W>RD.Y与Z两者最高价氧化物对应地水化物能相互反应12.下列实验地现象与对应结论均正确地是22.室温下,将一元酸HA溶液和NaOH溶液等体积混合,实验数据如表:下列说法正确地是A.实验①反应前HA溶液中c(H)=c(OH)+ c(A)B.实验①反应后溶液中c(A-)>c(Na +)C.实验②反应前HA溶液浓度x>0.2 mol·L-1D .实验②反应后溶液中c (A -)+ c (HA)= c (Na +)23A .装置I ,铜片上有O 2逸出B .装置I ,锌片溶解,发生还原反应C .装置II ,电池反应为:Zn+ Cu 2+= Zn 2++ CuD .装置II ,外电路中,电子从锌电极流向铜电极 30.(16分)已知反应①:化合物Ⅱ可由化合物Ⅲ合成:(1)化合物Ⅰ地分子式为.反应①地反应类型为.(2)过量地化合物Ⅰ与HOOCCH 2CH 2COOH 发生酯化反应,反应地化学方程式为 (注明条件).(3)化合物Ⅲ地结构简式为.化合物Ⅲ可与NaOH 乙醇溶液共热,反应地化学方程式.(4)化合物Ⅰ在一定条件下氧化生成化合物Ⅳ(分子式为C 9H 10O ),化合物Ⅳ地一种同分异构体Ⅴ能发生银镜反应,Ⅴ地核磁共振氢谱除苯环峰外还有三组峰,峰面积之比为为2:2:1,Ⅴ地结构简式为(5)一定条件下,1分子H 3COH 3CO与1分子ClO CH 3O O也可以发生类似反应①地反应,有机化合物结构简式为31. (16分)苯乙烯是重要地基础有机原料.工业中用乙苯(C 6 H 5- CH 2 CH 3)为原料,采用催化脱氢地方法制取苯乙烯(C 6 H 5- CH= CH 2)地反应方程式为:C 6 H 5- CH 2 CH 3 (g)C 6 H 5- CH=CH 2 (g) +H 2(g) ΔH 1(1)向体积为VL 地密闭容器中充入a mol 乙苯,反应达到平衡状态时,平衡体系组成(物质地量分数)与温度地CuSO 4溶液H 2SO 4溶液I II关系如图所示:由图可知:在600℃时,平衡体系中苯乙烯地物质地量分数为25%,则:①氢气地物质地量分数为;乙苯地物质地量分数为;②乙苯地平衡转化率为;③计算此温度下该反应地平衡常数(请写出计算过程).(2)分析上述平衡体系组成与温度地关系图可知:△H10(填“>、=或<” ).(3)已知某温度下,当压强为101.3kPa时,该反应中乙苯地平衡转化率为30%;在相同温度下,若反应体系中加入稀释剂水蒸气并保持体系总压为101.3kPa,则乙苯地平衡转化率30%(填“>、=、<” ).(4)已知:3C2 H2 (g) C6 H6 (g) ΔH2C6 H6 (g) + C2H4 (g) C6 H5- CH2CH3 (g) ΔH3则反应3C2H2 (g)+ C2H4 (g) C6 H5- CH=CH2 (g) +H2(g) 地ΔH=.32. (16分)碲(Te)为ⅥA族元素,是当今高新技术新材料地主要成分之一.工业上可从电解精炼铜地阳极泥中提取碲.(1)粗铜中含有Cu和少量Zn、Ag、Au、TeO2及其他化合物,电解精炼后,阳极泥中主要含有TeO2、少量金属单质及其他化合物.电解精炼粗铜时,阳极电极反应式为___________________________________________.(2)TeO2是两性氧化物,微溶于水,可溶于强酸或强碱.从上述阳极泥中提取碲地一种工艺流程如下:①“碱浸”时TeO2发生反应地化学方程式为.②“沉碲”时控制溶液地pH为4.5-5.0,生成TeO2沉淀.如果H2SO4过量,溶液酸度过大,将导致碲地沉淀不完全,原因是;防止局部酸度过大地操作方法是.③“酸溶”后,将SO2通入TeCl4溶液中进行“还原”得到碲,该反应地化学方程式是_________.33. (16分)(1)某兴趣小组在实验室探究工业合成硝酸地化学原理.①氨地催化氧化:图a是探究氨地催化氧化地简易装置,实验中观察到锥形瓶中铂丝保持红热,有红棕色气体生成或白烟产生.白烟地成分是_____________________(填化学式).②NO2地吸收:如图b所示,将一瓶NO2倒置于水槽中,在水下移开玻璃片,可观察到地现象是___________________________________________________________________.(2)三价铁盐溶液因Fe3+水解而显棕黄色,请以Fe(NO3)3溶液为例,设计实验探究影响盐类水解程度地因素.①写出Fe(NO3)3水解地离子方程式_______________________________________.②参照示例完成下表实验方案地设计.2014年广州二模参考答案30.(16分)(1)C9H12O(2分)取代反应(2分)(2)(3分)CH2COOHCH2COOHCHCH2OHCH3CH2-C-O-CH2-CHCH22-CHOOCH3CH3H2O (3)CH3CH2CH2Br (2分)(2分)(4)(2分)(5)(3分)31.(16分)(1)①25% ;50% (共4分,各2分)②33% (2分)③(共4分)C6 H5- CH2 CH3 (g) C6 H5- CH=CH2 (g) + H2(g)起始浓度/( mol•L-1) :a/V 0 0变化浓度/( mol•L-1) :a/3V a/3V a/3V平衡浓度/( mol•L-1) :2a/3V a/3V a/3V(2分)K=(a/3V• a/3V)/ (2a/3V)= a/6V (2分)(2)> (2分);(3)> (2分);(4)ΔH1+ΔH2+ΔH3 (2分)32.(16分)(1)Zn-2e-=Zn2+Cu-2e-=Cu2+(共4分,各2分)(2)① TeO2+2NaOH=Na2TeO3+H2O (3分)②TeO2是两性氧化物,H2SO4过量会导致TeO2继续与H2SO4反应导致损失.(3分)缓慢加入H2SO4,并不断搅拌(3分)③ TeCl4 + 2SO2 + 4H2O=Te + 4HCl + 2H2SO4 (3分)33.(16分)(1)(共4分)① NH4NO3(2分)②集气瓶中红棕色逐渐消失,集气瓶中地液面逐渐上升(2分)(2)(共12分)① Fe3+ + 3H2O Fe(OH)3 + 3H+(2分)②(注:合理地表达或方案也给分,每空2分,共10分)注:③答:温度也给分版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.7EqZc。
2014年高考广州市普通高中毕业班综合测试(二)

2014年高考(537)广州市普通高中毕业班综合测试(二)高考模拟2014-04-25 13512014年广州市普通高中毕业班综合测试(二)语文一、本大题4小题,每小题3分,共12分。
1.下列词语中加点字的读音,全都正确的一组是A.忖度(cǔn)讪笑(shàn)执拗(niù)并行不悖(bâi)B.剽窃(piāo)盘桓(huán)行伍(hánɡ)蓦然回首(mù)C.诘难(jiã)自诩(xǔ)拘泥(ní)提纲挈领(qiâ)D.毗邻(pí)眼睑(lián)折本(shã)焚膏继晷(ɡuǐ)2.下面语段横线处依次填入的词语,最恰当的一组是传统的剪纸,仅凭一把剪刀,顷刻便在一张薄纸上幻化出千姿百态的美丽图案,令人。
而广东佛山的剪纸,自明清时期便如同佛山陶瓷一样,成为一门谋生的行当,为了市场的需要,渐渐形成与传统剪纸截然不同的艺术风格,使用的工具也单凭一把剪刀,而是加入了刻刀和凿子。
这种创新使佛山剪纸在中国剪纸艺术中。
A.拍手称快顺应不仅标新立异B.拍手称快迎合不再标新立异C.叹为观止迎合不仅独树一帜D.叹为观止顺应不再独树一帜3.下列句子中,没有语病的一项是A.拉布拉多犬是一种温和、活泼的中大型犬,它嗅觉灵敏,没有攻击性而且智商较高,适合做猎犬、工作犬、导盲犬和缉毒犬。
B.孔子学院和孔子课堂的重要工作,就是给国外的众多汉语学习者提供更权威的现代汉语教材,搭建更广阔的汉语学习平台。
C.今年,全国房价过快上涨的势头虽然已经得到初步遏制,但是部分大中城市房价仍然过高,调控房地产市场的工作依然繁重。
D.在广州市新一轮的行政区划调整中,由于从化、增城两市“撤县改区”,使广州市所辖面积达到7400平方公里,超过了上海市。
4.把下列句子组成语意连贯的语段,排序最恰当的一项是①昆虫们最善于使用这种“香水”。
【Word版2014广州二模】广东省广州市2014届高三普通高中毕业班综合测试(二)地理试题 Word版含答案

2014年广州市普通高中毕业班综合测试(二)文综地理试题2014.4 本试卷共11页,41小题,满分300分。
考试用时150分钟。
注意事项:1.答卷前,考生务必用2B铅笔在“考生号”处填涂考生号,用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校,以及自己的姓名和考生号、试室号、座位号填写在答题忙上。
