卢同善实变函数青岛海洋大学出版社第二章习题答案
实变函数论课后答案第二章2

实变函数论课后答案第二章2第二章第二节习题1.证明点集F 为闭集的充要条件是F F =. 证明:因为'F F F = ,若F 为闭集,则'F F ⊂ 所以'F F F F F F F =⊂=⊂ 故F F =反过来,若'F F F F =⊂ ,则必有'F F ⊂ 从而F 为闭集.2.设()f x 是(),-∞∞上的实值连续函数,证明对于任意常数a ,(){};x f x a >都是开集,(){};x f x a ≥都是闭集.证明:任取常数a ,若 (){}0;x x f x a ∈>,则()0f x a >,由于()f x 连续,0,0a x δ∃>,使()(){}00,,;a xx N x x f x a δ∈⊂≥.这表明(){};x f x a >是开集.任取常数a ,若{}(){};n x x f x a ∈≥,且0n x x →,则从()n f x a ≥和()f x 连续知 ()()0lim n n f x f x a →∞=≥故(){}0;x x f x a ∈≥这表明(){}(){}';;x f x a x f x a ≥⊂≥. 故(){};x f x a ≥是闭集.3.证明任何邻域(),N p δ都是开集,而且()(){}'',;,N p p p p δρδ=<(N 通常称为一闭邻域)证明:()0,p N p δ∀∈,则()00,p p ηρδ≤<()0,Q N p δη∀∈-,()()()00,,,Q p Q p p p ρρρηδηδ≤+<+-=故()()0,,N p N p δηδ-⊂. 故(),N p δ是开集得证.(){}(){}'''';,,;,n p p p p p p p p ρδρδ∀∈≤∈≤且 n p p → 则 ()(),0,,n n p p p p ρρδ→≤() ()() (),,,,n n n p p p p p p p p ρρρρδ≤+≤+. 令n →∞得 (),0p p ρδ≤+. 故(){}(){}''''';,;,p p p p p p ρδρδ≤⊂≤.表明(){}'';,p p p ρδ≤是闭集.又 (){}'';,p p p p ρδ∀∈≤令 11k px p k k ⎛⎫=+- ⎪⎝⎭, 则() ()111,1,1,1k px p p p p p k k k k ρρρδδ⎛⎫⎛⎫⎛⎫⎛⎫=+-=-≤-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.()()1,,0k x p p p kρρ=→故(),,k k x N p x p δ∈→ 这表明(){}()()''';,,,p p p N p Np ρδδδ≤⊂⊂而()(){}'',;,N p p p p δρδ⊂≤故()(){}(){}()'''',;,;,,N p p p p p p p N p δρδρδδ⊂≤=≤⊂这表明()(){}'',;,N p p p p δρδ=≤.4.设∆是一有限闭区间,()1,2,3,n F n = 都是∆的闭子集,证明如果1n n F ∞==∅ ,则必有正整数N ,使1Nn n F ==∅ .证明:令1n n i i S F == ,则显知11n n n n F S ∞∞=== ,且12n S S S ⊃⊃⊃⊃ (),1i n F i n ∀≤≤为闭集,故n S 也为闭集.下证 N ∃,使1Nn N n F S ===∅ .反证,设,n n S ∀≠∅,则n n x S ∃∈⊂∆,由于∆是有限闭区间,{}n x 是有界点列,若{},1,2,3,n x n = 为无限集合,则由聚点原理{}n x ∃的子列{}00,,kkn n x xx x →∈∆由于12n S S S ⊃⊃⊃⊃故任取,m N k ∈充分大时kkn n m x S S ∈⊂,又m S 为闭集,且0kn m x x S →∈由m 的任意性知,011m n m m x S F ∞∞==∈==∅ 得矛盾. 若{},1,2,3,n x n = 为有限集合,则0n ∃,当()00max ,n n m ≥时,0n n m x x S S =∈⊂,故 011m n m m x S F ∞∞==∈==∅ 得矛盾.所以∃ N ,使得1NN n n S F ===∅ .证毕.设,n E R μ⊂是一族完全覆盖E 的开邻域,则有μ中的(或有限)多个邻域12,,,m N N N ,它们也完全覆盖了E ( Lindelof 定理)证明:设{};,I αμα=∈ΛΛ为某指标集,则E I αα∈Λ⊂ .,x E ∀∈∃ x α∈Λ,使得x x I α∈.由于I Λ是开集,0x δ∃>使(),x N x I δΛ⊂.由有理点在n R 的稠密性易知,存在有理点nx a Q ∈和有理数0x r >,使()(),,x x x x N a r N x I δΛ∈⊂⊂,而n R 中全体以有理点为心,有理数为半径的球作成集合与nQ Q ⨯的一个子集对等,故这些(){},;x x N a r x E ∈至多是一个可数集,从而相应的{};xIx E α∈也是至多可数集.而这些{};xI x E α∈显然为E 的一个开覆盖,因为(),xx x x E x EE N a r I α∈∈⊂⊂因为每一个上述(),x x N a r 包含在某个I α中,故存在至多可数个i I M ∈,使{};i I i ∈Λ成为E 的一个开覆盖.1. 证明nR 中任何开集G 可表成()1ni i G I ∞== 的形式,其中()()()(){}12;,,,,,1,2,3,,n i i in j j j I p p x xx c x d j n ==<<=证明:(注意这里并为要求()ni I 互不相交)设G 为n R 中的任意开集,则0x G ∀∈,由开集的定义,∃一个球形邻域()()000,0x x N x G δδ⊂>,令()00001200,,,;x x x n j x j I x x x x x x n n δδδ⎧⎫==-<<+⎨⎬⎩⎭则显然()000,x xx I N x G δ∈⊂⊂,且x x GG I G ∈⊂⊂ .故x x GG I ∈= ,x I 显然是开区间,也是开集,{},x I x G μ=∈为G 的一个开覆盖.由本节习题5,μ中的至多可数个123,,,,,n I I I I 完全覆盖了G所以1i i G I G ∞=⊂⊂ .所以1i i G I ∞== ,i I 都是开区间.故本题结论得证.2. 试根据B orel 有限覆盖定理证明Bolzano-Weierstrass 定理.证明:反证,设E 为有限无穷点集而无聚点,则'E =∅,从而'E E =∅⊂, 故E 为有界闭集,且任意p E ∈,都是E 的孤立点.故0p δ∃>使(){},p Np E p δ= ,所以(),p p EE N p δ∈⊂.(){},pN p δ形成E 的一个开覆盖,由于E 为有界闭集,由Borel 有界覆盖定理,∃有限个()()11,,,,,m p mp Np N pδδ ,使()1,imip i E Np δ=⊂()(){}111,,iimmmip ip ii i i E E Np E N p p δδ====== .前已知(){},ii p i N p E p δ= .故{}1mi i E p == 为一有限集合,这与E 为有界无穷集矛盾.8. 证明nR 中任意非空开集的基数都是c .