2014年广东省广州市中考数学试卷

合集下载

2014年广州市中考数学试卷

2014年广州市中考数学试卷

2014年广州市初中毕业生学业考试数学第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1. a (a ≠0)的相反数是( ) A .−a B .a 2C .|a |D .1a2. 下列图形中,是中心对称图形的是( )A .B .C .D .3. 如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tanA =( )A .35B .45C .34D .434. 下列运算正确的是( )A .5ab −ab =4B .1a + 1b= 2a +b C .a 6÷a 2=a 4D .(a 2b )3=a 5b 35. 已知 O 1和 O 2的半径分别为2cm 和3cm ,若O 1O 2=7cm ,则 O 1和 O 2的位置关系是( ) A . 外离B .外切C .内切D .相交6. 计算x 2−4x −2,结果是( )A . x −2B .x +2C .x −42D .x +2x7. 在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是( ) A . 中位数是8 B .众数是9 C .平均数是8 D .极差是78. 四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠B =90°时,如图1,测得AC =2,当∠B =60°时,如图2,AC =( )A . 2B .2C . 6D .2 29. 已知正比例函数y =kx (k <0)的图象上两点A (x 1,y 1)、B (x 2,y 2),且x 1<x 2,则下列不等式中恒成立的是( )A .y 1+y 2>0B .y 1+y 2<0C .y 1−y 2>0D .y 1−y 2<010.如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O ,设AB =a ,CG =b (a >b ).下列结论:①△BCG ≌△DCE ;②BG ⊥DE ;③DG GC = GO CE;④(a −b )2•S △EFO =b 2•S △DGO .其中结论正确的个数是( )A . 4个B .3个C .2个D . 1个第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分。

2014广州中考数学试题

2014广州中考数学试题

##市20##中考数学试卷一、选择题〔共10小题,每小题3分,满分30分〕 1、a 〔a ≠0〕的相反数是 A . ﹣a B . a 2 C . |a| D . 1/a 2、下列图形中,是中心对称图形的是 A . B . C .D .3、如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tanA= A .3/5 B .4/5 C . 3/4 D .4/34、下列运算正确的是A . 5ab ﹣ab=4B .112a b a b +=+ C . a 6÷a 2=a 4 D . 〔a 2b 〕3=a 5b 3 5、已知⊙O 1和⊙O 2的半径分别为2cm 和3cm,若O 1O 2=7cm,则⊙O 1和⊙O 2的位置关系是 A . 外离 B . 外切 C . 内切 D . 相交 6、计算,结果是A .x ﹣2 B . x +2C .D .7、在一次科技作品制作比赛中,某小组八件作品的成绩〔单位:分〕分别是7,10,9,8, 7,9,9,8,对这组数据,下列说法正确的是 A . 中位数是8 B . 众数是9 C . 平均数是8 D . 极差是78、将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它 形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC= A . B . 2 C . D . 2 9、已知正比例函数y=kx 〔k <0〕的图象上两点A 〔x 1,y 1〕、B 〔x 2,y 2〕,且x 1<x 2,则下 列不等式中恒成立的是 A . y 1+y 2>0 B . y 1+y 2<0 C . y 1﹣y 2>0 D . y 1﹣y 2<0 10、如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE,DE 和 FG 相交于点O,设AB=a,CG=b 〔a >b 〕.下列结论:①△BCG ≌△DCE ;②BG ⊥DE ;③=;④〔a ﹣b 〕2•S △EFO =b 2•S △DGO .其中结论正确的个数是 A . 4个 B . 3个 C . 2个 D . 1个 二、填空题〔共6小题,每小题3分,满分18分〕11、△ABC 中,已知∠A=60°,∠B=80°,则∠C 的外角的度数是.12、已知OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA,PE ⊥OB,垂足分别为点D 、 E,PD=10,则PE 的长度为. 13、代数式有意义时,x 应满足的条件为.14、一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为.〔结果保留π〕 15、已知命题:"如果两个三角形全等,那么这两个三角形的面积相等.〞写成它的逆命题:,该逆命题是命题〔填"真〞或"假〞〕.16、若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1〔x2+x1〕+x22的最小值为.三、解答题〔共9小题,满分102分〕17、解不等式:5x﹣2≤3x,并在数轴上表示解集.18、如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.19、已知多项式A=〔x+2〕2+〔1﹣x〕〔2+x〕﹣3.〔1〕化简多项式A;〔2〕若〔x+1〕2=6,求A的值.20、某校初三〔1〕班50名学生需要参加体育"五选一〞自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球 b 0.32推铅球 5 0.10合计50 1〔1〕求a,b的值;〔2〕若将各自选项目的人数所占比例绘制成扇形统计图,求"一分钟跳绳〞对应扇形的圆心角的度数;〔3〕在选报"推铅球〞的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中治多有一名女生的概率.21、已知一次函数y=kx﹣6的图象与反比例函数y=﹣的图象交于A、B两点,点A的横坐标为2.〔1〕求k的值和点A的坐标;〔2〕判断点B所在象限,并说明理由.22、从##到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.〔1〕求普通列车的行驶路程;〔2〕若高铁的平均速度〔千米/时〕是普通列车平均速度〔千米/时〕的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23、如图,△ABC中,AB=AC=4,cosC=.〔1〕动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E〔保留作图痕迹,不写作法〕;〔2〕综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.24、已知平面直角坐标系中两定点A〔﹣1,0〕、B〔4,0〕,抛物线y=ax2+bx﹣2〔a≠0〕过点A,B,顶点为C,点P〔m,n〕〔n<0〕为抛物线上一点.〔1〕求抛物线的解析式和顶点C的坐标;〔2〕当∠APB 为钝角时,求m 的取值X 围;〔3〕若m >3/2,当∠APB 为直角时,将该抛物线向左或向右平移t 〔0<t <5/2〕个单位,点C 、 P 平移后对应的点分别记为C ′、P ′,是否存在t,使得首位依次连接A 、B 、P ′、C ′所构成的多边形的周长最短?若存在,求t 的值并说明抛物线平移的方向;若不存在, 请说明理由.25、如图,梯形ABCD 中,AB ∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E 为线段CD上一动点〔不与点C 重合〕,△BCE 关于BE 的轴对称图形为△BFE,连接CF .设CE=x, △BCF 的面积为S 1,△CEF 的面积为S 2.〔1〕当点F 落在梯形ABCD 的中位线上时,求x 的值; 〔2〕试用x 表示,并写出x 的取值X 围;〔3〕当△BFE 的外接圆与AD 相切时,求的值.2014##中考参考答案1-5 ADDCA 6-10 BBACB 11、140 12、10 13、1x ≠± 14、24π 15、如果两个三角形的面积相等,那么这两个三角形全等 假16、5/4 17、解:523x x -≤数轴如图:18、证明:四边形ABCD 是平行四边形,∴在AOE ∆和COF ∆中, ∴AOE ∆≌COF ∆<ASA >19、解:〔1〕原式2244223A x x x x x =++++---33x =+〔2〕2(1)6x +=16x ∴+=± ∴当161x =-时,333(61)336A x =+=-+=当261x =--时,333(61)336A x =+=--+=- 20、解:〔1〕120.2450a ==500.3216b =⨯= 〔2〕一分钟跳绳对应扇形的圆心角的度数为:0.16360=57.6⨯︒︒〔3〕∵依题意设3名男生分别为A 、B 、C ;2名女生为D 、E 画树状图得:∴从5名学生中随机选取2人共有20种可能,其中至多有1名女生的情况有18种可能,∴189=2010P=(至多有一名女生的概率)21、解:〔1〕当2x=时,代入反比例函数中,y k=-,所以点A坐标为(2,)k-把A的坐标代入一次函数6y kx=-中,解得2k=,所以点A的坐标为(2,2)-〔2〕一次函数为:26y x=-,反比例函数4yx=-联立两个函数:264y xyx=-⎧⎪⎨=-⎪⎩得到22640x x--=解方程22640x x--=得122,1x x==把1x=代入一次函数中,4y=-,所以点(1,4)B-,在第四象限.22、解〔1〕400 1.3520⨯=〔千米〕答:普通列车的行驶路程为520千米.〔2〕设普通列车平均速度为x千米/小时,则高铁的平均速度为2.5x千米/小时,得:解方程可得:120x=经检验120x=是原分式方程的解答:高铁的平均速度为300千米/小时.23、解:〔1〕如图所示,上图即是所求作.〔2〕如图所示,连接AE,AE是O的直径,90AEC∴∠=︒,即AE BC⊥,又AB AC=∴AE平分BAC∠,〔3〕如图所示,作DF BC⊥于点F,连接CD,则90ADC∠=︒AB AC=,ABC ACB∴∠=∠在Rt ABE ∆中,cos cos BE ABC ACB AB ∠=∠=在Rt BCD ∆中,cos BD DBC BC ∠=24、解:<1>代入()10A ,-,()40B ,二次函数:22y ax bx =+-得: 0201642a b a b =--⎧⎨=+-⎩, 解得:1232a b ⎧=⎪⎪⎨⎪=-⎪⎩ ∴抛物线解析式为:213222y x x =--.对称轴为直线322b x a =-=,代入213222y x x =--则顶点32528C ,⎛⎫- ⎪⎝⎭. <2>如图所示,设抛物线与y 轴交点D ,连接AD,BD ∵()()()104002A ,,B ,,D ,--由勾股定理得:22125AD =+=, 224225BD =+=,145AB =+= ∴222AD BD AB +=,∴ABD ∆为直角三角形,90ADB ∠=︒. 由图可得:当10m -<<时,APB ∠为钝角.∵抛物线关于轴对称32x =对称,∴D 的对称点'D 的坐标为:()32,-由图可得:当34m <<时,APB ∠为钝角.综上所述:当10m -<<或34m <<时,APB ∠为钝角. 〔3〕线段AB 和C P ''的长是定值,∴要使四边形ABP C ''的周长最短,只要AC BP ''+最短.如果将C P ''向右平移,显然有AC BP AC BP ''+>+,∴不存在某个位置,使四边形ABP C ''的周长最短,应将线段C P ''向左平移.由题知(32)P -,, 设线段C P ''向左移了t 个单位,则P '为(3,2)t --,C '为325(,)28t --, 作C '关于x 轴的对称点C ''325(,)28t -,此时AC AC '''=,再作平行四边形ABB C '''. 5AB =,B '∴为1325(,)28t -,此时AC BB '''=,连接BP ',B P ''交x 轴于M .AC BP BB BP B P ''''''∴+=+≥,∴AC BP ''+最小值B P ''.此时,B 在直线B P ''上,设直线B P ''的解析式(0)y kx b k =+≠,代入B P '',得2(3)1513()82k t b k t b ①②又B 在B P ''上∴04kb ③,联立①②③,得1541t25、解:<1>如图所示: 〔1〕方法一:MN 是梯形的中位线,∵CB 4BCE =,关于BE 轴对称图形为BFE∵MN 是中位线,即N 是CB 的中点 在直角三角形FNB 中,所以0NBF 6∠=︒,所以0CBE FBE 3∠=∠=︒ 在直角三角形CBE 中,∴433x =方法二:MN 是梯形的中位线,∵CB 4BCE =,关于BE 轴对称图形为BFE ∵MN 是中位线,即N 是CB 的中点 在直角三角形FNB 中, 过E 作EG MN ⊥,如图所示23GF x =, 2GE =在直角三角形EGF 中,所以()22223x x=+解得433x =〔2〕如图,FC 与EB 相交于点O∵BCE 关于BE 轴对称图形为BFE ∴EOC EOF,BOC BOF ≅≅∴()22210516BCO ECOs s EC x x s sCB ⎛⎫===<≤ ⎪⎝⎭〔3〕如图所示:设BFE 外接圆G 的半径是r ,BE 为直径,切点为Q ,过A 作AJ CD ⊥,与MG 交于点P ,过G 作GK DC ⊥∵MG 是四边形DABE 的中位线∴()12MG DE AB =+∴1422x MG ,MA AD =-===在RT EKG 中,由〔1〕〔2〕可得:2641760x x +-=解得132x =--〔舍去〕232,x =-+。