用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共35小题,每小题4分,共140分。
每小题给出的四个选项中,只有一个选项符合题目要求。
1.2014年春分时间是3月21日00:57(北京时间),此时太阳直射点在A.亚洲B.欧洲C.南极洲D.南美洲2.影响北京4月份空气质量较差的原因是A.燃煤取暖,多灰霾B.天气干燥,风沙影响C.冷暖空气交替,多暴雨D.夏季风强劲,天气潮湿读1990~2010年天山地区湖泊数量和面积变化表,完成3~4题。
1990~2010年天山地区湖泊数量和面积变化3.影响湖泊20年来变化的原因最可能是A.地壳运动B.火山活动C.水利工程D.气候变化4.湖泊的成因类型是A.断层湖B.火山湖C.人工湖D.冰川湖5.读下图,该国人口增长的特点是2010年某国人口年龄人数统计图A.高出生率,高死亡率,高增长率B.高出生率,低死亡率,高增长率C.低出生率,低死亡率,低增长率D.低出生率,高死亡率,低增长率6.引起我国一些省市耕地资源比重下降最主要的原因是1998—2008年各省区耕地资源比重变化示意图A.气候变化B.城市化C.退耕还林D.农业产业结构调整7.图中反映的能源是我国某种能源分布示意图A.煤炭B.水能C.天然气D.太阳能8.图中反映的城市功能区是A.住宅区B.工业区C.商业中心D.行政中心9.图中反映的自然灾害是A.泥石流B.地震C.干旱D.洪涝10.影响图中企业布局的最主要区位因素是北京海淀区企业分布区位示意图A.人才B.市场C.环境D.交通11.影响我国雾灾脆弱性分布的最主要区位因素是A.农业生产B.交通水平C.技术水平D.地形地势二、非选择题:本题共6小题,共160分。
广州市2014届高考第二次模拟测试(理科)试题及参考答案

侧视图正视图2014年广州市普通高中毕业班综合测试(二)数学(理科)2014.4本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式是13V Sh=,其中S是锥体的底面积,h是锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z满足i2z=,其中i为虚数单位,则z的虚部为A.2-B.2C.2-i D.2i2.若函数()y f x=是函数3xy=的反函数,则12f⎛⎫⎪⎝⎭的值为A.2log3-B.3log2-C.19D3.命题“对任意x∈R,都有32x x>”的否定是A.存在x∈R,使得3200x x>B.不存在x∈R,使得3200x x>C.存在x∈R,使得3200x x≤D.对任意x∈R,都有32x x≤4. 将函数()2cos2(f x x x x=+∈R)的图象向左平移6π个单位长度后得到函数()y g x=,则函数()y g x=A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数,也不是偶函数5.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是A.16B.13C.12D.386.设12,F F分别是椭圆()2222:10x yC a ba b+=>>的左、右焦点,点P在椭圆C上,线段1PF的中点在y轴上,若1230PF F︒∠=,则椭圆C的离心率为A.16B.13CD7.一个几何体的三视图如图1,则该几何体的体积为D CBA A .6π4+B .12π4+C .6π12+D .12π12+ 8.将正偶数2,4,6,8,按表1的方式进行 排列,记ij a 表示第i 行第j 列的数,若2014ij a =,则i j +的值为A .257B .256C .254D .253二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式2210x x --<的解集为 .10.已知312nx x ⎛⎫- ⎪⎝⎭的展开式的常数项是第7项,则正整数n 的值为 .11.已知四边形ABCD 是边长为a 的正方形,若2,2DE EC CF FB ==,则AE AF ⋅的值为 .12.设,x y 满足约束条件 220,840,0,0.x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值为8,则ab 的最大值为 .13.已知[]x 表示不超过x 的最大整数,例如[][]1.52,1.51-=-=.设函数()[]f x x x ⎡⎤=⎣⎦,当[)0,(x n n ∈∈N *)时,函数()f x 的值域为集合A ,则A 中的元素个数为 . (二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线,(x a t t y t =-⎧⎨=⎩为参数)与圆1cos ,(sin x y θθθ=+⎧⎨=⎩为参数)相切,切点在第一象限,则实数a 的值为 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在线段AB 上,且12A E EB =,连接,DE AC ,AC 与DE 相交于点F ,若△AEF 的面积为1 cm 2,则 △AFD 的面积为 cm 2.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)如图2,在△ABC 中,D 是边AC 的中点, 且1AB AD ==,BD =. (1) 求cos A 的值; (2)求sin C 的值.图2FE D CBa 图3重量/克0.0320.02452515O 一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样 本,称出它们的重量(单位:克),重量分组区间为(]5,15,(]15,25,(]25,35,(]35,45, 由此得到样本的重量频率分布直方图,如图3. (1)求a 的值;(2)根据样本数据,试估计盒子中小球重量的平均值; (注:设样本数据第i 组的频率为i p , 第i 组区间的中点值为i x ()1,2,3,,i n =,则样本数据的平均值为112233n n X x p x p x p x p =++++.)(3)从盒子中随机抽取3个小球,其中重量在(]5,15内的小球个数为ξ,求ξ的分布列和数学期望.18.(本小题满分14分)如图4,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD , 1EF =,,90FB FC BFC ︒=∠=,AE =(1)求证:AB ⊥平面BCF ;(2)求直线AE 与平面BDE 所成角的正切值.图4已知数列{}n a 的前n 项和为n S ,且10a =,对任意n ∈N *,都有()11n n na S n n +=++.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T .20.(本小题满分14分)已知定点()0,1F 和直线:1l y =-,过点F 且与直线l 相切的动圆圆心为点M ,记点M 的轨迹为曲线E .(1) 求曲线E 的方程;(2) 若点A 的坐标为()2,1, 直线1:1(l y kx k =+∈R ,且0)k ≠与曲线E 相交于,B C 两 点,直线,AB AC 分别交直线l 于点,S T . 试判断以线段ST 为直径的圆是否恒过两个 定点? 若是,求这两个定点的坐标;若不是,说明理由.21.(本小题满分14分) 已知函数()ln (,f x a x bx a b =+∈R )在点()()1,1f 处的切线方程为220x y --=.(1)求,a b 的值;(2)当1x >时,()0kf x x+<恒成立,求实数k 的取值范围; (3)证明:当n ∈N *,且2n ≥时,22111322ln 23ln 3ln 22n n n n n n--+++>+.2014年广州市普通高中毕业班综合测试(二) 数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,12⎛⎫- ⎪⎝⎭10.8 11.2a12.4 13.222n n -+141 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) (1)解:在△ABD 中,1AB AD ==,3BD =, ∴222cos 2AB AD BD A AB AD+-=⋅⋅2221112113+-⎝⎭==⨯⨯. ……………4分 (2)解:由(1)知,1cos 3A =,且0A <<π,∴sin A ==.……………6分∵D 是边AC 的中点,∴22AC AD ==.在△ABC 中,222222121cos 22123AB AC BC BC A AB AC +-+-===⋅⋅⨯⨯,………8分 解得3BC =……………10分由正弦定理得,sin sin BC ABA C=, ……………11分 ∴1sin sin AB A C BC ⋅=== ……………12分 17.