证明:∀开集n U R ⊂,显从n U R ⊂知n U R c ≤=.又存在一个点()00,0,,p U N x U δδ∈∃>⊂,()0,N x c δ=, 故()0,U N x c δ≥≥. 所以Berrstein 定理知U c =. 证毕9. 证明对任意n E R ⊂,E 都是n R 中包含E 的最小闭集.证明:任取n E R ⊂,设F 是包含E 的人一闭集,则E F ⊂,''E F ⇒⊂ 所以''E E EF F F =⊂= ,因为F 为闭集 所以''E F F ⊂=,所以E 是n R 中包含E 的最小闭集. 10. 对于1R 定义的实函数()f x ,令()()()'''',lim sup liminfx x x x W f x fx fx δδδδ++→→-<-<=-.证明:对任意的(){}0,;,x W f x εε>≥都是闭集.进而证明()f x 的全体不连续点作成一F δ集.证明:首先 ,当δ单调下降趋于0时,()''sup x x f x δ-<也单调下降趋于某极限(有限或无限)而()''inf x x f x δ-<单调上升地趋于某极限.故()()()'''',lim sup liminfx x x x Wf x fx fx δδδδ++→→-<-<=-是有确切定义的(可为无限值)先证明:()f x 在0x x =连续()0,0W f x ⇔=.证:先设()0,0Wf x =,则()00,0εδε∀>∃>使00δδ<<时()()''''sup infx x x x fx fx δδε-<-<-<所以y ∀满足0y x δ-<时()()()()''''0sup infx x x x fy f x fx fx δδε-<-<-≤-<故f 在0x 处连续.反过来,若()f x 在0x x =处连续,则()0000,,0x εδδε∀>∃=>, 当00y x δδ-<<时,()()0fy f x εε-<-<又()000,x δδδε∀<=,''''''00,,,y y y x y x δδδδδδ∃-<-< 且()()()()'''''''sup ,infx x x x f x fy f y fx δδδδεε-<-<-≤≤+所以()()()()'''00sup x x f x f x fy f x δδεε-<--≤-<()()()()''''infx x f xf x f x f y δδεε-<--+≤-<不等式相加得()()()()''''''''sup inf220lim sup liminf4x x x x x x x x fx fx fx fx δδδδδδεεε++-<-<→→-<-<--≤≤-≤即()00,4,0W f x εε≤≤<任意.所以()0,0Wf x =为证(){}0;,x Wf x ε≥为闭集,只用证(){}0;,x W f x ε<为开集. (){}00;,x x Wf x ε∀∈<必有()0,Wf x ε<所以存在()00,0x δδε=>使()00,δδ∀∈时, ()()()()000sup inf ,2N x N x f f W N x δδδεδ-<()02y N x δ∀∈,由三角不等式,则()()02N y N x δδ⊂.故()()()02,,W f N y Wf N x δδε⎛⎫≤< ⎪⎝⎭所以()()02,lim ,Wf y W f N y δδε+→⎛⎫=< ⎪⎝⎭这说明()(){}02;,N x x Wf x δε⊂<故(){};,x Wf x ε<是开集,从而(){};,x W f x ε≥是闭集.由于()f x 在x 不连续的充要条件是(),0Wf x ≥.所以使x 不连续的点集为表为()11;,k F x Wf x k ∞=⎧⎫=≥⎨⎬⎩⎭. 由于()1,;,k x Wf x k ⎧⎫∀≥⎨⎬⎩⎭是闭集,故F 为一F δ集. 同时我们看出,全体使f 连续的点集是()11;,ck F x Wf x k ∞=⎧⎫=<⎨⎬⎩⎭这是一个G δ集合.推广:(1)对1:n f R R →有一样的结论,只不过在定义(),Wf x 时,'x x -理解为n R 中的距离()';x x ρ,其它完全一样,因为三角不等式对().,.ρ成立, (2)若f 是n R 中的开集,G 到1R 的函数,则同样可定义()(),W f x x G ∀∈,因为当(){}0,;,,x x G W f x εε∀>∈<为开集,(){};,x G Wf x ε∈≥为闭集.f 的不连续点集为()11;,k x G Wf x k ∞=⎧⎫∈≥⎨⎬⎩⎭而f 的不连续点集为()11;,k x Wf x k ∞=⎧⎫<⎨⎬⎩⎭. 11. 于n E R ⊂及实数α,定义()(){}1212,,;,,,n n E x x x x x x E αααα=∈ .证明当E 为开集,00,p E αα≠∀∈,则∃ 0E X ∈,使00p α=XE 开集,0E X ∈,故0δ∃>,使()0,N E δX ⊂.则∀()0,y N αδ∈X ,则yy αα=而0001y y y αδααδαααααX -X --=-X <=.故()0,yN E δα∈X ⊂从而yy E ααα=∈这表明()0,N E αδαX ∈,故E α为开集.若E 为闭集,0α=,则(){}0,0,0E α= 为单点集.当然是闭集,若0α≠,则0,n n p E p p α∈→,则0,,,nn n n n n p p E p p αα=X X ∈=X →表明nn p p αα=X →,而E 为闭集,0n p αX →,故np E α∈,从而0p p E ααα=∈.这说明()'E E αα⊂.从而得知E α为闭集.12. 设()fp 是定义于n R 上的实函数,证明()f p 在n R 上连续的充要条件是对于1R 中任何开集G .()(){}1;fG p f p G -∈ 都是1R 中的开集.证明:设1:n f R R →连续,G 为任一1R 中开集. ()10p fG -∀∈,则()0f p G ∈,由G为开集知,0δ∃>,使()()0,Nf p G ε⊂对上述()00,,0p εδδε>∃=>,使当()0,y N p δ∈时()()0fy f p ε-<故()()()0,fy N f p G ε∈⊂即()1y fG -∈.这说明()()10,N p f G δ-⊂故()1fG -为开集.现设对1R 中任意开集,()1,G fG -为开集,0,ε∀>()()0,Nf p ε是1R中的开集.故()()()1,fN f pε-是开集,而()()()100,p fN f pε-∈.故()()()()00,,f N p Nf p δε⊂所以()()()()00,,,y N p fy N f p δε∀∈∈.()()0fy f p ε-<这说明f 在0p 连续 证毕13. nR 上的实函数()f P 称为是下半连续的,若对任意n P R ∈,都有()()()()()0,lim inf lim inf Q PP Q f P f Q f Q δρδ→→<≤ ,证明()f P 下半连续等价于对任意的实数(){},;P f P αα≤都是n R 中的闭集,也等价于(){};P f P α≤是n R 中的开集.现若f 下半连续,1R α∀∈,若(){}0;P P f P α∈>. 