2014年广东省广州市中考数学试卷(答案)

2014年广东省广州市中考数学试卷(答案)

参考答案一、选择题1.A2.D3.D4.C5.A6.B7.B8.A9.C 10.B二、填空题11.14012.1013.x≠±114.24π15.如果两个三角形的面积相等,那么这两个三角形全等;假16.三、解答题17.解:5x-2≤3x,移项,得5x-3x≤2,合并同类项,得2x≤2,系数化成1,x≤1,在数轴上表示为:.18.证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA).19.解:(1)A=(x+2)2+(1-x)(2+x)-3=x2+4x+4+2+x-2x-x2-3=3x+3;(2)∵(x+1)2=6,∴x+1=±,∴A=3x+3=3(x+1)=±3.∴A=±3.20.解:(1)根据题意得:a=1-(0.18+0.16+0.32+0.10)=0.24;b=×0.32=16;(2)作出扇形统计图,如图所示:根据题意得:360°×0.16=57.6°;(3)男生编号为A、B、C,女生编号为D、E,由枚举法可得:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10种,其中DE为女女组合,∴抽取的两名学生中至多有一名女生的概率为:.21.解:(1)把x=2代入y=-,得:y=-k,把A(2,-k)代入y=kx-6,得:2k-6=k,解得k=2,所以一次函数与反比例函数的解析式分别为y=2x-6,y=-,则A点坐标为(2,-2);(2)B点在第四象限.理由如下:一次函数与反比例函数的解析式分别为y=2x-6,y=-,解方程组,得:或,所以B点坐标为(1,-4),所以B点在第四象限.22.解:(1)根据题意得:400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:-=3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.23.解:(1)如图(2)如图,连接AE,∵AC为直径,∴∠AEC=90°,∵AB=AC,∴∠DAE=∠CAE,∴=;(3)如图,连接AE,DE,作DM⊥BC交BC于点M,∵AC为直径,∴∠AEC=90°,∵AB=AC cosC=.∴EC=BE=4,∴BC=8,∵点A、D、E、C共圆∴∠ADE+∠C=180°,又∵∠ADE+∠BDE=180°,∴∠BDE=∠C,∴△BDE∽△BCA,∴=,即BD•BA=BE•BC∴BD×4=4×8∴BD=,∵∠B=∠C∴cos∠C=cos∠B=,=∴BM =,∴DM=.24.解:(1)∵抛物线y=ax2+bx-2(a≠0)过点A,B,∴,解得:,∴抛物线的解析式为:y =x2-x-2;∵y =x2-x-2=(x-)2-,∴C (,-).(2)如图1,以AB为直径作圆M,则抛物线在圆内的部分,能使∠APB为钝角,∴M(,0),⊙M的半径=.∵P是抛物线与y轴的交点,∴OP=2,5,2MP∴∴P在⊙M上,∴P的对称点(3,-2),∴当-1<m<0或3<m<4时,∠APB为钝角.(3)存在;抛物线向左或向右平移,因为AB、P′C′是定值,所以A、B、P′、C′所构成的多边形的周长最短,只要AC′+BP′最小;第一种情况:抛物线向右平移,AC′+BP′>AC+BP,第二种情况:向左平移,如图2所示,由(2)可知P(3,-2),又∵C(,-)∴C'(-t,-),P'(3-t,-2),∵AB=5,∴P″(-2-t,-2),要使AC′+BP′最短,只要AC′+AP″最短即可,点C′关于x轴的对称点C″(-t,),设直线P″C″的解析式为:y=kx+b,,解得∴直线y=x+t+,点A在直线上,∴-+t+=0∴t=.故将抛物线向左平移个单位连接A、B、P′、C′所构成的多边形的周长最短.25.解:(1)当点F落在梯形ABCD中位线上时,如答图1,过点F作出梯形中位线MN,分别交AD、BC于点M、N.由题意,可知ABCD为直角梯形,则MN⊥BC,且BN=CN =B C.由轴对称性质,可知BF=BC,∴BN =BF,∴∠BFN=30°,∴∠FBC=60°,∴△BFC为等边三角形.∴CF=BC=4,∠FCB=60°,∴∠ECF=30°.设BE、CF交于点G,由轴对称性质可知CG =CF=2,CF⊥BE.在Rt△CEG中,cos30CGx CE===︒∴当点F落在梯形ABCD的中位线上时,x 的值为.(2)如答图2,由轴对称性质,可知BE⊥CF.∵∠GEC+∠ECG=90°,∠GEC+∠CBE=90°,∴∠GEC=∠CBE,又∵∠CGE=∠ECB=90°,∴Rt△BCE∽Rt△CGE,∴,∴CE2=EG•BE①同理可得:BC2=BG•BE②①÷②得:==.22112.162CEFBCFCF EGS S EG x S S BG CF BG ∆∆∴====∴=(0<x ≤5).(3)当△BFE 的外接圆与AD 相切时,依题意画出图形,如答图3所示. 设圆心为O ,半径为r ,则r =BE =.设切点为P ,连接OP ,则OP ⊥AD ,OP =r =.过点O 作梯形中位线MN ,分别交AD 、BC 于点M 、N ,则OM 为梯形ABED 的中位线,∴OM =(AB +DE )=(3+5-x)=(8-x ). 过点A 作AH ⊥CD 于点H ,则四边形ABCH 为矩形, ∴AH =BC =4,CH =AB =3,∴DH =CD -CH =2. 在Rt △ADH 中,由勾股定理得:AD ===2.∵MN ∥CD ,∴∠ADH =∠OMP ,又∵∠AHD =∠OPM =90°, ∴△OMP ∽△ADH ,1(8)2,,4x OM OP AD AH -∴== 化简得:16-2x =,两边平方后,整理得:x 2+64x -176=0, 解得:x 1=-32+20,x 2=-32-20(舍去) ∵0<-32+20≤5∴x =-32+20符合题意,22113916S x S ∴==-。