(本小题满分12分)(1) 解:由题意,得()0.020.0320.018101x +++⨯=, ……………1分 解得0.03x =. ……………2分OHFEDC (2)解:50个样本小球重量的平均值为0.2100.32200.3300.184024.6X =⨯+⨯+⨯+⨯=(克). ……………3分 由样本估计总体,可估计盒子中小球重量的平均值约为24.6克. ……………4分(3)解:利用样本估计总体,该盒子中小球重量在(]5,15内的概率为0.2,则13,5B ξ⎛⎫⎪⎝⎭.……………5分 ξ的取值为0,1,2,3, ……………6分()30346405125P C ξ⎛⎫=== ⎪⎝⎭,()2131448155125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, ()2231412255125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()3331135125P C ξ⎛⎫=== ⎪⎝⎭. ……………10分 ∴ξ的分布列为:……………11分∴6448121301231251251251255E ξ=⨯+⨯+⨯+⨯=. ……………12分 (或者13355E ξ=⨯=)18.(本小题满分14分)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==, ∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1= ∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt △BFC 中,2224FB FC BC +==,又FB FC =,得FB = ∴EM = ……………3分在△AME 中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =,∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分 ∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EO BD O EO =⊂平面EBD ,BD ⊂平面EBD , ∴AO ⊥平面EBD . ……………11分 ∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分在Rt △AOE中,tan AOAEO EO∠== ……………13分 ∴直线AE 与平面BDE……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形. ∴EO ∥FH ,且1EO FH ==. 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD , ∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴,建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -. ∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ, 则sin θ=cos ,n AE⋅=n AE n AE=.……………11分∴cos θ==,sin tan cos θθθ== ……………13分 ∴直线AE 与平面BDE ……………14分19.(本小题满分14分)(1)解法1:当2n ≥时,()11n n na S n n +=++,()()111n n n a S n n --=+-,……1分 两式相减得()()()11111n n n n na n a S S n n n n +---=-++--, ……………3分即()112n n n na n a a n +--=+,得12n n a a +-=. ……………5分 当1n =时,21112a S ⨯=+⨯,即212a a -=. ……………6分 ∴数列{}n a 是以10a =为首项,公差为2的等差数列.∴()2122n a n n =-=-. ……………7分 解法2:由()11n n na S n n +=++,得()()11n n n n S S S n n +-=++, ……………1分 整理得,()()111n n nS n S n n +=+++, ……………2分 两边同除以()1n n +得,111n nS S n n+-=+. ……………3分 ∴数列n S n ⎧⎫⎨⎬⎩⎭是以101S =为首项,公差为1的等差数列. ∴011nS n n n=+-=-. ∴()1n S n n =-. ……………4分当2n ≥时,()()()111222n n n a S S n n n n n -=-=----=-. ……………5分 又10a =适合上式, ……………6分 ∴数列{}n a 的通项公式为22n a n =-. ……………7分 (2)解法1:∵22log log n n a n b +=,∴221224n an n n b n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅,①()1231442434144n n n T n n -=+⨯+⨯++-⋅+⋅,② ……………11分 ①-②得0121344444n nn T n --=++++-⋅14414n nn -=-⋅-()13413n n -⋅-=. ……………13分∴()131419n n T n ⎡⎤=-⋅+⎣⎦. ……………14分 解法2:∵22log log n n a n b +=,∴221224n an n n b n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅.由()12311n nx x x x x x x x+-++++=≠-, ……………11分两边对x 取导数得,012123n x x x nx -++++=()()12111n n nx n x x +-++-. ………12分 令4x =,得()()0122114243414431419n n n n n n --⎡⎤+⨯+⨯++-⋅+⋅=-⋅+⎣⎦. ……………13分 ∴ ()131419n n T n ⎡⎤=-⋅+⎣⎦. ……………14分 20.(本小题满分14分)(1)解法1:由题意, 点M 到点F 的距离等于它到直线l 的距离,故点M 的轨迹是以点F 为焦点, l 为准线的抛物线. ……………1分 ∴曲线E 的方程为24x y =. ……………2分解法2:设点M 的坐标为(),x y ,依题意, 得1MF y =+,1y =+, ……………1分 化简得24x y =.∴曲线E 的方程为24x y =. ……………2分(2) 解法1: 设点,B C 的坐标分别为()()1122,,,x y x y ,依题意得,2211224,4x y x y ==.由21,4,y kx x y =+⎧⎨=⎩消去y 得2440x kx --=,解得1,22x k ==±.∴12124,4x x k x x +==-. ……………3分直线AB 的斜率2111111124224AB x y x k x x --+===--, 故直线AB 的方程为()12124x y x +-=-. ……………4分令1y =-,得1822x x =-+,∴点S 的坐标为182,12x ⎛⎫-- ⎪+⎝⎭. ……………5分 同理可得点T 的坐标为282,12x ⎛⎫-- ⎪+⎝⎭. ……………6分 ∴()()()121212888222222x x ST x x x x -⎛⎫=---= ⎪++++⎝⎭ ()()()121212121288248x x x x x xx x x x k k---===+++. ……………7分∴2ST=()()()2221212122221614k x x x x x x kkk+-+-==. ……………8分设线段ST 的中点坐标为()0,1x -,则()()()12012124418822222222x x x x x x x ++⎛⎫=-+-=-⎪++++⎝⎭ ()()()1212444444222248k k x x x x k k++=-=-=-+++. ……………9分∴以线段ST 为直径的圆的方程为()2222114x y ST k ⎛⎫+++= ⎪⎝⎭()2241k k +=. ……………10分展开得()()22222414414k x x y k k k++++=-=. ……………11分令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 解法2:由(1)得抛物线E 的方程为24x y =.