则()()()()000lim inf N P f P f Q δδα→<≤∀()00022f P αεε-<<,()0,0p δδε∃=>使()()()00inf N P f P f Q δαε<-<所以()0,y N P δ∀∈,有()()()()00inf N P f P f Q fy δαε<-<≤.所以()(){}0,;N P P f P δα⊂>.故(){};P f P α>为开集.(从而(){};P f P α>为闭集)f 在nR 上下半连续,0,0nP R ε⇔∀∈∀>,()0,0p δδε∃=>.当()0,P N P δ∈时,()()0f P f P ε-<-. 反过来,若(){}1,;R x f x αα∀∈>为开集.则()(){}000,0,;nP R P x f x f P εε∀∈∀>∈>-由于()(){}0;P f P f P ε>-是开集.所以()0,0P δε∃>使()()(){}00,;P N P P f P f P δε∈⊂>-()0,Q N P δ∀∈有()()0f P f P ε>-,即f 在n R 上下连续,故一个等价性得证.而f 在n R 上下连续(){}1,;R P f P αα⇔∀∈≤是闭集(){};P f P α⇔>是开集.下证(){}1,;R P f P αα∀∈≤()(){},;,nP y P Rf P y ⇔∈≤为闭集.先设(){};P f P α≤为闭集,α任意.所以()()(){},,;;n n n n n P y P y P R f P y ∀∈∈≤,00,n n P P y y →→. 所以0,,N ε∀>∃当n N ≥时0n y y ε≤+. 故(){}0;n P P f P y ε∈≤+,这是闭集. 而(){}00;n P P P f P y ε→⇔≤+ 所以()00f P y ε≤+,()0ε∀>故()00f P y ≤.这表明()()(){}00,,;;n P y P y P R f P y ∈∈≤是闭集.若()(){},;;n P y P R f P y ∈≤是闭集,而(){}0;,n n P P f P P P α∈≤→ 则()()(){},,;;nn P P y P Rf P y α→∈≤,()()0,,n P P αα→.因为()(){},;;n P y P R f P y ∈≤为闭集,故()()(){}0,,;;n P P y P R f P y α∈∈≤ 所以()0f P α≤.这说明(){}0;P P f P α∈≤ 故(){};P f P α≤为闭集. 得证.14. 设,A B 是n R 中的有界闭集,01λ<<,证明()(){}121;,,,n A B x x x x λλ+- 有()()1212,,,,,,,n n y y y A z z z B ∈∈ ,使()1,1,2,i i i x y z i λλ=+-= 为有界闭集.举例说明当,A B 无界时,()1A B λλ+-可以不是闭集. 证明:,A B 有界,故存在 M 使()22212,,n x A B x x x x x x M ρ∀∈==+++≤特别地 i x M ≤.()1x A B λλ∀∈+-,有()1x A B λλ∀∈+-使 ()1i i i x y z λλ=+-,故()1x y z λλ=+-.故()()()111x y z y z M M M λλλλλλ∈+-≤+-≤+-=. 所以01λ≤≤时,()1A B λλ+-也有界.为证()1A B λλ+-为闭集,设()1n x A B λλ∈+-,0n x x →, 则,n n y A z B ∃∈∈使()1n n n x y z λλ=+-.由,A B 有界,()1n x A B λλ∈+-, ,n n y A z B ∈∈,由聚点原理,n y ∃的子列k n y 使0k n y y →,{}k n z 有子列{}k l n z 使0k l n z z →,{}k l n x 有子列{}k li n x 使()0k li nx x i →→∞ 从()1k k k lili li n n n x y z λλ=+- 所以()0001x y z λλ=+-,而,A B 为闭集,故00,y A z B ∈∈.从而有()01x A B λλ=+- 这说明()1A B λλ+-是闭集. 若,A B 不全是有界闭集时,()1A B λλ+-可不为闭集,在2R 上考虑()()(){}11,;,0,,,0;1,2,A x y y R x y x B n n ⎧⎫=∈∈∞=⎨⎬⎩⎭=-= B 是全由孤立点组成的集合,显然为闭集,但无界. 任取(),n n x y A ∈,若()()100,,n n x y x y R →∈, 则00,x y 为有限数,故从01n n y y x =→知00x ≠ 所以00010,x y x >=这说明()00,x y A ∈,故A 为闭集合,显然 0x +→时,1y x =→∞,故A 无界. 但1122A B +都不是闭集.取()1,0,,n B n A n ⎛⎫-∈∈ ⎪⎝⎭ 则()111111,0,0,22222n p n n A B n n⎛⎫⎛⎫=-+=∈+ ⎪ ⎪⎝⎭⎝⎭. 显然()0,0n p →,但()110,022A B ∉+. 因为若()110,022A B ∈+,则()0001,0,,n B x A x ⎛⎫∃-∈∈ ⎪⎝⎭使 ()()0001110,0,,022x n x ⎛⎫=+- ⎪⎝⎭故00011,0x n x =≥=得矛盾 所以1122A B +不是闭集.。
实变函数第二章习题解答.docx

第二章习题参考解答1:证明:有理数全体是尺中可测集,且测度为0.证:(1)先证单点集的测度为O.V XG /?\令£ = {X }.V^>0,V HG /Vpp800—尹“莎),因如Sf 专初屮严'人为开区砖00工I I =工= £ .故加*E = 0.m 以E 可测且mE = 0. M = 1 〃 = 1 '"(2)再证:/?'中全体有理数全体Q 测度为0.设匕}羸是只中全体有理数,VneTV,令E n ={r n }.则{乞}是两两不相交的可测集0088列,由可测的可加性冇:加* 0 =加(u &)=工mE n =工0 = 0.n=1n=l n=\法二:设e = {rJL ,Vne/v,令/;=(乙—缶心+希),其中£是预先给定的任意性,加*2 = 0.2. 证明:若E 是/?"有界集,则m*E<+oo.证明:若E 是/?"有界.则日常数M >0,使Vx = (x p x 2,•••%…)€£,有间=<M ,即 Vz (l < z < /2),有 \x]<M ,从而Eu 匚[[兀一M,兀 +M].1=1所以加门比 -M,兀 +M]sf2M =(2M )” <+oo/=i/=i3. 至少含有一个内点的集合的外测度能否为零?解:不能.事实上,设E u R”, E 中有一个內点兀=(坷,…兀”)wEH5〉(),使得” <? C“Q Q0(兀,5)=訂(兀一牙,兀+ 牙)U E .则/??*£ >m*[]^[(x.+ —)] = s n> 0;=i22f=i2 2所以加* E H O.00cor~q与斤无关的正常数,贝ij : m^Q =诚{工I I n \ | U A o Q} <^l I1=工乔之•由£得n=\ J 】 >=1 i=\ 2〃二 1 /=!4•在㈡上]上能否作一个测度为h-a f但乂界于[Q,切的闭集?解:不能事实上,如果有闭集Fu[d,b]使得mF = b-a.不失一般性,可设aeFf\.beF . 