2014年广东省中考数学试卷及答案详解

2014年广东省中考数学试卷及答案详解

2014年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)(2014•广东)在 1 , 0 , 2 ,3-这四个数中, 最大的数是()A . 1B . 0C . 2D .3-2.(3分)(2014•广东)在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .3.(3分)(2014•广东)计算32a a -的结果正确的是( )A .1B .aC .a -D .5a -4.(3分)(2014•广东)把39x x -分解因式,结果正确的是( )A .2(9)x x -B .2(3)x x -C .2(3)x x +D .(3)(3)x x x +-5.(3分)(2014•广东)一个多边形的内角和是900︒,这个多边形的边数是()A .10B .9C .8D .76.(3分)(2014•广东)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A .47B .37C .34D .137.(3分)(2014•广东)如图,ABCD 中,下列说法一定正确的是( )A .AC BD =B .AC BD ⊥ C .AB CD = D .AB BC =8.(3分)(2014•广东)关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A .94m >B .94m <C .94m =D .94m <- 9.(3分)(2014•广东)一个等腰三角形的两边长分别是3和7,则它的周长为()A .17B .15C .13D .13或1710.(3分)(2014•广东)二次函数2(0)y ax bx c a =++≠的大致图象如图,关于该二次函数,下列说法错误的是( )A .函数有最小值B .对称轴是直线12x =C .当12x <,y 随x 的增大而减小D .当12x -<<时,0y >二、填空题(本大题6小题,每小题4分,共24分)11.(4分)(2014•广东)计算:32x x ÷= .12.(4分)(2014•广东)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为 .13.(4分)(2014•广东)如图,在ABC ∆中,D ,E 分别是边AB ,AC 的中点,若6BC =,则DE = .14.(4分)(2014•广东)如图, 在O 中, 已知半径为 5 ,弦AB 的长为 8 ,那么圆心O 到AB 的距离为 .15.(4分)(2014•广东)不等式组28412x x x <⎧⎨->+⎩的解集是 .16.(4分)(2014•广东)如图,ABC ∆绕点A 顺时针旋转45︒得到AB C ∆'',若90BAC ∠=︒,AB AC ==,则图中阴影部分的面积等于 .三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)(2014011|4|(1)()2--+--.18.(6分)(2014•广东)先化简,再求值:221()(1)11x x x +--+,其中x = 19.(6分)(2014•广东)如图, 点D 在ABC ∆的AB 边上, 且ACD A ∠=∠.(1) 作BDC ∠的平分线DE ,交BC 于点E (用 尺规作图法, 保留作图痕迹,不要求写作法) ;(2) 在 (1) 的条件下, 判断直线DE 与直线AC 的位置关系 (不 要求证明) .四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)(2014•广东)如图, 某数学兴趣小组想测量一棵树CD 的高度, 他们先在点A 处测得树顶C 的仰角为30︒,然后沿AD 方向前行10m ,到达B 点, 在B 处测得树顶C 的仰角高度为60(A ︒、B 、D 三点在同一直线上) . 请你根据他们测量数据计算这棵树CD 的高度 (结 果精确到0.1)m . (参 考1.414≈ 1.732)≈21.(7分)(2014•广东)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率)-==利润售价进价进价进价. (2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?22.(7分)(2014•广东)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有 名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014•广东)如图,已知1(4,)2A -,(1,2)B -是一次函数y kx b =+与反比例函数(0,0)m y m x x=≠<图象的两个交点,AC x ⊥轴于C ,BD y ⊥轴于D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若PCA ∆和PDB ∆面积相等,求点P 坐标.24.(9分)(2014•广东)如图,O 是ABC ∆的外接圆,AC 是直径,过点O 作OD AB ⊥于点D ,延长DO 交O 于点P ,过点P 作PE AC ⊥于点E ,作射线DE 交BC 的延长线于F 点,连接PF .(1)若60POC ∠=︒,12AC =,求劣弧PC 的长;(结果保留)π(2)求证:OD OE =;(3)求证:PF 是O 的切线.25.(9分)(2014•广东)如图,在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =.点P 从点B 出发,在线段BC 上以每秒3cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC 出发,以每秒2cm 的速度沿DA 方向匀速平移,分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时,点P 与直线m 同时停止运动,设运动时间为t 秒(0)t >.(1)当2t =时,连接DE 、DF ,求证:四边形AEDF 为菱形;(2)在整个运动过程中,所形成的PEF ∆的面积存在最大值,当PEF ∆的面积最大时,求线段BP 的长;(3)是否存在某一时刻t ,使PEF ∆为直角三角形?若存在,请求出此时刻t 的值;若不存在,请说明理由.2014年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在 1 , 0 , 2 ,3-这四个数中, 最大的数是( )A . 1B . 0C . 2D .3-【考点】18 :有理数大小比较【分析】根据正数大于 0 , 0 大于负数, 可得答案 .【解答】解:3012-<<<,故选:C .【点评】本题考查了有理数比较大小, 正数大于 0 , 0 大于负数是解题关键 .2.(3分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【考点】3P :轴对称图形;5R :中心对称图形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、是轴对称图形,不是中心对称图形.故错误;B 、不是轴对称图形,也不是中心对称图形.故错误;C 、是轴对称图形,也是中心对称图形.故正确;D 、不是轴对称图形,也不是中心对称图形.故错误.故选:C .【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)计算32a a -的结果正确的是( )A .1B .aC .a -D .5a -【考点】35:合并同类项【分析】根据合并同类项的法则,可得答案.【解答】解:原式(32)a a=-=,故选:B.【点评】本题考查了合并同类项,系数相加字母部分不变是解题关键.4.(3分)把39-分解因式,结果正确的是()x xA.2x x-C.2(3)x x+D.(3)(3)(3)x x-B.2(9)+-x x x【考点】55:提公因式法与公式法的综合运用【专题】44:因式分解【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:39-,x x2(9)=-,x xx x x=+-.(3)(3)故选:D.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.5.(3分)一个多边形的内角和是900︒,这个多边形的边数是() A.10B.9C.8D.7L:多边形内角与外角【考点】3【分析】根据多边形的内角和公式(2)180n-︒,列式求解即可.【解答】解:设这个多边形是n边形,根据题意得,n-︒=︒,(2)180900n=.解得7故选:D.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.6.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A .47B .37C .34D .13【考点】4X :概率公式【分析】直接根据概率公式求解即可.【解答】解:装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率37=. 故选:B .【点评】本题考查的是概率公式,熟知随机事件A 的概率P (A )=事件A 可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.7.(3分)如图,ABCD 中,下列说法一定正确的是( )A .AC BD =B .AC BD ⊥ C .AB CD = D .AB BC =【考点】5L :平行四边形的性质【分析】根据平行四边形的性质分别判断各选项即可.【解答】解:A 、AC BD ≠,故A 选项错误;B 、AC 不垂直于BD ,故B 选项错误;C 、AB CD =,利用平行四边形的对边相等,故C 选项正确;D 、AB BC ≠,故D 选项错误;故选:C .【点评】此题主要考查了平行四边形的性质,正确把握其性质是解题关键.8.(3分)关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A .94m >B .94m <C .94m =D .94m <- 【考点】AA :根的判别式【专题】45:判别式法【分析】先根据判别式的意义得到△2(3)40m =-->,然后解不等式即可.【解答】解:根据题意得△2(3)40m =-->, 解得94m <. 故选:B .【点评】本题考查了一元二次方程20(0)ax bx c a ++=≠的根的判别式△24b ac =-:当△0>,方程有两个不相等的实数根;当△0=,方程有两个相等的实数根;当△0<,方程没有实数根.9.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为( )A .17B .15C .13D .13或17【考点】6K :三角形三边关系;KH :等腰三角形的性质【专题】32:分类讨论【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,337+<不能构成三角形; ②当等腰三角形的腰为7,底为3时,周长为37717++=.故这个等腰三角形的周长是17.故选:A .【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.10.(3分)二次函数2(0)y ax bx c a =++≠的大致图象如图,关于该二次函数,下列说法错误的是( )A .函数有最小值B .对称轴是直线12x =C .当12x <,y 随x 的增大而减小D .当12x -<<时,0y >【考点】3H :二次函数的性质【专题】16:压轴题;31:数形结合【分析】根据抛物线的开口方向,利用二次函数的性质判断A ;根据图形直接判断B ;根据对称轴结合开口方向得出函数的增减性,进而判断C ;根据图象,当12x -<<时,抛物线落在x 轴的下方,则0y <,从而判断D .【解答】解:A 、由抛物线的开口向上,可知0a >,函数有最小值,正确,故A选项不符合题意;B 、由图象可知,对称轴为12x =,正确,故B 选项不符合题意; C 、因为0a >,所以,当12x <时,y 随x 的增大而减小,正确,故C 选项不符合题意;D 、由图象可知,当12x -<<时,0y <,错误,故D 选项符合题意.故选:D .【点评】本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)计算:32x x ÷= 22x .【考点】4H :整式的除法【专题】11:计算题【分析】直接利用整式的除法运算法则求出即可.【解答】解:3222x x x ÷=.故答案为:22x .【点评】此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.12.(4分)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000000用科学记数法表示为 86.1810⨯ .【考点】1I :科学记数法-表示较大的数【专题】1:常规题型【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:将618 000 000用科学记数法表示为:86.1810⨯.故答案为:86.1810⨯.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.(4分)如图,在ABC ∆中,D ,E 分别是边AB ,AC 的中点,若6BC =,则DE = 3 .【考点】KX :三角形中位线定理【分析】由D 、E 分别是AB 、AC 的中点可知,DE 是ABC ∆的中位线,利用三角形中位线定理可求出DE .【解答】解:D 、E 是AB 、AC 中点,DE ∴为ABC ∆的中位线,132ED BC ∴==. 故答案为:3.【点评】本题用到的知识点为:三角形的中位线等于三角形第三边的一半.14.(4分)如图, 在O 中, 已知半径为 5 ,弦AB 的长为 8 ,那么圆心O到AB 的距离为 3 .【考点】KQ :勾股定理;2M :垂径定理【分析】作OC AB ⊥于C ,连接OA ,根据垂径定理得到142AC BC AB ===,然后在Rt AOC ∆中利用勾股定理计算OC 即可 .【解答】解: 作OC AB ⊥于C ,连结OA ,如图,OC AB ⊥,118422AC BC AB ∴===⨯=, 在Rt AOC ∆中,5OA =,3OC ∴=,即圆心O 到AB 的距离为 3 .故答案为: 3 .【点评】本题考查了垂径定理: 平分弦的直径平分这条弦, 并且平分弦所对的两条弧 . 也考查了勾股定理 .15.(4分)不等式组28412x x x <⎧⎨->+⎩的解集是 14x << . 【考点】CB :解一元一次不等式组【专题】11:计算题【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:28412x x x <⎧⎨->+⎩①②,由①得:4x <;由②得:1x >,则不等式组的解集为14x <<.故答案为:14x <<.【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.