设直线AB 的方程为()112y k x -=-,点B 的坐标为()11,x y ,由()112,1,y k x y ⎧-=-⎨=-⎩解得122,1.x k y ⎧=-⎪⎨⎪=-⎩∴点S 的坐标为122,1k ⎛⎫-- ⎪⎝⎭. …………3分 由()1212,4,y k x x y ⎧-=-⎨=⎩消去y ,得2114840x k x k -+-=, 即()()12420x x k --+=,解得2x =或142x k =-. ……………4分∴1142x k =-,22111114414y x k k ==-+.∴点B 的坐标为()211142,441k k k --+. ……………5分同理,设直线AC 的方程为()212y k x -=-, 则点T 的坐标为222,1k ⎛⎫-- ⎪⎝⎭,点C 的坐标为()222242,441k k k --+. …………6分 ∵点,B C 在直线1:1l y kx =+上,∴()()()()()()22222211212121214414414242kk k k k k k k k k k k k -+--+---==----121k k =+-.∴121k k k +=+. ……………7分 又()211144142k k k k -+=-1+,得()21111214442412k k kk k k k k k -=-=+--,化简得122kk k =. ……………8分 设点(),P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ⋅=, ……………9分得()()122222110x x y y k k ⎛⎫⎛⎫-+-++++= ⎪⎪⎝⎭⎝⎭, ……………10分整理得,()224410x x y k+-++=. ……………11分令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 21.(本小题满分14分)(1)解:∵()ln f x a x bx =+, ∴()af x b x '=+. ∵直线220x y --=的斜率为12,且过点11,2⎛⎫- ⎪⎝⎭, ……………1分∴()()11,211,2f f ⎧=-⎪⎪⎨⎪'=⎪⎩即1,21,2b a b ⎧=-⎪⎪⎨⎪+=⎪⎩解得11,2a b ==-. ……………3分(2)解法1:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x k x x -+<,等价于2ln 2x k x x <-.……………4分令()2ln 2x g x x x =-,则()()ln 11ln g x x x x x '=-+=--. ……………5分 令()1ln h x x x =--,则()111x h x x x-'=-=.当1x >时,()0h x '>,函数()h x 在()1,+∞上单调递增,故()()10h x h >=.……………6分 从而,当1x >时,()0g x '>,即函数()g x 在()1,+∞上单调递增,故()()112g x g >=. ……………7分 因此,当1x >时,2ln 2x k x x <-恒成立,则12k ≤. ……………8分 ∴所求k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分解法2:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x kx x -+<恒成立. ……………4分令()ln 2x k g x x x =-+,则()222112222k x x kg x x x x -+'=--=-.方程2220x x k -+=(﹡)的判别式48k ∆=-.(ⅰ)当0∆<,即12k >时,则1x >时,2220x x k -+>,得()0g x '<,故函数()g x 在()1,+∞上单调递减.由于()()110,2ln 21022kg k g =-+>=-+>, 则当()1,2x ∈时,()0g x >,即ln 02x kx x-+>,与题设矛盾. …………5分(ⅱ)当0∆=,即12k =时,则1x >时,()()2222121022x x x g x x x --+'=-=-<. 故函数()g x 在()1,+∞上单调递减,则()()10g x g <=,符合题意. ………6分(ⅲ) 当0∆>,即12k <时,方程(﹡)的两根为1211,11x x ==>, 则()21,x x ∈时,()0g x '>,()2,x x ∈+∞时,()0g x '<.故函数()g x 在()21,x 上单调递增,在()2,x +∞上单调递减, 从而,函数()g x 在()1,+∞上的最大值为()2222ln 2x kg x x x =-+. ………7分 而()2222ln 2x k g x x x =-+2221ln 22x x x <-+, 由(ⅱ)知,当1x >时,1ln 022x x x-+<,得2221ln 022x x x -+<,从而()20g x <. 故当1x >时,()()20g x g x ≤<,符合题意. ……………8分 综上所述,k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分(3)证明:由(2)得,当1x >时,1ln 022x x x -+<,可化为21ln 2x x x -<, …10分又ln 0x x >,从而,21211ln 111x x x x x >=---+. ……………11分 把2,3,4,,x n =分别代入上面不等式,并相加得, 11111111111112ln 23ln 3ln 32435211n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭……………12分111121n n =+--+ ……………13分 223222n n n n--=+. ……………14分。
【Word版2014广州二模】广东省广州市2014届高三普通高中毕业班综合测试(二)理综试题 Word版含答案

广东省广州市2014年普通高中毕业班综合测试(二)理科综合生物试题一、单项选择题:1.下列对“细胞学说”理解合理的是①揭示了动植物体结构的统一性②一切生物都是由细胞和细胞产物构成的③提出了细胞膜结构的流动镶嵌模型④细胞是一个相对独立的有机体A.①②B. ②③C. ③④D.①④2.下列对一条核苷酸链的说法不合理...的是A.碱基C和碱基G的数目可不相等B.组成核苷酸的糖是五碳糖C.磷酸基团与碱基相连接D.可由四种核糖核苷酸组成3.右图表示物质S在酶E的催化下水解成P的反应图解,下列叙述正确的是A.酶E可为该反应提供活化能B.酶E水解的产物是H2O、CO2等物质C.若S是麦芽糖,则可用斐林试剂来检测P的生成情况D.若S代表二肽,则E、P可分别代表肽酶、氨基酸4.绿豆芽是在无光条件下由绿豆萌发而成。
以下叙述正确的是A.绿豆芽的生长过程只需要生长素的调节B.绿豆萌发成豆芽的过程中有机物总量减少C.绿豆芽尖处于分裂期的细胞中含有两个中心体D.赤毒素通过促进乙烯的合成来促进绿豆芽细胞的伸长5. 下表是在适宜条件下测得某植物叶绿体色素吸收光能的情况,有关分析不.正确的是A.O2的释放速率变化与全部色素吸收光能百分比变化基本一致B.由550nm波长的光转为670nm波长的光时,叶绿体中C3的量会增加C.该植物缺乏Mg时,叶绿素a吸收的光能百分比的减少幅度更大D.环境温度降低,该植物对光能的利用能力降低6.某地土壤中小动物的物种数和个体总数如下表,以下有关叙述正确的是A.表中的信息说明群落具有垂直结构B.不同土层中小动物的分布与光照无关C.不同土层中的小动物都是消费者D.土壤中某种小动物个体总数下降则该地物种丰富度随之下降二、双项选择题:24.下列分析正确的是25.某种植物(二倍体)叶缘的锯齿状与非锯齿状受叶缘细胞中T蛋白含量的影响,T蛋白的合成由两对独立遗传的基因(A和a, T和t)控制,基因T表达的产物是T蛋白,基因A抑制基因T的表达。
【Word版2014广州二模】广东省广州市2014届高三普通高中毕业班综合测试(二)数学理试题 Word版含答案