事实上,若a 电F,则可作F* 二{a} U F,F* u [G,/?].UmF^ = m[a] + mF = mF .这样, 我们可记F*为新的F ,从而[a,b]-F = (a,b)-F = (a,b)-FCl@劝.如果[a,b]-FH0,即Bxe[a,b]-F = (a,b)-F f而(a,b)_F是开集,故兀是[a,b]-F的一个内点,由3题,([a,b]- F) = m([a,b]- F) = m(a.b)-mF与mF = b-a才盾.故不存在闭集Fcz[a,b]且mF=b — a5.若将§ 1定理6中条件”加(U ®) <0去掉,等式0 /n(limEJ<lim/nE zt是否仍n>k0"TOO "T8成立?解:§ 1定理6中条件*( U £,.)< 00”是不可去掉的.心k()事实上,Vne2V,令E n-[n-l,n),贝U{E”}爲是两两相交的可测集列,由习题一得15 题:iim£n = lim E/? = 0 m(lim £ J = 0,但V” w N , mE n =m[n-l,n) = l.所以"T8 w_>oo mslim mE n = 1 •从而lim mE n丰加(lim E tl).>00 "—>86.设代,E,…是[0,1)中具有下述性质的可测集列:X/£>0, 3k eN使证& >1-£',00证明:7H(U£/)=1/=!证:事实上,Vg〉0,因为mk G N , mE k >\-£1 > m[O,l] > m(U EJ > mE k >\-£i=\7.证明:对任意可测集A,B,下式恒成立.m{A U B) + m( A Pl B) = mA + mB .证明:A^B = (A\JB-A)\JA且(4UB —4)门4 = 0故m(A U B) = m(A U B 一A) + 加4 •即加(力U B) - mA = m(A B - A) = m(B - A)又因为B = (B-A)U(BnA)..E(B-A)n(BnA) = 0,所以mB =m{B一A) + m{B A A)故加(A U 5) - mA = mB -m(A Pl B),从而m{A U B) + m(A Pl B) = mA + mB&设是A,A?是[0,1]屮的两个可测集且满足m\+mA2 >1,证明:m(A^A2)>0.证:m{A{ UA2) + /n(A, 0^2) = /^ +mA2.又因为加(出U A2) < m([0,l]) = 1所以加(A 0 A?) = mA x + mA^ - m(A, U 人)》加人 + ""V -1 > 09.设A2,码是[0,1]中的两个可测集,且皿+叽+叽>2,证明:/n(A] n A2 n A3) > 0证:m(A l U A2 \J A3) + m[(A{ [J A2)C\A3] = m(A] U >42) + mA3 =in(A{) + m(A2) + m(A3) -m{A{ A A2).所以m(A i nA2) + m[(A I\JA2 Pl ^3)] = + m(A2) + m(A3) -m(A} \JA2 U £)又因为m[(A, nA2)u(A2nx3)u(A3 nA,)i=血[(儿AA2)U(AUA2A A3)J=加(Al 0人2)+ 〃[(£ u A2 n A3)J -zn[(A1AA2)D[(A1 U A2 D AJ] =加(儿门仏)* m[(A UA2)n AJ- m[(A{ C\A2H A J .所以加(岀介每门州)= m(A, M)+/7?[(A U A2 A 4 )1 - zn[(A1 HA2)U (A2 n 4)U (A3 AA)]= m(A,) + m(A2) + zn(A3) -zn(4 U A2 U A3)-加[(人A A2) U (A2 A A3)U (A3 A A,)]因为/n(A1UA2UA3)<m[0,l] = l加KA nA2)u(A2n A3)U(A3 nA)]</n[o,i] = 1 .所以加(A D A2 A A.) > 加(A〕)+ m(A2) + m(A3)-l-l = m(A t) + m(A2)-b m(A3) - 2 > 0.1().证明:存在开集G,使加乙>M G证明:设{乙}爲是[0,1]闭区间的一切有理数,对于V HG/V,令人二⑴一肖心+拾),并^G=Ol n是疋中开集Z Z 川=11二二1 C亍1 —— 1mG < Y mI n=S^F =~^T = - Gn[O,l],故mG > /n[O,l] = l>- = mG. n=\ n=\ 2 | _ 丄2 2211.设E是X中的不可测集,4是疋中的零测集,证明:EHCA不町测.证明:若EC\CA可测.因为£AA(= A,所以m*(EC\A)<m^A = QMVm * (E D A) = 0.故E " A可测.从而E = (E D A) U (E fl CA)可测,这与E不可测矛盾.故E"C4不可测.12•若E是[0,1冲的零测集,若闭集E是否也是零测集.解:不一定,例如:E是[0,1]中的冇理数的全体.E = [0,1]. mE = 0,但mE =加[0,1] = 1.13.证明:若E是可测集,则V6' > 0,存在G 〃型集G = E ,你型集F = E,使m{E 一F) < £ , m(G 一F) < £证明:由P51的定理2,对于E u R” ,存在G»型集GnE ,使得mG = m^E.^E 得可测性,m^E = mE .则V^>0.m(G-E) = mG-mE = 0J卩〉0, m(G -F)<£. 再由定理3,有F a型集F使得F =>E .且m{E一F) = mE一mF =0<s15.证明:有界集E可测当且仅当V^>0,存在开集G二E,闭集F = E,使得m(G- F) < £.证明:«=) V HG/V,由己知,存在开集G“ =)E,闭集F” =)E使得m(G n-F n)<~. n00令G=C|G“,则GoE.Vne/V, m * (G - E) < m * (G n - E) < m * (G n - F n)/?=!v丄一>0(〃TOO).所以,加*9一£)=0.即G-E是零测集,可测.n从而,E = G-(G-E)可测(=>)设E是冇界可测集8 00因为加*E = inf{^l//; I | U o £ ,人为开长方体}<+oo.故,0£〉0,存在开长另一方面,由E 得冇界性,存在7T 中闭长方体I 二E.记3 = / —E,则S 是/?"中 冇界nJ 测集.并冃.m S = ml - mE.由S 得有界可测性,存在开集G" nS 有加(G*-S)v?.因为I 二E ,故G"n/z )S.2因此三 > /n(G* A/-5) = m(G* 门 /)—加S = m(G* A /) - (ml -mE)=2mE - {ml 一 77?(G + Cl /))=加E 一 m{I 一 G* Cl /)令,F = /-G*n/,则F 是一个闭集,并且由G*n/=)S = /-E,有£o/-G*n/ = F.因此 m{E -F) = mE - mF = mE - m{I - G* A /) < - > 从而,存2在开集 G 二 E ,闭集 F = E.有 m(G - F) = m((G - E)\J (E - F)) <m{G 一 E)+ m(E -F) < — + — = £ ・2 2由£的任意性知,加*(/?'x{0}) = 0.即Fx{0}是零测集.从而,位于。
实变函数第二章点集答案

13.