(4分)如图,ABC ∆绕点A 顺时针旋转45︒得到AB C ∆'',若90BAC ∠=︒,AB AC ==1 .【考点】KW :等腰直角三角形;2R :旋转的性质【专题】16:压轴题【分析】根据题意结合旋转的性质以及等腰直角三角形的性质得出112A D B C ==,sin 451AF FC AC AC ='=︒'='=,进而求出阴影部分的面积.【解答】解:ABC ∆绕点A 顺时针旋转45︒得到AB C ∆'',90BAC ∠=︒,AB AC ==,2BC ∴=,45C B CAC C ∠=∠=∠'=∠'=︒,AD BC ∴⊥,B C AB ''⊥,112AD BC ∴==,sin 4512AF FC AC AC ='=︒'='=,∴图中阴影部分的面积等于:211111)122AFC DEC S S ∆'∆'-=⨯⨯-⨯=.1.【点评】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD ,AF ,DC '的长是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6011|4|(1)()2--+--. 【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂【专题】11 :计算题【分析】本题涉及零指数幂、 负指数幂、 二次根式化简 3 个考点 . 在计算时, 需要针对每个考点分别进行计算, 然后根据实数的运算法则求得计算结果 .【解答】解: 原式3412=++-6=.【点评】本题主要考查了实数的综合运算能力, 是各地中考题中常见的计算题型 . 解决此类题目的关键是熟练掌握负整数指数幂、 零指数幂、 二次根式、 绝对值等考点的运算 .18.(6分)先化简,再求值:221()(1)11x x x +--+,其中x = 【考点】6D :分式的化简求值【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.【解答】解:原式22(1)(1)(1)(1)(1)x x x x x ++-=-+- 221x x =++-31x =+,当13x =时,原式= 【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)如图, 点D 在ABC ∆的AB 边上, 且ACD A ∠=∠.(1) 作BDC ∠的平分线DE ,交BC 于点E (用 尺规作图法, 保留作图痕迹,不要求写作法) ;(2) 在 (1) 的条件下, 判断直线DE 与直线AC 的位置关系 (不 要求证明) .【考点】9J :平行线的判定;2N :作图-基本作图【专题】13 :作图题【分析】(1) 根据角平分线基本作图的作法作图即可;(2) 根据角平分线的性质可得12BDE BDC ∠=∠,根据三角形内角与外角的性质可得12A BDC ∠=∠,再根据同位角相等两直线平行可得结论 . 【解答】解: (1) 如图所示:(2)//DE AC DE 平分BDC ∠,12BDE BDC ∴∠=∠, ACD A ∠=∠,ACD A BDC ∠+∠=∠,12A BDC ∴∠=∠, A BDE ∴∠=∠,//DE AC ∴.【点评】此题主要考查了基本作图, 以及平行线的判定, 关键是正确画出图形,掌握同位角相等两直线平行 .四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)如图, 某数学兴趣小组想测量一棵树CD 的高度, 他们先在点A 处测得树顶C 的仰角为30︒,然后沿AD 方向前行10m ,到达B 点, 在B 处测得树顶C 的仰角高度为60(A ︒、B 、D 三点在同一直线上) . 请你根据他们测量数据计算这棵树CD 的高度 (结 果精确到0.1)m . (参 考数据:1.414≈ 1.732)≈【考点】TA :解直角三角形的应用-仰角俯角问题【专题】121 :几何图形问题【分析】首先利用三角形的外角的性质求得ACB ∠的度数, 得到BC 的长度, 然后在直角BDC ∆中, 利用三角函数即可求解 .【解答】解:CBD A ACB ∠=∠+∠,603030ACB CBD A ∴∠=∠-∠=︒-︒=︒,A ACB ∴∠=∠,10BC AB ∴==(米).在直角BCD ∆中,sin 105 1.7328.7CD BC CBD =∠==≈⨯=(米).答: 这棵树CD 的高度为 8.7 米 .【点评】本题考查仰角的定义, 要求学生能借助仰角构造直角三角形并解直角三角形 .21.(7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率)-==利润售价进价进价进价. (2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【考点】7B :分式方程的应用【专题】124:销售问题【分析】(1)利用利润率-==利润售价进价进价进价这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.【解答】解:(1)设这款空调每台的进价为x 元,根据题意得:16350.89%x x ⨯-=, 解得:1200x =,经检验:1200x =是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:10012009%10800⨯⨯=元.【点评】本题考查了分式方程的应用,解题的关键是了解利润率的求法.22.(7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?V:用样本估计总体;VB:扇形统计图【考点】VC:条形统计图;5【专题】27:图表型【分析】(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.÷=(名);【解答】解:(1)这次被调查的同学共有40040%1000故答案为:1000;---=,(2)剩少量的人数是;1000400250150200补图如下;(3)2001800036001000⨯=(人). 答:该校18000名学生一餐浪费的食物可供3600人食用一餐.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知1(4,)2A -,(1,2)B -是一次函数y kx b =+与反比例函数(0,0)m y m x x=≠<图象的两个交点,AC x ⊥轴于C ,BD y ⊥轴于D . (1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若PCA ∆和PDB ∆面积相等,求点P 坐标.【考点】8G :反比例函数与一次函数的交点问题【专题】153:代数几何综合题【分析】(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.【解答】解:(1)由图象得一次函数图象在上的部分,41x -<<-,当41x -<<-时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y kx b =+,y kx b =+的图象过点1(4,)2-,(1,2)-,则 1422k b k b ⎧-+=⎪⎨⎪-+=⎩, 解得1252k b ⎧=⎪⎪⎨⎪=⎪⎩ 一次函数的解析式为1522y x =+, 反比例函数m y x=图象过点(1,2)-, 122m =-⨯=-;(3)连接PC 、PD ,如图, 设15(,)22P x x + 由PCA ∆和PDB ∆面积相等得11115(4)|1|(2)22222x x ⨯⨯+=⨯-⨯--, 52x =-,155224y x =+=, P ∴点坐标是5(2-,5)4.【点评】本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.24.(9分)如图,O 是ABC ∆的外接圆,AC 是直径,过点O 作OD AB ⊥于点D ,延长DO 交O 于点P ,过点P 作PE AC ⊥于点E ,作射线DE 交BC 的延长线于F 点,连接PF .(1)若60POC ∠=︒,12AC =,求劣弧PC 的长;(结果保留)π(2)求证:OD OE =;(3)求证:PF 是O 的切线.【考点】MD :切线的判定;MN :弧长的计算【专题】152:几何综合题;16:压轴题【分析】(1)根据弧长计算公式180n r l π=进行计算即可; (2)证明POE ADO ∆≅∆可得DO EO =;(3)方法1、连接AP ,PC ,证出PC 为EF 的中垂线,再利用CEP CAP ∆∆∽找出角的关系求解.方法2、先计算判断出PD BF =,进而判断出四边形PDBF 是矩形即可得出结论; 方法3、利用三个内角是90度的四边形是矩形判断出四边形PDBF 是矩形即可得出结论.【解答】(1)解:12AC =,6CO ∴=, ∴6062180PC ππ==; 答:劣弧PC 的长为:2π.(2)证明:PE AC ⊥,OD AB ⊥,90PEA ∠=︒,90ADO ∠=︒在ADO ∆和PEO ∆中,ADO PEOAOD POE OA OP∠=∠⎧⎪∠=∠⎨⎪=⎩,()POE AOD AAS ∴∆≅∆,OD EO ∴=;(3)证明:法一:如图,连接AP ,PC ,OA OP =,OAP OPA ∴∠=∠,由(2)得OD EO =,ODE OED ∴∠=∠,又AOP EOD ∠=∠,OPA ODE ∴∠=∠,//AP DF ∴, AC 是直径,90APC ∴∠=︒,90PQE ∴∠=︒PC EF ∴⊥,又//DP BF ,ODE EFC ∴∠=∠,OED CEF ∠=∠,CEF EFC ∴∠=∠,CE CF ∴=,PC ∴为EF 的中垂线,EPQ QPF ∴∠=∠,CEP CAP ∆∆∽EPQ EAP ∴∠=∠,QPF EAP ∴∠=∠,QPF OPA ∴∠=∠,90OPA OPC ∠+∠=︒,90QPF OPC ∴∠+∠=︒,OP PF ∴⊥,PF ∴是O 的切线.法二:设O 的半径为r .OD AB ⊥,90ABC ∠=︒,//OD BF ∴,ODE CFE ∴∆∆∽又OD OE =,12FC EC r OE r OD r BC ∴==-=-=- 12BF BC FC r BC ∴=+=+ 12PD r OD r BC =+=+ PD BF ∴=又//PD BF ,且90DBF ∠=︒,∴四边形DBFP 是矩形90OPF ∴∠=︒OP PF ∴⊥,PF ∴是O 的切线.方法3、AC 为直径,90ABC ∴∠=︒又90ADO ∠=︒,//PD BF ∴PCF OPC ∴∠=∠OP OC =,OCP OPC ∴∠=∠OCP PCF ∴∠=∠,即ECP FCP ∠=∠//PD BF ,ODE EFC ∴∠=∠OD OE =,ODE OED ∴∠=∠又OED FEC ∠=∠,FEC EFC ∴∠=∠EC FC ∴=在PEC ∆与PFC ∆中PC PCECP FCP EC FC=⎧⎪∠=∠⎨⎪=⎩()PEC PFC SAS ∴∆≅∆90PFC PEC ∴∠=∠=︒∴四边形PDBF 为矩形90DPF ∠=︒,即PF 为圆的切线.【点评】本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系.25.(9分)如图,在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =.点P 从点B 出发,在线段BC 上以每秒3cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC 出发,以每秒2cm 的速度沿DA 方向匀速平移,分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时,点P 与直线m 同时停止运动,设运动时间为t 秒(0)t >.(1)当2t =时,连接DE 、DF ,求证:四边形AEDF 为菱形;(2)在整个运动过程中,所形成的PEF ∆的面积存在最大值,当PEF ∆的面积最大时,求线段BP 的长;(3)是否存在某一时刻t ,使PEF ∆为直角三角形?若存在,请求出此时刻t 的值;若不存在,请说明理由.【考点】SO :相似形综合题【专题】152:几何综合题;16:压轴题;25:动点型【分析】(1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出PEF ∆的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解.【解答】(1)证明:当2t =时,4DH AH ==,则H 为AD 的中点,如答图1所示.又EF AD ⊥,EF ∴为AD 的垂直平分线,AE DE ∴=,AF DF =.AB AC =,AD BC ⊥于点D ,AD BC ∴⊥,B C ∠=∠.//EF BC ∴,AEF B ∴∠=∠,AFE C ∠=∠,AEF AFE ∴∠=∠,AE AF ∴=,AE AF DE DF ∴===,即四边形AEDF 为菱形.(2)解:如答图2所示,由(1)知//EF BC ,AEF ABC ∴∆∆∽,EF AH BC AD ∴=,即82108EF t -=,解得:5102EF t =-. 221155510(10)210(2)10(0)222223PEF S EF DH t t t t t t ∆==-=-+=--+<<, ∴当2t =秒时,PEF S ∆存在最大值,最大值为210cm ,此时36BP t cm ==.(3)解:存在.理由如下:①若点E 为直角顶点,如答图3①所示,此时//PE AD ,2PE DH t ==,3BP t =.//PE AD ,PE BP AD BD ∴=,即2385t t =,此比例式不成立,故此种情形不存在; ②若点F 为直角顶点,如答图3②所示,此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-.//PF AD ,PF CP AD CD ∴=,即210385t t -=,解得4017t =;③若点P 为直角顶点,如答图3③所示.过点E 作EM BC ⊥于点M ,过点F 作FN BC ⊥于点N ,则2EM F N D H t ===,////EM FN AD .//EM AD ,EM BM AD BD∴=,即285t BM =,解得54BM t =, 57344PM BP BM t t t ∴=-=-=. 在Rt EMP ∆中,由勾股定理得:2222227113(2)()416PE EM PM t t t =+=+=. //FN AD ,FN CN AD CD ∴=,即285t CN =,解得54CN t =, 5171031044PN BC BP CN t t t ∴=--=--=-. 在Rt FNP ∆中,由勾股定理得:22222217353(2)(10)85100416PF FN PN t t t t =+=+-=-+. 在Rt PEF ∆中,由勾股定理得:222EF PE PF =+, 即:2225113353(10)()(85100)21616t t t t -=+-+ 化简得:21833508t t -=, 解得:280183t =或0t =(舍去) 280183t ∴=. 综上所述,当4017t =秒或280183t =秒时,PEF ∆为直角三角形. 【点评】本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.。