试卷类型:A2014年广州市普通高中毕业班综合测试(二)数学(理科)2014.4 本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式是13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若复数z 满足 i 2z =,其中i 为虚数单位,则z 的虚部为A .2-B .2C .2-iD .2i2.若函数()y f x =是函数3xy =的反函数,则12f ⎛⎫⎪⎝⎭的值为A .2log 3-B .3log 2-C .19D 3.命题“对任意x ∈R ,都有32x x >”的否定是A .存在0x ∈R ,使得3200x x >B .不存在0x ∈R ,使得3200x x >C .存在0x ∈R ,使得3200x x ≤ D .对任意x ∈R ,都有32x x ≤4. 将函数()2cos 2(f x x x x =+∈R )的图象向左平移6π个单位长度后得到函数 ()y g x =,则函数()y g x =A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数,也不是偶函数图1俯视图侧视图正视图5.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3, 将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是 A .16 B .13 C .12 D .386.设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF的中点在y 轴上,若1230PF F ︒∠=,则椭圆C 的离心率为 A .16 B .13C.6 D.37.一个几何体的三视图如图1,则该几何体的体积为A .6π4+B .12π4+C .6π12+D .12π12+ 8.将正偶数2,4,6,8, 按表1的方式进行 排列,记ij a 表示第i 行第j 列的数,若2014ij a =,则i j +的值为A .257B .256C .254D .253 表1 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式2210x x --<的解集为 .10.已知312nx x ⎛⎫- ⎪⎝⎭的展开式的常数项是第7项,则正整数n 的值为 .11.已知四边形ABCD 是边长为a 的正方形,若2,2DE EC CF FB == ,则A E A F ⋅的值为 .12.设,x y 满足约束条件 220,840,0,0.x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值为8,则ab 的最大值为 .D CB A a 图3重量/克0.0320.02452515O 13.已知[]x 表示不超过x 的最大整数,例如[][]1.52,1.51-=-=.设函数()[]f x x x ⎡⎤=⎣⎦,当[)0,(x n n ∈∈N *)时,函数()f x 的值域为集合A ,则A 中的元素个数为 .(二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线,(x a t t y t =-⎧⎨=⎩为参数)与 圆1cos ,(sin x y θθθ=+⎧⎨=⎩为参数)相切,切点在第一象限,则实数a 的值为 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在线段AB 上,且 12A E EB =,连接,DE AC ,AC 与DE 相交于点F ,若△AEF 的面积为1 cm 2,则 △AFD 的面积为 cm 2.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)如图2,在△ABC 中,D 是边AC 的中点, 且1AB AD ==,BD =(1) 求cos A 的值; (2)求sin C 的值. 图2 17.(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样 本,称出它们的重量(单位:克),重量分组区间为(]5,15,(]15,25,(]25,35,(]35,45, 由此得到样本的重量频率分布直方图,如图3. (1)求a 的值;(2)根据样本数据,试估计盒子中小球重量的平均值;(注:设样本数据第i 组的频率为i p ,第i 组区间的中点值为i x ()1,2,3,,i n = ,则样本数据的平均值为112233n n X x p x p x p x p =++++ . (3)从盒子中随机抽取3个小球,其中重量在(]5,15内的小球个数为ξ,求ξ的分布列和数学期望.FE D CB18.(本小题满分14分) 如图4,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD ,1EF =,,90FB FC BFC ︒=∠=,AE =(1)求证:AB ⊥平面BCF ;(2)求直线AE 与平面BDE 所成角的正切值. 图4 19.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,且10a =,对任意n ∈N *,都有()11n n na S n n +=++. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T .20.(本小题满分14分)已知定点()0,1F 和直线:1l y =-,过点F 且与直线l 相切的动圆圆心为点M ,记点M 的轨迹为曲线E .(1) 求曲线E 的方程;(2) 若点A 的坐标为()2,1, 直线1:1(l y kx k =+∈R ,且0)k ≠与曲线E 相交于,B C 两 点,直线,AB AC 分别交直线l 于点,S T . 试判断以线段ST 为直径的圆是否恒过两个 定点? 若是,求这两个定点的坐标;若不是,说明理由. 21.(本小题满分14分)已知函数()ln (,f x a x bx a b =+∈R )在点()()1,1f 处的切线方程为220x y --=. (1)求,a b 的值; (2)当1x >时,()0kf x x+<恒成立,求实数k 的取值范围; (3)证明:当n ∈N *,且2n ≥时,22111322ln 23ln 3ln 22n n n n n n--+++>+ .2014年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,12⎛⎫- ⎪⎝⎭10.8 11.2a12.4 13.222n n -+141 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分) (1)解:在△ABD 中,1AB AD ==,3BD=, ∴222cos 2AB AD BD A AB AD+-=⋅⋅2221112113+-⎝⎭==⨯⨯. ……………4分(2)解:由(1)知,1cos 3A =,且0A <<π,∴sin 3A ==. ……………6分 ∵D 是边AC 的中点,∴22AC AD ==.在△ABC 中,222222121cos 22123AB AC BC BC A AB AC +-+-===⋅⋅⨯⨯,………8分解得3BC =……………10分 由正弦定理得,sin sin BC ABA C=, ……………11分∴1sin sin 3AB AC BC⋅===. ……………12分17.(本小题满分12分)(1) 解:由题意,得()0.020.0320.018101x +++⨯=, ……………1分 解得0.03x =. ……………2分 (2)解:50个样本小球重量的平均值为0.2100.32200.3300.184024.6X =⨯+⨯+⨯+⨯=(克). ……………3分由样本估计总体,可估计盒子中小球重量的平均值约为24.6克. ……………4分(3)解:利用样本估计总体,该盒子中小球重量在(]5,15内的概率为0.2,则13,5B ξ⎛⎫⎪⎝⎭. ……………5分 ξ的取值为0,1,2,3, ……………6分()30346405125P C ξ⎛⎫=== ⎪⎝⎭,()2131448155125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, ()2231412255125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()3331135125P C ξ⎛⎫=== ⎪⎝⎭. ……………10分∴ξ的分布列为:……………11分 ∴6448121301231251251251255E ξ=⨯+⨯+⨯+⨯=. ……………12分 (或者13355E ξ=⨯=)18.(本小题满分14分)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =,M OH FED C B ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt △BFC 中,2224FB FC BC +==,又FB FC =,得FB =∴EM =……………3分在△AME中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B = ,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =,∴EF ∥OH ,且EF OH =.∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1E O F H == .……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分∵FH BC ⊥,,AB BC B AB =⊂ 平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EO BD O EO =⊂ 平面EBD ,BD ⊂平面EBD , ∴AO ⊥平面EBD . ……………11分 ∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分 在Rt △AOE中,tan AOAEO EO∠== ……………13分 ∴直线AE 与平面BDE. ……………14分证法2:连接AC ,AC 与BD 相交于点O ,则点O 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH ==. ……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,AB BC B AB =⊂ 平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴,建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -.∴()1,1,1AE =- ,()2,2,0BD =-- ,()1,1,1BE =--. ……………9分设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅= ,n 0BE ⋅=,得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ,则sin θ=cos , n AE ⋅=n AEnAE=. ……………11分∴cos 3θ==,sin tan cos θθθ== ……………13分 ∴直线AE 与平面BDE. ……………14分19.(本小题满分14分)(1)解法1:当2n ≥时,()11n n na S n n +=++,()()111n n n a S n n --=+-,……1分 两式相减得()()()11111n n n n na n a S S n n n n +---=-++--, ……………3分即()112n n n na n a a n +--=+,得12n n a a +-=. ……………5分 当1n =时,21112a S ⨯=+⨯,即212a a -=. ……………6分 ∴数列{}n a 是以10a =为首项,公差为2的等差数列.∴()2122n a n n =-=-. ……………7分 解法2:由()11n n na S n n +=++,得()()11n n n n S S S n n +-=++, ……………1分 整理得,()()111n n nS n S n n +=+++, ……………2分 两边同除以()1n n +得,111n nS S n n+-=+. ……………3分 ∴数列n S n ⎧⎫⎨⎬⎩⎭是以101S =为首项,公差为1的等差数列. ∴011nS n n n=+-=-. ∴()1n S n n =-. ……………4分 当2n ≥时,()()()111222n n n a S S n n n n n -=-=----=-. ……………5分 又10a =适合上式, ……………6分 ∴数列{}n a 的通项公式为22n a n =-. ……………7分 (2)解法1:∵22log log n n a n b +=, ∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++ ()0122142434144n n n n --=+⨯+⨯++-⋅+⋅ ,①()1231442434144n n n T n n -=+⨯+⨯++-⋅+⋅ ,② ……………11分①-②得0121344444n nn T n --=++++-⋅ 14414n nn -=-⋅-()13413n n -⋅-=.……………13分 ∴()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 解法2:∵22log log n n a n b +=, ∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++ ()0122142434144n n n n --=+⨯+⨯++-⋅+⋅ .由()12311n nx x x x x x x x+-++++=≠- , ……………11分两边对x 取导数得,012123n x x x nx-++++=()()12111n n nx n x x +-++-. ………12分令4x =,得()()0122114243414431419n n n n n n --⎡⎤+⨯+⨯++-⋅+⋅=-⋅+⎣⎦ . ……………13分 ∴ ()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 20.(本小题满分14分)(1)解法1:由题意, 点M 到点F 的距离等于它到直线l 的距离,故点M 的轨迹是以点F 为焦点, l 为准线的抛物线. ……………1分 ∴曲线E 的方程为24x y =. ……………2分 解法2:设点M 的坐标为(),x y ,依题意, 得1MF y =+,1y =+, ……………1分 化简得24x y =.∴曲线E 的方程为24x y =. ……………2分 (2) 解法1: 设点,B C 的坐标分别为()()1122,,,x y x y ,依题意得,2211224,4x y x y ==.由21,4,y kx x y =+⎧⎨=⎩消去y 得2440x kx --=,解得1,2422k x k ±==± ∴12124,4x x k x x +==-. ……………3分直线AB 的斜率2111111124224ABx y x k x x --+===--, 故直线AB 的方程为()12124x y x +-=-. ……………4分 令1y =-,得1822x x =-+,∴点S 的坐标为182,12x ⎛⎫-- ⎪+⎝⎭. ……………5分 同理可得点T 的坐标为282,12x ⎛⎫-- ⎪+⎝⎭. ……………6分 ∴()()()121212888222222x x ST x x x x -⎛⎫=---= ⎪++++⎝⎭ ()()()121212121288248x x x x x x x x x x kk---===+++. ……………7分 ∴2ST=()()()2221212122221614k x x x x x x k k k +-+-==. ……………8分设线段ST 的中点坐标为()0,1x -,则()()()12012124418822222222x x x x x x x ++⎛⎫=-+-=- ⎪++++⎝⎭ ()()()1212444444222248k k x x x x kk++=-=-=-+++. ……………9分 ∴以线段ST 为直径的圆的方程为()2222114x y ST k ⎛⎫+++= ⎪⎝⎭()2241k k +=. ……………10分展开得()()22222414414k x x y k k k++++=-=. ……………11分 令0x =,得()214y +=,解得1y =或3y =-. ……………12分 ∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 解法2:由(1)得抛物线E 的方程为24x y =.设直线AB 的方程为()112y k x -=-,点B 的坐标为()11,x y ,由()112,1,y k x y ⎧-=-⎨=-⎩解得122,1.x k y ⎧=-⎪⎨⎪=-⎩∴点S 的坐标为122,1k ⎛⎫-- ⎪⎝⎭. …………3分 由()1212,4,y k x x y ⎧-=-⎨=⎩消去y ,得2114840x k x k -+-=,即()()12420x x k --+=,解得2x =或142x k =-. ……………4分 ∴1142x k =-,22111114414y x k k ==-+. ∴点B 的坐标为()211142,441k k k --+. ……………5分 同理,设直线AC 的方程为()212y k x -=-, 则点T 的坐标为222,1k ⎛⎫-- ⎪⎝⎭,点C 的坐标为()222242,441k k k --+. …………6分 ∵点,B C 在直线1:1l y kx =+上,∴()()()()()()22222211212121214414414242k k k k k k k k k k k k k -+--+---==----121k k =+-.