用三进位无限小数表示康托集 P 中的数时,完全可以 用不着数字 1,试用此事实证明 P 的基数为 c. (提示:把 P 中的点与二进位无限小数作对应)
先用三进位有限小数来表示集 P 的余区间的端点(都属于 P) 则有
证明
1 2 ( , ) (0.1,0.2), 3 3 1 2 ( , ) (0.01,0.02), 9 9 7 8 ( , ) (0.1,0.2), 9 9
n 1
11.
证明: f ( x )为a, b 上连续函数的充要条件是对任意实数 c , 集 E x f ( x ) c 和E1 x f ( x) c 都是闭集.
证明 若: f ( x )为a, b 上连续函数,用第八题同样的方法得
E 和E1 是闭集. E 若E 和E1 是闭集,若有 x0 a, b ,不是f (x) 的连续点,
n
9. 证明:每个闭集必是可数个开集的交集; 每个开集可以表示成可数个开集的合集.
证明 设 F 是闭集,令 Gn x d ( x, F )
1 ,Gn 是开集 n
1 1 ,所以存在 y 0 F ,使 d ( x 0 , y 0 ) . n n 1 1 (否则,任意 y F , d ( x 0 , y ) ,则 d ( x 0 , F ) inf d ( x 0 , y ) , yF n n 1 与 d ( x0 , F ) 矛盾) 。 n
其中 ai (i 1,2, , n 1) 为 0 到 9 除 7 外的一切自然数,
a1 ,, an1 是取遍满足上述条件的各种可能的n 1 个数
记这些全体开区间为
实变函数(曹广福)1到5章答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。
若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(inf sup =≥∈x mA nm N b χ ,即)(inf lim x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。
胡适耕_实变函数答案

第一章习题 B36.若A ΔB =A ΔC ,则B =C .证一:(反证)不妨设,∃x 0∈B ,且x 0∉C1) x 0∈A ,则x 0∉A ΔB ,x 0∈A ΔC 这与A ΔB =A ΔC 矛盾 2) x 0∉A ,则x 0∈A ΔB ,x 0∉A ΔC 这与A ΔB =A ΔC 矛盾 所以假设不成立,即B =C . 证二:()B A A ∆∆()[]()[]A B A B A A \\∆∆==()()B A B B A =\同理()C C A A =∆∆,现在已知A B A C ∆=∆故上两式左边相等,从而C B =. 37.集列{A n }收敛⇔{A n }的任何子列收敛.证 由习题8集列{}n A 收敛⇔特征函数列{}nAχ收敛,由数分知识得数列{}nA χ收敛⇔{}nA χ的任一子列{}jnA χ均收敛,又由习题8可得{}jn A 收敛.38.设)2,1}(:/{ =∈=n Z m n m A n ,则lim n nA =Z ,lim n nA =Q .证 显然有lim lim n n nnZ A A Q ⊂⊂⊂1) 假设∃x \,Q Z ∈使x ∈lim n nA∴∃N >0,当n>N 时,有n x A ∈,特别地, n x A ∈,1n x A +∈ ∴∃m 1,m 2∈Z ,使x =1m n,x =21m n + ∴1m n=21m n +从而121,m m m n=+这与m 2∈Z 矛盾,所以假设不成立,即:lim n nA =Z .2)∀x ∈Q,则∃m,n ∈Z,使得x =m n∴x=m n=2m n n⋅=…=1kk m n n+⋅=…∴x ∈kn A ,(k =1,2…),从而x ∈lim n n A ∴lim n nA =Q .39.设0<n a <1<n b ,0n a ↓,1n b ↓,则lim[,]n n na b =(0,1].证 (0,1]x ∀∈1) ∵ 0<n a <1<n b ,0n a ↓,1n b ↓ ∴0,N ∃>当n>N 时,有n a <x <n b ∴当n>N 时,x ∈[n a ,n b ] ∴(0,1]⊂lim[,]n n na b .2) 假设∃y >1,使y ∈lim[,]n n na b ,则y 属于集列{[,]n n a b }中的无限多个集合.又因为y >1, 1n b ↓ ,故0,N ∃>当n>N 时,有n b <y ,当n>N 时,y ∉[,]n n a b 从而y 只会属于集列{[,]n n a b }中的有限多个集合. 这与y 会属于集列{[,]n n a b }中的无限多个集合矛盾. 所以假设不成立,即∀y ∈(1,)∞,有y ∉lim[,]n n na b .显然,∀y ∈(0]-∞,有y ∉lim[,]n n na b ,故]1,0(],[lim ⊂n n nb a .综上所述,lim[,]n n na b =(0,1].40.设n f :R X →(n →∞), n f A χ→(n →∞),求lim (1/2)n nX f ≥.解 1)∀0x A ∈,n f A χ→( n →∞),故0()n f x 0()1A x χ→=( n →∞). ∴0,N ∃>当n>N 时,有0()n f x 1/2>.∴当n>N 时,0(1/2)n x X f ∈≥,从而0x ∈lim (1/2)n nX f ≥.2)∀0cx A ∈,n f A χ→( n →∞),故0()n f x 0()0A x χ→=( n →∞).∴0,N ∃>当n>N 时,有0()n f x 3/1>.∴0lim (1/2)n nx X f ∉≥ ∴ lim (1/2)n nX f ≥=A41.设{n A }为升列,A ⊂ n A ,对任何无限集B ⊂A ,存在n 使B n A 为无限集,则A 含于某个n A .证 假设A 不含于任何n A 中,又{n A }为升列,则对1=n ,11\A A x ∈∃,由于n A A ⊂,故N n ∈∃1,使11n A x ∈,即11\1A A x n ∈;对2=n ,22\A A x ∈∃,又n A A ⊂故N n ∈∃2使⊂⊂∈+1222n n A A x .于是可取12n n >使 22\2A A x n ∈.因此对i n =,1->∃i i n n ,i n i A A x i \∈.令B ={x 1, x 2,… x i …},则B ⊂A 且B 为无限集,但∀i ,B A ni ={x 1, x 2,… x i }为有限集,这与已知条件矛盾. ∴假设不成立,即A 含于某个n A 中.42.