2014年广州市中考数学试题及答案

2014年广州市中考数学试题及答案

2014年市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔走宝自已的考生号、;走宝考场室号、座位号,再用2B 铅笔把对应这两个的标号涂黑。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. (0)a a ≠的相反数是 ( )A .a -B .2aC .||aD .1a2.下列图形中,是中心对称图形的是 ( )A .B .C .D .3.如图1,在边长为1的小正方形组成的网格中,ABC ∆的三个顶点均在格点上,则tan A =( )A .35B .45C .34D .434.下列运算正确的是( )A .54ab ab -=B .112a b a b+=+ C .624aa a ÷=D .2353()ab a b =5.已知1O 和2O 的半径分别为2cm 和3cm ,若127cm O O =,则1O 和2O 的位置关系是( )A . 外离B .外切C .切D .相交6.计算242x x --,结果是 ( )A .2x -B .2x +C .42x - D .2x x+7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说确的是 ( )A . 中位数是8B . 众数是9C . 平均数是8D . 极差是78.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变.当90B ∠=︒时,如图2-①,测得2AC =.当60B ∠=︒时,如图2-②,AC =( )A B .2C D .图2-①图2-②9.已知正比例函数(0)y kx k =<的图象上两点11(,)A x y 、22(,)B x y ,且12x x <,则下列不等式中恒成立的是( )A .120y y +>B .120y y +<C .120y y ->D .120y y -<10.如图3,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O .设AB a =,()CG b a b =>.下列结论:①BCG DCE ∆≅∆;②BG DE ⊥;③DG GO GC CE=;④22()EFO DGO a b S b S ∆∆-⋅=⋅.其中结论正确的个数是 ( ) A .4个B .3 个C .2个D .1个第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11. ABC ∆中,已知60A ∠=︒,80B ∠=︒,则C ∠的外角..的度数是______︒.12. 已知OC 是AOB ∠的平分线,点P 在OC 上,PD OA ⊥,PEOB ⊥,垂足分别为点D 、E ,10PD =,则PE 的长度为______.13. 代数式11x -有意义时,x 应满足的条件为______. 14. 一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积...为______. (结果保留π)15. 已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题: ,该逆命题是 命题(填“真”或“假”). 16. 若关于x 的方程222320xmx m m +++-=有两个实数根1x 、2x ,则21212()x x x x ++的最小值为______.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解不等式:523x x -≤,并在数轴上表示解集.18.(本小题满分9分) 如图5,ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F ,求证:AOE COF ∆≅∆.19.(本小题满分10分) 已知多项式2(2)(1)(2)3A x x x =++-+-(1)化简多项式A ;(2)若2(1)6x +=,求A 的值.20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a b ,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数; (3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5 名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.21.(本小题满分12分) 已知一次函数6y kx =-的图象与反比例函数2ky x=-的图象交于A B 、两点,点A 的横坐标为2. (1)求k 的值和点A 的坐标;(2)判断点B 所在的象限,并说明理由.22.(本小题满分12分)从到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(本小题满分12分)如图6,ABC ∆中,45AB AC ==,5cos C =.(1)动手操作:利用尺规作以AC 为直径的O ,并标出O 与AB 的交点D ,与BC 的交点E (保留作图痕迹,不写作法); (2)综合应用:在你所作的图中,①求证:DECE =;②求点D 到BC 的距离。

广东省2014年中考数学试卷(含解析)

广东省2014年中考数学试卷(含解析)