∴121k k k +=+. ……………7分 又()211144142k k k k -+=-1+,得()21111214442412k k kk k k k k k -=-=+--,化简得122kk k =. ……………8分 设点(),P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ⋅=, ……………9分得()()122222110x x y y k k ⎛⎫⎛⎫-+-++++= ⎪⎪⎝⎭⎝⎭, ……………10分 整理得,()224410x x y k+-++=. ……………11分 令0x =,得()214y +=,解得1y =或3y =-. ……………12分 ∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 21.(本小题满分14分)(1)解:∵()ln f x a x bx =+, ∴()af x b x'=+. ∵直线220x y --=的斜率为12,且过点11,2⎛⎫- ⎪⎝⎭, ……………1分∴()()11,211,2f f ⎧=-⎪⎪⎨⎪'=⎪⎩即1,21,2b a b ⎧=-⎪⎪⎨⎪+=⎪⎩解得11,2a b ==-. ……………3分(2)解法1:由(1)得()ln 2x f x x =-. 当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<,等价于2ln 2x k x x <-.……………4分令()2ln 2x g x x x =-,则()()ln 11ln g x x x x x '=-+=--. ……………5分令()1ln h x x x =--,则()111x h x x x-'=-=. 当1x >时,()0h x '>,函数()h x 在()1,+∞上单调递增,故()()10h x h >=. ……………6分 从而,当1x >时,()0g x '>,即函数()g x 在()1,+∞上单调递增, 故()()112g x g >=. ……………7分 因此,当1x >时,2ln 2x k x x <-恒成立,则12k ≤. ……………8分∴所求k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分解法2:由(1)得()ln 2x f x x =-. 当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<恒成立. ……………4分 令()ln 2x kg x x x=-+,则()222112222k x x k g x x x x -+'=--=-.方程2220x x k -+=(﹡)的判别式48k ∆=-.(ⅰ)当0∆<,即12k >时,则1x >时,2220x x k -+>,得()0g x '<, 故函数()g x 在()1,+∞上单调递减.由于()()110,2ln 21022kg k g =-+>=-+>, 则当()1,2x ∈时,()0g x >,即ln 02x kx x-+>,与题设矛盾. …………5分(ⅱ)当0∆=,即12k =时,则1x >时,()()2222121022x x x g x x x--+'=-=-<.故函数()g x 在()1,+∞上单调递减,则()()10g x g <=,符合题意. ………6分 (ⅲ) 当0∆>,即12k <时,方程(﹡)的两根为1211,11x x =<=+>, 则()21,x x ∈时,()0g x '>,()2,x x ∈+∞时,()0g x '<. 故函数()g x 在()21,x 上单调递增,在()2,x +∞上单调递减, 从而,函数()g x 在()1,+∞上的最大值为()2222ln 2x kg x x x =-+. ………7分 而()2222ln 2x k g x x x =-+2221ln 22x x x <-+, 由(ⅱ)知,当1x >时,1ln 022x x x-+<, 得2221ln 022x x x -+<,从而()20g x <. 故当1x >时,()()20g x g x ≤<,符合题意. ……………8分 综上所述,k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分(3)证明:由(2)得,当1x >时,1ln 022x x x-+<,可化为21ln 2x x x -<, …10分 又ln 0x x >, 从而,21211ln 111x x x x x >=---+. ……………11分 把2,3,4,,x n = 分别代入上面不等式,并相加得,11111111111112ln 23ln 3ln 32435211n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭……………12分 111121n n =+--+ ……………13分 223222n n n n--=+. ……………14分。
2014年广州市普通高中毕业班综合测试解析

2014年广州市普通高中毕业班综合测试(二)语文2014.4本试卷共8页,24小题,满分为150分。
考试用时150分钟。
注意事项:1.答卷前,考生务必用2B铅笔在“考生号”处填涂考生号。
用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、本大题4小题,每小题3分,共12分。
1.下列词语中加点字的读音,全都正确的一组是A.忖.度(cǔn)讪.笑(shàn)执拗.(niù)并行不悖.(bèi)B.剽.窃(piāo)盘桓.(huán)行.伍(hánɡ)蓦.然回首(mù)C.诘.难(jié)自诩.(xǔ)拘泥.(ní)提纲挈.领(qiè)D.毗.邻(pí)眼睑.(lián)折.本(shé)焚膏继晷.(ɡuǐ)2.下面语段横线处依次填入的词语,最恰当的一组是传统的剪纸,仅凭一把剪刀,顷刻便在一张薄纸上幻化出千姿百态的美丽图案,令人。
而广东佛山的剪纸,自明清时期便如同佛山陶瓷一样,成为一门谋生的行当,为了市场的需要,渐渐形成与传统剪纸截然不同的艺术风格,使用的工具也单凭一把剪刀,而是加入了刻刀和凿子。
【2014广州二模】广东省广州市2014届高三普通高中毕业班综合测试(二)语文试题 扫描版含答案

2014年广州市普通高中毕业班综合测试(二)语文评分标准及补充细则9.根据具体要求分别完成下列各题。
(10分)(1)将下列句子翻译为现代汉语。
(7分)①今崔、卢之属,宁比当朝之贵?(3分)【参考答案及评分标准】如今崔、卢这类人,难道能和当朝的显贵相比吗?[3分。
“属”“宁”各1分,大意1分落在“之属”的“之”和“贵”两词上。
]【补充细则】(1)“属”:解释为“类”“种”“些”均可。
(3)“之”和“贵”两个词都翻译对,才得大意分。
此处“之”为代词,解释为“这”;“贵”为名词,解释为“(当朝的)显贵”“(当朝的)权贵”“(当朝)显贵的人”“(当朝的)贵族”均可。
②积习成俗,迄今未已,既紊人伦,实亏名教。
(4分)【参考答案及评分标准】这种习惯时间长就成了风俗,到现在还没有废止,这既乱了人伦,也败坏了名声和教化。
[4分。
“已”“紊”“亏”各1分,大意1分。
]【补充细则】(1)“已”解释为“停止”“废止”均可。
(2)“紊”解释为“使……混乱”“乱”“混乱”(此处应为动词)均可。
(3)“亏”解释为“败坏”“毁坏”“损害”“使……受损害”“有损”均可;(4)大意分落在“积习成俗”。
翻译为“这种习惯时间长就成了风俗”“这种习惯积久了,就形成了风俗”均可。
9(2)从本文看,唐太宗对士大夫的婚姻有怎样的要求?(可自己概括,也可引用原文)(3分)【参考答案及评分标准】①婚姻的原则,首先要符合仁义。
(婚姻之道,莫先于仁义。
)②嫁娶的规矩,务必合乎礼法。
(嫁娶之序,务合礼典。
)[3分。
答对一点2分,两点3分。
]【补充细则】(1)采点给分,选错了,不倒扣分。
(2)用自己的话回答,也可以表述为“婚姻要符合礼义之风,遵循匹嫡的礼义,遵循人伦”,意思对即可。
这点作为评分标准的第二点给分,不重复给分。
(3)主要围绕“唐太宗对士大夫婚姻的要求”,“仁义”“礼法”为给分点,其他答案都是错误的现象,并非唐太宗的要求。
【参考译文】贞观六年,唐太宗对尚书左仆射房玄龄说:“近来山东的崔、卢、李、郑四大姓,虽然家世早已衰败,但他们仍然依仗旧时的郡望,自高自大,号称士大夫。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014广州二模试题答案解析一、单项选择题1.子弹射入静止于光滑水平地面上的木块,则 A .做功使木块的内能增大 B .热传递使木块的动能增大C .子弹损失的能量等于木块增加的内能D .子弹损失的能量等于木块增加的动能 答案:A解析:子弹与木块的摩擦生热既传给了子弹,也传给了木块。