设f :2x→2x,当A ⊂B ⊂X 时f (A ) ⊂f (B ),则存在A ⊂X 使f (A )=A .证 因为()X X f ⊂,故子集族()(){}B B f B X P X ⊂∈=∆:20非空,令()X B A XP B ⊂=∈∆0,下证:1()A A f ⊂,即要证()X P A 0∈.首先由定义B A ⊂对每个()X P B 0∈成立,那么由已知就有()()B f A f ⊂对一切()X P B 0∈成立,从而()()()()XP B XP B A BB f A f 00∈∈=⊂⊂.2再证()A f A ⊂.为此,由A 的定义,只要能证()()X P A A f 00∈=∆就可以了.但从 1已证的()A A f A ⊂=0,又由已知f 的单调性应有()()[]()00A A f A f f A f =⊂=,故确定()X P A 00∈.43.设X 是无限集,f :X →X ,则有X 的非空真子集A ,使f (A )⊂A .证 ∀x 1∈X ,若x 1≠x 2,令x 2=f ( x 1)若x 2≠x 3 ,令3x =f (2x )… 若1n n x x -≠,令1()n n x f x -=…1)若存在1i i x x +=,则令A ={x 1,x 2,…x i },显然f (A )⊂A . 2)若不存在1i i x x +=,则令A ={x 1,x 2,…x i ,…},显然f (A )⊂A .44.设|A |>1,则有双射f :A →A ,使得∀x ∈A : f (x )≠x ;当|A |=偶数或|A |ω≥时可要求f (f (x ))=x (∀x ∈A ).证 (1)|A |=2n +1, n ∈N ,则A ={x 1,x 2,…x 2n+1 },作映射:()111221i i x i n f x x i n +≤≤⎧=⎨=+⎩,显然f (x )是双射,且∀x ∈A ,有f (x )≠x .(2)|A |=2n ,n ∈N , 则A ={x 1,x 2,…x 2n },作映射: ⎩⎨⎧=≤∃-=≤∃=-+mi n m x m i n m x x f i i i 2,12,)(11, 显然()f x 是双射,且∀x ∈A ,有()f x x ≠且()()ff x x =.(3) |A |ω≥由A ×{0,1}~A 知,存在一双射{}:0,1h A A ⨯→ 令{}()01⨯=A h A ,{}()12⨯=A h A又{}0⨯A ~{}1⨯A 及h 为双射,{}(){}()01A A ⨯⨯=∅{}(){}(){}010,1A A A ⨯⨯=⨯ ,知1A ~2A 且∅=21A A ,A A A =21 ,故A 可划分为两个互不相交等势的子集A 1和A 2。
实变函数课后题答案第二章

习题2.11.若E 是区间]1,0[]1,0[⨯中的全体有理点之集,求b E E E E ,,,' . 解 E =∅ ;[0,1][0,1]b E E E '===⨯。
2.设)}0,0{(1sin ,10:),( ⎭⎬⎫⎩⎨⎧=≤<=x y x y x E ,求b E E E E ,,,' .解 E =∅ ;{(,):0,11}.b E E x y x y E E '==-≤≤==3.下列各式是否一定成立? 若成立,证明之,若不成立,举反例说明.(1) 11n n n n E E ∞∞=='⎛⎫'= ⎪⎝⎭; (2) )()(B A B A ''=' ; (3) n n n n E E ∞=∞==⎪⎪⎭⎫ ⎝⎛11 ; (4) B A B A =; (5) ︒︒︒=B A B A )(; (6) .)(︒︒︒=B A B A解 (1) 不一定。
如设12={,,,,}n r r r Q ,{}n n E r =(单点集),则1()n n E ∞=''==Q R , 而1.n n E ∞='=∅ 但是,总有11n n n n E E ∞∞=='⎛⎫'⊃ ⎪⎝⎭ 。
(2) 不一定。
如 A =Q , B =R \Q , 则(),A B '=∅ 而.A B ''=R R =R(3) 不一定。
如设12={,,,,}n r r r Q ,{}n n E r =(单点集),则1n n E ∞===Q R , 而1.n n E ∞==Q 但是,总有11n n n n E E ∞∞==⎛⎫⊃ ⎪⎝⎭ 。
(4) 不一定。
如(,)A a b =,(,)B b c =,则A B =∅ ,而{}A B b = 。
(5) 不一定。
如[,]A a b =, [,]B b c =, 则(,)A a b = , (,)B b c = ,而()(,)A B a c = ,(,)\{}A B a c b = .(6) 成立。
卢同善实变函数青岛海洋大学出版社第二章习题答案

第二章习题答案1. 若y y x x m m →→且,则(,)(,)m m x y x y ρρ→. 特别的, 若x x m →, 则(,)(,).m x y x y ρρ→证明:这实际上是表明(,)x y ρ是n n R R ⨯上的连续函数. 利用三角不等式, 得到(,)(,)(,)(,)(,)(,)(,)(,)0,)m m m m m m m m x y x y x y x y x y x y x x y y m ρρρρρρρρ-≤-+-≤+→→∞(.2. 证明:若()δ,01x O x ∈,则δδ<∃1,使得()()δδ,,011x O x O ⊂.证明:实际上取),(0101x x ρδδ-<<即可,因为此时对任意的()11,δx O x ∈,有δρδρρρ<+≤+≤),(),(),(),(0110110x x x x x x x x ,即()0,x O x δ∈.3. 证明以下三条等价:(1).0x E ∈; (2). 0x 的任意邻域中都有E 中的点;(3). 存在E 中的点列{}n x 收敛到0x . 进而,若0x E ∉,则存在0δ>,使得0(,)O x E δ=∅I .证明:注意到'E E E =U . (i ).若(1)成立,则0x E ∈或0'x E ∈. 若前者成立,显然(2)成立;若后者0'x E ∈成立,由极限点的定义也有(2)成立. 总之,由(1)推出(2). (ii). 若(2)成立,则对任意的n ,有10(,)n O x E ≠∅I ,在其中任选一点记为n x . 这样就得到点列{}n x E ⊂,使得10(,)n n x x ρ<,即(3)成立.(iii). 设(3)成立. 若存在某个n 使得0n x x =,当然有0n x x E E =∈⊂;若对任意的n ,都有0n x x ≠,则根据极限点的性质知0'x E E ∈⊂. 