2014年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)(2014?广东)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣3考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3<0<1<2,故选:C.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)(2014?广东)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,不是中心对称图形.故此选项错误.故选C.点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)(2014?广东)计算3a﹣2a的结果正确的是()A.1B.a C.﹣a D.﹣5a考点:合并同类项.分析:根据合并同类项的法则,可得答案.解答:解:原式=(3﹣2)a=a,故选:B.点评:本题考查了合并同类项,系数相加字母部分不变是解题关键.4.(3分)(2014?广东)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.5.(3分)(2014?广东)一个多边形的内角和是900°,这个多边形的边数是()A.4B.5C.6D.7考点:多边形内角与外角.分析:根据多边形的外角和公式(n﹣2)?180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)?180°=900°,解得n=7.故选D.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.6.(3分)(2014?广东)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.考点:概率公式.分析:直接根据概率公式求解即可.解答:解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选B.点评:本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.7.(3分)(2014?广东)如图,?ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC考点:平行四边形的性质.分析:根据平行四边形的性质分别判断各选项即可.解答:解:A、AC≠BD,故此选项错误;B、AC不垂直BD,故此选项错误;C、AB=CD,利用平行四边形的对边相等,故此选项正确;D、AB≠BC,故此选项错误;故选:C.点评:此题主要考查了平行四边形的性质,正确把握其性质是解题关键.8.(3分)(2014?广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.考点:根的判别式.专题:计算题.分析:先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.(3分)(2014?广东)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17考点:等腰三角形的性质;三角形三边关系.分析:由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.解答:解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选A.点评:本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.10.(3分)(2014?广东)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0考点:二次函数的性质.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.解答:解:A、由抛物线的开口向下,可知a<0,函数有最小值,正确,故本选项不符合题意;B、由图象可知,对称轴为x=,正确,故本选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故本选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故本选项符合题意.故选D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)(2014?广东)计算2x3÷x=2x2.考点:整式的除法.分析:直接利用整式的除法运算法则求出即可.解答:解:2x3÷x=2x2.故答案为:2x2.点评:此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.12.(4分)(2014?广东)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为 6.18×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将618 000 000用科学记数法表示为: 6.18×108.故答案为: 6.18×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)(2014?广东)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=3.考点:三角形中位线定理.分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.解答:解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.故答案为3.点评:本题用到的知识点为:三角形的中位线等于三角形第三边的一半.14.(4分)(2014?广东)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.考点:垂径定理;勾股定理.分析:作OC⊥AB于C,连结OA,根据垂径定理得到AC=BC=AB=3,然后在Rt△AOC中利用勾股定理计算OC即可.解答:解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.15.(4分)(2014?广东)不等式组的解集是1<x<4.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.解答:解:,由①得:x<4;由②得:x>1,则不等式组的解集为1<x<4.故答案为:1<x<4.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.(4分)(2014?广东)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.考点:旋转的性质.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)(2014?广东)计算:+|﹣4|+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(2014?广东)先化简,再求值:(+)?(x2﹣1),其中x=.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=?(x2﹣1)=2x+2+x﹣1=3x+1,当x=时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(2014?广东)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).考点:作图—基本作图;平行线的判定.分析:(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDE,再根据同位角相等两直线平行可得结论.解答:解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.点评:此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)(2014?广东)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)考点:解直角三角形的应用-仰角俯角问题.分析:首先利用三角形的外角的性质求得∠ABC的度数,得到BC的长度,然后在直角△BDC 中,利用三角函数即可求解.解答:解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC?sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.21.(7分)(2014?广东)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?考点:分式方程的应用.分析:(1)利用利润率==这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.解答:解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.点评:本题考查了分式方程的应用,解题的关键是了解利润率的求法.22.(7分)(2014?广东)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.解答:解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014?广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.解答:解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得(x+4)=|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).点评:本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.24.(9分)(2014?广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB 于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.考点:切线的判定;弧长的计算.分析:(1)根据弧长计算公式l=进行计算即可;(2)证明△POE≌△ADO可得DO=EO;(3)连接AP,PC,证出PC为EF的中垂线,再利用△CEP∽△CAP找出角的关系求解.解答:(1)解:∵AC=12,∴CO=6,∴==2π;(2)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,,∴△POE≌△AOD(AAS),∴OD=EO;(3)证明:如图,连接AP,PC,∵OA=OP,∴∠OAP=∠OPA,由(1)得OD=EO,∴∠ODE=∠OED,又∵∠AOP=∠EOD,∴∠OPA=∠ODE,∴AP∥DF,∵AC是直径,∴∠APC=90°,∴∠PQE=90°∴PC⊥EF,又∵DP∥BF,∴∠ODE=∠EFC,∵∠OED=∠CEF,∴∠CEF=∠EFC,∴CE=CF,∴PC为EF的中垂线,∴∠EPQ=∠QPF,∵△CEP∽△CAP∴∠EPQ=∠EAP,∴∠QPF=∠EAP,∴∠QPF=∠OPA,∵∠OPA+∠OPC=90°,∴∠QPF+∠OPC=90°,∴OP⊥PF,∴PF是⊙O的切线.点评:本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系.25.(9分)(2014?广东)如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.考点:相似形综合题.分析:(1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出△PEF的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解.解答:(1)证明:当t=2时,DH=AH=2,则H为AD的中点,如答图1所示.又∵EF⊥AD,∴EF为AD的垂直平分线,∴AE=DE,AF=DF.∵AB=AC,AD⊥AB于点D,∴AD⊥BC,∠B=∠C.∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=DE=DF,即四边形AEDF为菱形.(2)解:如答图2所示,由(1)知EF∥BC,∴△AEF∽△ABC,∴,即,解得:EF=10﹣t.S△PEF=EF?DH=(10﹣t)?2t=﹣t2+10t=﹣(t﹣2)2+10∴当t=2秒时,S△PEF存在最大值,最大值为10,此时BP=3t=6.(3)解:存在.理由如下:①若点E为直角顶点,如答图3①所示,此时PE∥AD,PE=DH=2t,BP=3t.∵PE∥AD,∴,即,此比例式不成立,故此种情形不存在;②若点F为直角顶点,如答图3②所示,此时PE∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.∵PF∥AD,∴,即,解得t=;③若点P为直角顶点,如答图3③所示.过点E作EM⊥BC于点M,过点F作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥AD.∵EM∥AD,∴,即,解得BM=t,∴PM=BP﹣BM=3t﹣t=t.在Rt△EMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2.∵FN∥AD,∴,即,解得CN=t,∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t.在Rt△FNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10﹣t)2=t2﹣85t+100.在Rt△PEF中,由勾股定理得:EF2=PE2+PF2,即:(10﹣t)2=(t2)+(t2﹣85t+100)化简得:t2﹣35t=0,解得:t=或t=0(舍去)∴t=.综上所述,当t=秒或t=秒时,△PEF为直角三角形.点评:本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.。

广州市2014年中考数学试卷及答案(Word解析版)

广州市2014年中考数学试卷及答案(Word解析版)

秘密★启用前广州市2014年初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间120分钟.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.()的相反数是().(A)(B)(C)(D)【考点】相反数的概念【分析】任何一个数的相反数为.【答案】A2.下列图形是中心对称图形的是( ).(A)(B) (C) (D) 【考点】轴对称图形和中心对称图形.【分析】旋转180°后能与完全重合的图形为中心对称图形.【答案】D3.如图1,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,则().(A)(B)(C)(D)【考点】正切的定义.【分析】.【答案】D4.下列运算正确的是( ).(A)(B)(C)(D)【考点】整式的加减乘除运算.【分析】,A错误;,B错误;,C正确;,D错误.【答案】C5.已知和的半径分别为2cm和3cm,若,则和的位置关系是().(A)外离(B)外切(C)内切(D)相交【考点】圆与圆的位置关系.【分析】两圆圆心距大于两半径之和,两圆外离.【答案】A6.计算,结果是().(A)(B) (C) (D)【考点】分式、因式分解【分析】【答案】B7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是( ).(A)中位数是8 (B)众数是9 (C)平均数是8 (D)极差是7【考点】数据【分析】中位数是8.5;众数是9;平均数是8.375;极差是3.【答案】B8.将四根长度相等的细木条首尾相接,用钉子钉成四边形,转动这个四边形,使它形状改变,当时,如图,测得,当时,如图,().(A)(B)2 (C)(D)图2-①图2—②【考点】正方形、有内角的菱形的对角线与边长的关系【分析】由正方形的对角线长为2可知正方形和菱形的边长为,当=60°时,菱形较短的对角线等于边长,故答案为.【答案】A9.已知正比例函数()的图象上两点(,)、(,),且,则下列不等式中恒成立的是().(A) (B) (C)(D)【考点】反比例函数的增减性【分析】反比例函数中,所以在每一象限内随的增大而减小,且当时,,时,∴当时,,故答案为【答案】C10.如图3,四边形、都是正方形,点在线段上,连接,和相交于点.设,().下列结论:①;②;③;④.其中结论正确的个数是().(A)4个(B)3个(C)2个(D)1个【考点】三角形全等、相似三角形【分析】①由可证,故①正确;②延长BG交DE于点H,由①可得,(对顶角)∴=90°,故②正确;③由可得,故③不正确;④,等于相似比的平方,即,∴,故④正确.【答案】B第二部分非选择题(共120分)二、填空题(共6小题,每小题3分,满分18分)11.中,已知,,则的外角的度数是_____.【考点】三角形外角【分析】本题主要考察三角形外角的计算,,则的外角为【答案】12.已知是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点,,则PE 的长度为_____.【考点】角平线的性质【分析】角平分线上的点到角的两边距离相等.【答案】1013.代数式有意义时,应满足的条件为______.【考点】分式成立的意义,绝对值的考察【分析】由题意知分母不能为0,即,则【答案】14.一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积为_______(结果保留).【考点】三视图的考察、圆锥体全面积的计算方法【分析】从三视图得到该几何体为圆锥体,全面积=侧面积+底面积,底面积为圆的面积为:,侧面积为扇形的面积,首先应该先求出扇形的半径R,由勾股定理得,,则侧面积,全面积.【答案】15.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________,该逆命题是_____命题(填“真"或“假”).【考点】命题的考察以及全等三角形的判定【分析】本题主要考察命题与逆命题的转换,以及命题真假性的判断【答案】如果两个三角形的面积相等,那么这两个三角形全等.假命题.16.若关于的方程有两个实数根、,则的最小值为___。