子弹与木块的动能损失发了热。
选项BCD 错误。
2.如图,a 、b 是航天员王亚平在“天宫一号”实验舱做水球实验时形成的气泡,a 、b 温度相同且a 的体积大,则A .a 内气体的内能比b 的小B .a 内气体的分子平均动能比b 的大C .气泡表面附近的水分子间作用力表现为斥力D .水球外表面附近的水分子间作用力表现为引力 答案:D解析:气泡表面外面的水分子引力作用使气泡成球形。
选项A 错误,a 内能大。
选项B 错误,平均动能相等。
选项C 错误,与选项D 对立3.跳伞运动员在下降过程中沿竖直方向运动的v -t 图象如图,则0~t 1过程中 A .速度一直在增大 B .加速度一直在增大 C .机械能保持不变 D .位移为121t v m 答案:A解析:选项B 错误,加速度一直在减小。
选项C 错误,有空气阻力,机械能减小。
选项D 错误,位移大于121t v m ,选项A 正确。
4.如图,水平地面上质量为m 的物体连着一个劲度系数为k 的轻弹簧,在水平恒力F 作用下做匀加速直线运动.已知物体与地面间的动摩擦因素为μ,重力加速度为g ,弹簧没有超出弹性限度,则弹簧的伸长量为A .k mgB .kmg μ C .k F D .k mg F μ-答案:Cv 1解析:弹簧无质量,其拉力=F=kx 。
选项C 正确。
二、双项选择题5.水平放置的平行板电容器与线圈连接如图,线圈内有垂直纸面(设向里为正方向)的匀强磁场.为使带负电微粒静止在板间,磁感强度B 随时间t 变化的图象应该是答案:BC解析:题意要求带负电微粒平衡,所以电场力与重力平衡。
即上板带正电,则要求感应电动势(电流)方向为逆时针,而且大小恒定,从而得出垂直纸面向里的磁场均匀增大。
6.U 23892的衰变方程为He Th U 422349023892+→,其衰变曲线如图,T 为半衰期,则A .U 23892发生的是α衰变B .U 23892发生的是β衰变C .k=3D .k=4 答案:AC解析:经过3个半衰期,质量剩下1/8。
7.某小型发电站的电能输送示意图如下,变压器均为理想变压器并标示了电压和匝数.若电压41U U =,输电线总电阻为r ,用户端的用电器正常工作,则 A .32U U = B .32U U > C .4321n n n n = D .4321n n n n < 答案:BD解析:高压输电,所以32U U >,121n n <,341n n <,所以选项B 、D 正确。
8.如图,甲、乙、丙是位于同一直线上的离其它恒星较远的三颗恒星,甲、丙围绕乙在半径为R 的圆轨道上运行,若三颗星质量均为M ,万有引力常量为G ,则A .甲星所受合外力为2245RGM甲丙m 8121n 1 n 2n 3 n 4B .乙星所受合外力为22R GMC .甲星和丙星的线速度相同D .甲星和丙星的角速度相同 答案:AD解析:选项B 错误,乙星所受合外力为零。
选项C 错误,线速度有方向。
9.电子束焊接机中的电子枪如图所示,K 为阴极、电势为K ϕ,A 为阳极、电势为A ϕ,在电场作用下电量为e -的电子从K 运动到A ,则 A .A 、K 间电势差为K A ϕϕ- B .电子动能增加)(K A e ϕϕ- C .电子电势能增加)(K A e ϕϕ- D .电子克服电场力做功为)(K A e ϕϕ- 答案:AB解析:选项C 错误,电势能减小。
选项D 错误,电场力做正功为)(K A e ϕϕ-。
三.实验题10.(1)如图为“验证力的平行四边形定则”实验,三个细线套L 1、L 2、L 3一端共系于一个结点,另一端分别系于轻质弹簧测力计A 、B 和重物M 上,A 挂于固定点P .手持B 拉动细线,使结点静止于O 点.①某次实验中A 的指针位置如图所示,其读数为_________N ;②实验时要读出A 、B 的示数,还要在贴于竖直木板的白纸上记录O 点的位置、____________、____________和____________;③下列实验要求中必要的是_________(填选项的字母代号);A .弹簧测力计需要在实验前进行校零B .细线套方向应与木板平面平行C .需要用托盘天平测量重物M 的质量D .弹簧测力计B 始终保持水平(2)用如图(a)所示的实验器材及电路测量金属丝的电阻率,实验的主要步骤如下,请完成相关内容.B①将P 移到金属丝a 位置,开启电源,合上开关S ,调节电阻箱的阻值到_____(填“最大”或“零”),并读出此时电流表的示数I 0,断开开关S ;②适当向b 端滑动P ,闭合开关S ,调节电阻箱使电流表示数为_____,记录电阻丝aP 部分的长度L 和电阻箱对应的阻值R ,断开开关S ;③重复步骤②,直到记录9组L 和R 值并画出R -L 的关系图线如图(b)所示; ④根据R -L 图线,求得斜率为______________Ω/m .⑤用螺旋测微器测量金属丝的直径如图(c),其示数为__________mm ,可算得金属丝的电阻率为___________Ω·m . (④、⑤的计算结果保留三位有效数字)答案:(1)①2.00N ;②L 1的方向、L 2的方向和L 3的方向;或者L 1、L 2和L 3的方向;或者L 1的方向、L 2的方向和L 3的方向及M 的重量;(3分,每空各1分) ③AB(2分,每对一项得1分,有错选得0分).解析:不需要天平,因为有弹簧测力计。
(2)①零;②I 0;解析:P 向b 移动时,所用电阻变小,调大变阻器电阻,可以保证电阻不变,所以电流不变,仍然为I 0;④__32.0__Ω/m (2分,31.4~32.6可给分);⑤_0.200_mm(2分,0.198~0.202可给分);1.00×10-6Ω·m (2分,0.960~1.05×10-6可给分,主要看三位有效数字是否正确). 四.计算题11.如图,质量为6m 、长为L 的薄木板AB 放在光滑的平台上,木板B 端与台面右边缘齐平.B 端上放有质量为3m 且可视为质点的滑块C ,C 与木板之间的动摩擦因数为31=μ.质量为m 的小球用长为L 的细绳悬挂在平台右边缘正上方的O 点,细绳竖直时小球恰好与C 接触.现将小球向右拉至细绳水平并由静止释放,小球运动到最低点时细绳恰好断图(b)2m-图(c)图(a)保护电阻裂.小球与C 碰撞后反弹速率为碰前的一半. (1)求细绳能够承受的最大拉力;(2)若要使小球落在释放点的正下方P 点,平台高度应为多大? (3)通过计算判断C 能否从木板上掉下来.解析:(1)设小球运动到最低点的速率为v 0,小球向下摆动过程,由动能定理 21mv mgL =① 得gL v 20=②评分说明:第(1)问中没有④式暂不扣分;第(3)问通过其它途径计算得出正确结论也可以得分。
12.如图,空间区域Ⅰ、Ⅱ有匀强电场和匀强磁场,MN 、PQ 为理想边界,Ⅰ区域高度为d ,Ⅱ区域的高度足够大.匀强电场方向竖直向上;Ⅰ、Ⅱ区域的磁感应强度均为B ,方向分别垂直纸面向里和向外.一个质量为m ,电量为q 的带电小球从磁场上方的O 点由静止开始下落,进入场区后,恰能做匀速圆周运动.已知重力加速度为g .(1)试判断小球的电性并求出电场强度E 的大小; (2)若带电小球运动一定时间后恰能回到O 点,求它释放时距MN 的高度h ;(3)试讨论在h 取不同值时,带电小球第一次穿出Ⅰ区域的过程中,电场力所做的功. 解析:(1)带电小球进入复合场后,恰能做匀速圆周运动,合力为洛伦兹力,重力与电场力平衡,重力竖直向下,电场力竖直向上,即小球带正电...。
由qE=mg ①解得qm gE =② (2)带电小球在进入磁场前做自由落体运动,依机械能守恒有mgh=21mv 2③ 带电小球在磁场中作匀速圆周运动,设半径为R ,依牛顿第二定律有qvB=m Rv 2④由于带电小球在Ⅰ、Ⅱ两个区域运动过程中q 、v 、B 、m 的大小不变,故三段圆周运动的半径相同,以三个圆心为顶点的三角形为等边三角形,边长为2R ,内角为60º,如答图(a)所示.由几何关系知R=︒60sin d ⑤ 解得h=gm d B q 222232⑥;作出小球运动大致轨迹图(3)当带电小球在Ⅰ区域作圆周运动的圆弧与PQ 相切时,运动轨迹如答图(b)所示,有半径R=d ⑦ 联立③④⑦式,解得h 0=gm d B q 22222⑧讨论:i .当h<h 0时,带电小球进入磁场Ⅰ区域的速度较小,半径较小,不能进入Ⅱ区域,由磁场上边界MN 第一次穿出磁场Ⅰ区域,此过程电场力做功W=qEs=0⑨ⅱ.当h>h 0时,带电小球进入磁场Ⅰ区域后由下边界PQ 第一次穿出磁场Ⅰ区域进入Ⅱ区域,此过程电场力做功W=-qEd ⑩ 将②式代入得W=-mgd ○11评分说明:第(3)问讨论对于当h=h 0时的临界情况不做要求,即电场力做功W=0或者W=-mgd 均可以.:)b (答图)a (答图。