总之,(1)成立. 5. 证明:A B A B ⋃=⋃.证明:因为()'''A B A B =U U ,所以有()()()()()()'''''A B A B A B A B A B A A B B A B ⋃=⋃⋃=⋃⋃=⋃⋃=⋃U U U .6. 在1R 中,设[0,1]E Q =⋂,求',E E . 解: '[0,1]E E ==7. 在2R 中,设{}22(,):1E x y x y =+<,求',E E . 解: {}22'(,):1E E x y x y ==+≤8. 在2R 中,设E 是函数1sin ,0,0,0,x x y x ≠⎧=⎨=⎩的图形上的点的全体所成之集,求'E . 解: {}'(0,):11E E a a =-≤≤U . 因对任意的11a -≤≤,有E 上的点列11,()(0,)2arcsin 2arcsin y a n an a ππ⎧⎫→⎨⎬++⎩⎭. 9. 证明:当E 是不可数集时,'E 也必是不可数集.证明:注意到()()''\E E E E E =I U . 而'\E E 是E 中孤立点的全体,它是一个孤立集,故是至多可数集. 若'E 不是不可数集,则'E 是至多可数集,其子集'E E I 也必为至多可数集,就得到()()''\E E E E E =I U 也是至多可数集(因右边两个都是至多可数集),与题设矛盾. 所以'E 必是不可数集.10. 设1,inf ,sup ,E R E E υμ⊂== 证明,E E υμ∈∈.证明:由确界的定义知有E 中的点列{}n x 收敛到υ,再由第3题即得结果. 11. 证明以下三个命题等价: (1) E 是疏朗集. (2) E 不含任何邻域.(3) cE )(是稠密集.证明: (1)→(2):反证法 假设存在E r x O ⊂),(, 按闭包的等价定义, ),(r x O 中任意点的任意邻域中都含有E 中的点, 与疏朗集的定义矛盾.(2)→(3):由假设, 对x ∀, 0δ∀>, 有E x O ⊄),(δ, 从而()∅≠cE x O I ),(δ,即任一点的任一邻域中都有cE )(中的点,也即cE )(是稠密集.(3)→(1):反证法 若E 不是疏朗集,则存在),(δx O ,使得),(δx O 中没有子邻域与E 不相交. 这实际上意味着对任意的),(),(δx O r y O ⊂都有∅≠⋂E r y O ),(, 由r 的任意小性知道E y ∈, 再由y 的任意性知道E r y O ⊂),(, 由此知道()cE 不是稠密的.由这个命题知道疏朗集的余集是稠密的, 但稠密集的余集不一定是疏朗的, 如Q .12. 设n R E ⊂,证明:E 是疏朗集的充要条件是任一闭区间中均有子闭区间与E 不相交. 证明:因为任一闭区间中必含开区间,而任一开区间中也必含闭区间. 13. 证明:疏朗集的余集必是稠密集,但稠密集的余集未必是疏朗集.证明:由第11题知若E 是疏朗集,则cE )(是稠密集. 而由于E E ⊂,故()cc E E ⊂,从而由cE )(是稠密集得到c E 是稠密的. 反例:Q 和cQ 都是稠密集. 14. 构造反例说明:非稠密集未必是疏朗集,非疏朗集未必是稠密集.反例:]1,0[15. 证明:1R 中的非空闭区间不能表示成可数个疏朗集的并. 证明:反证法. 若否,设Y∞==1],[n n E b a ,其中{}n E 都是疏朗集. 利用12题,因1E 疏朗,故],[b a 中有非空子闭区间],[],[11b a b a ⊂,使111<-a b 且111[,]a b E =∅I ;同样,因2E 疏朗,存在],[],[1122b a b a ⊂,使2122<-a b 并且222[,]a b E =∅I ;一直下去,得到一列闭区间套{}],[n n b a ,使得na b n n 1<-,],[],[11n n n n b a b a ⊂++,且[,]n n n a b E =∅I . 由数学分析中的闭区间套定理,存在唯一的],[b a x ∈含于所有的闭区间{}],[n n b a ,并且成立)(n E x n ∀∉,这与Y∞==∈1],[n n E b a x 矛盾.16. 孤立集nR E ⊂必是至多可数集.证明:令(0,)k E E O k =I ,则{}k E 是有界集列,且1k k E E ∞==U,故只需要证明每个k E 是至多可数集即可. 注意到k E 也是孤立集并且有界,方便起见,不妨仍记k E 为E .这样,问题转为证明:有界的孤立集E 是至多可数集. 任取x E ∈,由孤立性,存在()0x δ>使得{}(,())O x x E x δ=I .(*)得到满足(*)式开球族{}(,()):O x x x E K δ∈=. 明显的,E 和开球族K 对等. 对K 中的球按半径分类.令n K 是K 中半径大于1n的球的全体. 则1n n K K ∞==U ,若能证明每个n K 都是有限集,就得到K 是至多可数集,从而E 是至多可数集.下证明:n K 都是有限集. 注意到n K 中每个球的半径大于1n,且每个球的球心不在其他的球中(由(*)式),这表明各个球心之间的距离大于1n. 另一方面,这些球心是一致有界的. 再结合有界的无限集必有收敛的子列这一命题,知n K 中只能有有限个球. 17. 设n R E ⊂,证明E 是n R 中包含E 的最小闭集.证明:当然,E 是包含E 的闭集. 任取闭集F ,且E F ⊂. 来证E F ⊂. 任取0x E ∈,则存在E 中的点列{}n x 收敛到0x (第3题中闭包的性质). 而E F ⊂,所以点列{}n x 含于F 中且收敛到0x ,这表明0x F ∈. 又F 是闭集,所以F F =,即有0x F ∈. 再由0x E ∈的任意性知E F ⊂,即E 是包含E 的最小闭集.18. 设)(x f 是n R 上的实值连续函数. 证明:对任意的实数a ,集合 {}:()x f x a >是开集, 集合{}a x f x ≥)(:是闭集.证明:(1)任取{}:()x f x a >中的点0x ,则0()f x a >. 由连续函数的性质(保号性)知:0δ∃>,使得当0x x δ-<时,恒有()f x a >,即{}0(,):()O x x f x a δ⊂>,也就证明了0x 是{}:()x f x a >的内点. 由0x 的任意性知{}:()x f x a >是开集. (2)证明{}:()E x f x a =≥是闭集.法一. 类似于(1),知{}:()x f x a <是开集. 由于开集的余集是闭集,所以{}{}:():()cx f x a x f x a ≥=<是闭集.