中考数学试卷2014年广州卷(有答案)

中考数学试卷2014年广州卷(有答案)

2014年广州市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.a(a≠0)的相反数是( )A.-aB.a2C.|a|D.12.下列图形中,是中心对称图形的是( )3.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan A=( )A. B. C. D.4.下列运算正确的是( )A.5ab-ab=4B.1+1=C.a6÷a2=a4D.(a2b)3=a5b35.已知☉O1和☉O2的半径分别为2 cm和3 cm,若O1O2=7 cm,则☉O1和☉O2的位置关系是( )A.外离B.外切C.内切D.相交6.计算-,结果是( )-A.x-2B.x+2C.-D.7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是( )A.中位数是8B.众数是9C.平均数是8D.极差是78.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变.当∠B=90°时,如图①,测得AC=2.当∠B=60°时,如图②,AC=()A. B.2 C. D.29.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是( )A.y1+y2>0B.y1+y2<0C.y1-y2>0D.y1-y2<010.如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连结BG、DE,DE和FG相交于点O.设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a-b)2·S△EFO=b2·S△DGO.其中结论正确的个数是( )A.4个B.3个C.2个D.1个第Ⅱ卷(非选择题,共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角..的度数是°.12.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D,E,PD=10,则PE的长度为.有意义时,x应满足的条件为.13.代数式1-114.一个几何体的三视图如图,根据图示的数据计算该几何体的全面积...为.(结果保留π)15.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题: ,该逆命题是命题(填“真”或“假”).16.若关于x的方程x2+2mx+m2+3m-2=0有两个实数根x1、x2,则x1(x2+x1)+的最小值为.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解不等式:5x- ≤ x,并在数轴上表示解集.18.(本小题满分9分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别交于点E、F,求证:△AOE≌△COF.19.(本小题满分10分)已知多项式A=(x+2)2+(1-x)(2+x)-3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.21.(本小题满分12分)已知一次函数y=kx-6的图象与反比例函数y=-的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.22.(本小题满分12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的 2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(本小题满分12分)如图,△ABC中,AB=AC=4,cos C=.(1)动手操作:利用尺规作以AC为直径的☉O,并标出☉O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.24.(本小题满分14分)已知平面直角坐标系中两定点A(-1,0)、B(4,0),抛物线y=ax2+bx- (a≠0)过点A、B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t0个单位,点C、P平移后对应的点分别记为C'、P',是否存在t,使得首尾依次连接A、B、P'、C'所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.25.(本小题满分14分)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB= ,BC= ,CD= ,点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连结CF,设CE=x,△BCF的面积为S1,△CEF 的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;,并写出x的取值范围;(2)试用x表示1的值.(3)当△BFE的外接圆与AD相切时,求1答案全解全析:一、选择题1.A 因为a+(-a)=0,所以-a 为a 的相反数,故A 选项正确.2.D A 选项不是中心对称图形,故本选项错误;B 选项是轴对称图形,不是中心对称图形,故本选项错误;C 选项是轴对称图形,不是中心对称图形,故本选项错误;D 选项是中心对称图形,故本选项正确.故选D.3.D ∵AB= ,BC= ,∠ABC=90°,∴tan A= =.故选D.4.C A 选项,合并同类项的结果为4ab,不是4,故本选项错误;B 选项,1 +1 =,故本选项错误;C 选项,a 6÷a 2=a 6-2=a 4,故本选项正确;D 选项,(a 2b)3=(a 2)3·b 3=a 6b 3,故本选项错误.故选C.5.A ∵r 1=2 cm,r 2=3 cm,O 1O 2=7 cm,∴O 1O 2>r 1+r 2,∴两圆外离.故选A.6.B -- =( )( - )- =x+2,故选B.7.B 将这组数据按从小到大的顺序排列为7,7,8,8,9,9,9,10.由此可得这组数据的中位数是8 9=8.5,众数是9,平均数是18(7× +8× +9× +10×1)=678,极差是10-7=3,故选B.8.A ∵题图①为正方形,AC 为其对角线,∴BC=AC= .∵题图②为菱形,∠B=60°,连结AC,∴△ABC 为等边三角形,∴AC=BC= .故选A. 9.C ∵k<0,∴y 随x 的增大而减小,∵x 1<x 2,∴y 1>y 2,∴y 1-y 2>0.故选C. 评析 本题考查了正比例函数的增减性,可借助函数图象求解,属容易题.10.B 延长BG 交DE 于P,∵四边形ABCD 和四边形CEFG 都是正方形,∴BC=DC,CG=CE,∠BCG=∠DCE=90°,∴△BCG≌△DCE;∵∠DCE=90°,∴∠CDE+∠CED=90°,∵△BCG≌△DCE,∴∠CDE=∠CBG,∴∠CBG+∠CED=90°,∴∠BPE=90°,∴BG⊥DE;∵OG∥CE,∴△DGO∽△DCE,∴= ,∴≠;易知△DGO∽△EFO,∴S △DGO ∶S △EFO == -,∴(a -b)2·S △EFO =b 2·S △DGO .∴ 个结论中有3个是正确的,故选B. 二、填空题 11.答案 140解析 ∵∠C=180°-∠A -∠B=180°-60°-80°= 0°, ∴∠C 的外角的度数是180°- 0°=1 0°. 12.答案 10解析 ∵角平分线上的点到角两边的距离相等,∴PE=PD=10. 13.答案 x≠±1解析 ∵分式的分母不能为0,∴ x -1≠0,∴x≠±1.评析 本题考查了分式的意义和绝对值的性质,属于容易题. 14.答案 π解析 由三视图知,该几何体为圆锥,其中底面直径为6,高为4,所以母线长为 =5,所以侧面积为1× π× × =1 π,又底面积为9π,所以该几何体的全面积为 π. 评析 本题将几何体的三视图与圆锥的全面积结合起来进行考查,既考查了学生的观察能力,又考查了运用公式的能力以及计算能力,属中等难度题.15.答案 如果两个三角形的面积相等,那么这两个三角形全等;假解析 一个命题的逆命题,就是将原命题的条件与结论互换,因为面积相等的两个三角形不一定全等,所以其逆命题为假命题.16.答案解析 ∵关于x 的方程x 2+2mx+m 2+3m-2=0有两个实数根,∴( m)2-4(m 2+3m- )≥0,∴m≤,由根与系数的关系知x 1+x 2=-2m,x 1x 2=m 2+3m- ,∴x 1(x 2+x 1)+ =(x 1+x 2)2-x 1x 2=4m 2-(m 2+3m-2)=3 -1+,当m=1时,x 1(x 2+x 1)+ 取得最小值,最小值为.评析 本题考查了一元二次方程根的判别式,根与系数的关系,以及二次函数的最值问题,是一道综合性较强的试题,对考生的综合能力要求较高,属较难题. 三、解答题17.解析 5x- ≤ x, x≤ , x≤1.解集在数轴上表示如下:18.证明 ∵四边形ABCD 为平行四边形, ∴AB∥CD,OA=OC, ∴∠EAO=∠FCO, 在△AOE 和△COF 中,∠ ∠ ,,∠ ∠ ,∴△AOE≌△COF(ASA).19.解析 (1)A=(x+2)2+(1-x)(2+x)-3=x 2+4x+4-x 2+x-2x+2-3=3x+3.( )∵(x+1)2=6,∴x+1=± 6,∴A= x+ = (x+1)=± 6. 20.解析 (1)a=0.24,b=16. ( ) 60°×0.16= 7.6°.(3)男生编号为A 、B 、C,女生编号为D 、E,由枚举法可得AB 、AC 、AD 、AE 、BC 、BD 、BE 、CD 、CE 、DE,共10种, 其中DE 为女女组合,∴所抽取的两名学生中至多有一名女生的概率为10-110=910. 21.解析 (1)联立两函数解析式可得 -6, - ,即kx-6=- . 将x=2代入该方程得2k-6=-,解之得k=2, 则两函数分别为y=2x-6,y=- .将x=2代入y=2x-6得y=-2,则点A 的坐标为(2,-2).(2)由 -6, -得2x-6=- ,∴x 2-3x+2=0, 解之得x 1=1,x 2=2,∴y 1=-4,y 2=-2,即点B 的坐标为(1,-4),位于第四象限. 22.解析 (1) 00×1. = 0(千米).(2)设高铁的平均速度为x 千米/时,则普通列车的平均速度为x÷ . =x 千米/时,由题意可得 00+3= 0x,解得x=300,经检验,x=300是原分式方程的解.∴高铁的平均速度是300千米/时.答:(1)普通列车的行驶路程为520千米.(2)高铁的平均速度是300千米/时. 23.解析(1)如图所示即为所求.( )①证明:如图,连结AE,∵AC为直径,∴∠AEC=90°,又AB=AC,∴∠BAE=∠CAE,∴=.②如图,连结CD,过点D作DF⊥BC于F, ∵AB=AC= ,cos∠ACB=,∴EC=AC·cos∠ACB= ,∴BC= CE=8,AE=-C=8.∵AC为直径,∴∠ADC=90°,∴S△ABC=1AB·CD,又∠AEC=90°,∴S△ABC=1AE·BC,∴1AB·CD=1AE·BC.∴CD=16,∴AD=-C=1 ,∴BD=AB-AD=8.∵S△DBC=S△DBC,∴1BD·CD=1DF·BC,∴DF=16,∴点D到BC的距离为16.24.解析(1)∵抛物线过A,B两点,∴--0,16-0,解得1,-,∴抛物线的解析式为y=1x2-x-2.解析式转化为顶点式为y=1 - - 8, ∴点C 的坐标为 ,- 8. (2)由题意知点P 在x 轴的下方,设抛物线和y 轴的交点为D,则D(0,-2),连结AD,BD.当点P 与点D 重合时,AD= O = ,BD= O =2 ,AB=5,故AD 2+BD 2=AB 2,即∠ADB=90°.由抛物线的对称性可得,点D 关于抛物线对称轴的对称点E(3,-2)满足∠AEB=90°,以AB 为直径作圆,则D,E 均在圆上,抛物线上点A 到D 及E 到B 之间的部分在圆内,当P 在这两个范围内运动时,满足∠APB 为钝角,∴m 的取值范围为-1<m<0或3<m<4.( )∵m> ,∴P 的坐标为(3,-2),将BP 沿PC 方向平移,使得P 与C 重合,B 落在B'处,作y=- 8,则C 在这条直线上,以y=- 8这条直线为对称轴,作B'的对称点B″,连结AB″,∵AB 与CP 为定值,则只需求AC+BP 的最小值即可,∴AC+BP=AC+B'C=AC+CB″≥AB″,∴当C 为AB″与直线y=- 8的交点时,AC+BP 最小,根据平移性质可得,B'的坐标为 ,-98 ,B″的坐标为 ,- 18 ,设直线AB″的解析式为y=kx+b(k≠0),∴ - 0,k b - 18,解得 - 1 8,- 1 8,∴y=- 1 8x- 1 8,当y=- 8时,x=9 8 ,-9 8 =1 1.∴t=1 1,抛物线应该向左平移.25.解析 (1)如图所示,点F 在直角梯形ABCD 的中位线MN 上,设CF 与EB 交于点G,由题意可知BF=BC=4,∵MN为直角梯形ABCD的中位线,∴MN⊥BC,BN=1BC= ,∴BN=1BF,∴∠BFN= 0°,∠FBN=60°,又BF=BC,∴△BFC为等边三角形,∴FC= ,∠FCB=60°,∴∠ECG= 0°,由题意可知EB垂直平分FC,∴GC=1FC= ,∠EGC=90°,∴CE=cos∠=,即x=.(2)如图所示,设CF与EB交于点G.∵∠EGC=90°,∠ECB=90°,∴∠GEC+∠ECG=90°,∠ECG+∠GCB=90°,∴∠GEC=∠GCB,又∠EGC=∠CGB=90°,∴△ECG∽△CBG,∴△△==16,∵G为FC的中点,∴S1=2S△BGC,S2=2S△EGC,∴1=△△=△△=16(0<x≤ ).(3)如图所示,不妨设EB与MN交于点O,∵MN是梯形ABCD的中位线,∴MN=1(AB+CD)= ,MN∥CD,∴==1,∴BO=OE.又∠BFE=90°,∴点O为△BFE的外接圆的圆心,∵BO=OE,NB=NC,∴NO=1CE=1x,OM=4-1x.不妨设△BFE的外接圆与AD相切于点H,连结OH, 故OH=1BE,OH⊥AD,过点A作AP⊥CD于P,可得四边形APCB为矩形,∴CP=AB= ,AP=BC= ,∴DP= ,∴AD=D=2,∴sin D==,∵MN∥CD,∴∠D=∠OMH,∴sin∠OMH=,∴OH=OM·sin∠OMH=-1x,∴BE= OH=-1x.在Rt△BCE中,∠BCE=90°,∴EC2+BC2=EB2,∴ 2+x2=-1x,解得x=20-32或x=-20-32(舍去), ∵0< 0- ≤ ,∴x= 0-32符合题意,此时1=16=139-80.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年广东省广州市中考数学试卷2014年广东省广州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)..C D.3.(3分)(2014•广州)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=().C D.+=C6.(3分)(2014•广州)计算,结果是()D.7.(3分)(2014•广州)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,8.(3分)(2014•广州)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=().D9.(3分)(2014•广州)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列10.(3分)(2014•广州)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG 相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2•S△EFO=b2•S△DGO.其中结论正确的个数是()二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2014•广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是_________°.12.(3分)(2014•广州)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为_________.13.(3分)(2014•广州)代数式有意义时,x应满足的条件为_________.14.(3分)(2014•广州)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为_________.(结果保留π)15.(3分)(2014•广州)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:_________,该逆命题是_________命题(填“真”或“假”).16.(3分)(2014•广州)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为_________.三、解答题(共9小题,满分102分)17.(9分)(2014•广州)解不等式:5x﹣2≤3x,并在数轴上表示解集.18.(9分)(2014•广州)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.19.(10分)(2014•广州)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.20.(10分)(2014•广州)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.21.(12分)(2014•广州)已知一次函数y=kx﹣6的图象与反比例函数y=﹣的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.22.(12分)(2014•广州)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(12分)(2014•广州)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.24.(14分)(2014•广州)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.25.(14分)(2014•广州)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.2014年广东省广州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)..C D.3.(3分)(2014•广州)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=().C D.tanA==.C+=,故6.(3分)(2014•广州)计算,结果是()D.=7.(3分)(2014•广州)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,8.(3分)(2014•广州)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=().DAB=BC===AC=AB=BC=.9.(3分)(2014•广州)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列10.(3分)(2014•广州)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG 相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2•S△EFO=b2•S△DGO.其中结论正确的个数是()∴,∴是错误的.∴((二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2014•广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140°.12.(3分)(2014•广州)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为10.13.(3分)(2014•广州)代数式有意义时,x应满足的条件为x≠±1.14.(3分)(2014•广州)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为24π.(结果保留π)15.(3分)(2014•广州)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题(填“真”或“假”).16.(3分)(2014•广州)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.≤+);时,有最小值;∵<成立;最小值为故答案为:三、解答题(共9小题,满分102分)17.(9分)(2014•广州)解不等式:5x﹣2≤3x,并在数轴上表示解集.18.(9分)(2014•广州)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.19.(10分)(2014•广州)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.±,320.(10分)(2014•广州)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.抽取的两名学生中至多有一名女生的概率为:21.(12分)(2014•广州)已知一次函数y=kx﹣6的图象与反比例函数y=﹣的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.,根据反比例函数与一次函数的交点问题,解方程组,,解方程组,22.(12分)(2014•广州)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.=323.(12分)(2014•广州)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.,得出=∴;AB=AC=4,cosC=∴,即=4BD=B=∴BM=,DM===24.(14分)(2014•广州)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.∴x x y=x x()﹣,﹣(.MP==(,﹣(,﹣﹣)x+t+﹣+t+=0t=.故将抛物线向左平移25.(14分)(2014•广州)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.的比,然后利用=的值.BN=CN=BN=BFCG===的值为∴==∴==.∴(r=BE=OP=r=OM=((AD===2∴,,,(舍去)32+2032+20∴=13980参与本试卷答题和审题的老师有:星期八;HJJ;杨金岭;sjzx;sks;gbl210;sd2011;zjx111;lantin;499807835;gsls;caicl;未来;王开东(排名不分先后)菁优网2014年7月24日。

相关文档
最新文档