法二. 直接证. 任取'0x E ∈,则存在点列{}n x E ⊂,使得0lim n n x x →∞=. 再由函数的连续性知0lim ()()n n f x f x →∞=. 又()()n f x a n ≥∀,结合连续函数的性质(保号性),必有0()f x a ≥,即0x E ∈. 由'0x E ∈的任意性得到'E E ⊂,也即E 是闭集.19. 证明:1R 中可数个稠密的开集之交是稠密集. 证明:反证法. 设1n n E E ∞==I,其中{}n E 是一列稠密的开集. 若E 不是稠密集,则存在某个邻域0(,)O x δ与E 不相交,这时必有闭区间0022[,]c I x x E δδ=-+⊂. (1)而()11ccc nn n n E E E ∞∞====IU , (2)这里{}c n E 是一列疏朗集(因为稠密开集的余集是疏朗的). {}c n E I I 也是一列疏朗集(疏朗集的子集当然是疏朗的),再由(1),(2)两式得到()11c c c n n n n I I E I E I E ∞∞=====I II U U ,这表明非空闭区间I 可以表示成一列疏朗集{}c n E I I 的并,与第15题矛盾.补:稠密开集E 的余集c E 是疏朗的.证明:反证法. 若c E 不是疏朗集,由疏朗集的等价条件(第11题)知存在邻域0(,)c O x E δ⊂. 又E 是开集,所以c E 是闭集,故c c E E =. 结合起来有0(,)c O x E δ⊂,这表明0(,)O x E δ=∅I ,与E 是稠密集矛盾. 20. 设)(x f 是1R 上的实函数. 令0()lim sup ()inf ().y x y x x f y f y δδδω→-<-<⎡⎤=-⎣⎦证明 :(1)对任意的0>ε,集合{}:()x x ωε≥是闭集.(2))(x f 的不连续点的全体成一σF 集.证明:注意到()''''''0,(,)()lim sup ()()y y O x x f y f y δδω→∈=-,它是)(x f 在x 处的振幅. (1). 等价于证明{}:()E x x ωε=<是开集. 任取0x E ∈,因为0()x ωε<,由极限的性质,存在0δ>,使得()'''0''',(,)sup ()()y y O x f y f y δε∈-<.任取0(,)x O x δ∈,则存在10δ>,使得10(,)(,)O x O x δδ⊂. 显然有()()''''''1'''''',(,),(,)sup ()()sup ()()y y O x y y O x f y f y f y f y δδε∈∈-≤-<.这表明()x ωε<,x E ∈. 故0(,)O x E δ⊂,说明E 中的点全是内点,E 是开集. (2). 注意到连续点的振幅是零,不连续点的振幅大于零. 设不连续点的全体是K . 令11:()n K x R x n ω⎧⎫=∈≥⎨⎬⎩⎭. 则{}n K 是闭集列,且1nn K K ∞==U ,即K 是σF 集.21. 证明:]1,0[中无理数的全体不是σF 集.证明:反证法. 若[0,1]\Q 是σF 集,则1[0,1]\n n Q E ∞==U,其中{}n E 是]1,0[中的闭集列. 因为每个n E 都是闭集且都不含有理数,所以它必是疏朗集(因若不疏朗,则n E 中必有邻域,而任意邻域中都有有理数). 而]1,0[中有理数的全体[0,1]Q I 是可数集,设{}{}121[0,1],,,,n n n Q r r r r ∞===I L K U . 单点集列{}n r 当然是疏朗集列. 结合起来,有()()(){}()11[0,1][0,1]\[0,1]n n n n Q Q E r ∞∞====U I UU U,等式的右边都是疏朗集,故上式表明闭区间]1,0[可表示成一列疏朗集的并,与第15题矛盾. 22. 证明:定义在]1,0[上具有性质:“在有理点处连续,在无理点处不连续”的函数不存在.证明:结合第20题(2)和第21题直接得结论.23. 设n R E ⊂,证明E 的任意开覆盖必有至多可数的子覆盖. (Lindelof 定理)证明:设{}:E αα∈Λ是E 的任一开覆盖. 任取E 中的点x ,必有某α∈Λ,使得x E α∈.存在有理开区间x I ,使得x x I E α∈⊂. (*)就得到E 的有理开区间族覆盖{}:x I x E ∈(称为{}:E αα∈Λ的加细开覆盖),其中x I 对某个E α满足(*)式. 因为有理开区间的全体是可数集,所以{}:x I x E ∈作为集合来看是至多可数集,记为{}n I . 则nn E I⊂U ,对n I ,取满足(*)式的相应E α记为n E ,这时{}n E 是至多可数个且覆盖E .24. 用Borel 有限覆盖定理证明Bolzano-Weierstrass 定理.证明:反证法. 设E 是有界的无限集. 若E 没有极限点,则它是有界闭集,还是孤立集. 由孤立性,对任意的x E ∈,存在()0x δ>使得{}(,())O x x E x δ=I(*)这样,得到满足(*)式的开球族{}(,()):O x x x E δ∈且覆盖E . 因E 是有界闭集,由Borel 有限覆盖定理,存在有限的子覆盖,记为{}():1,,i O x i k =L . 即有1()ki i E O x =⊂U,又E是无限集,所以至少存在一个()i O x 含有E 中的多个点,这与(*)式矛盾.25. 设n E R ⊂是G δ集,且E 含于开集I 之中,则E 可表为一列含于I 的递减开集之交. 证明:设1nn E E ∞==I,其中{}n E 是开集列. 取1n n k k F E ==I ,则{}n F 是递减的开集列(因有限个开集的交是开集),且1n n E F ∞==I. 又I 是开集,故{}n F I I 是含于I 中的递减开集列. 结合E I ⊂,得()()11nn n n E E I F I F I ∞∞=====I I I II .{}n F I I为所求.26. 设{}()n f x 为n R 上的连续函数列. 证明:点集{}:lim ()0n E x f x =>为一F σ集. 证明:注意到对任意的a ,{}[]:()n n x f x a f a ≥=≥都是闭集(第18题). 而{}111:lim ()0n nk N n N E x f x f k ∞∞∞===⎡⎤=>=≥⎢⎥⎣⎦U U I. 又1nn N f k ∞=⎡⎤≥⎢⎥⎣⎦I是闭集(任意多个闭集的交还是闭集),结合上式表明E 为一F σ集. 27. 设G 为Cantor 开集,求'G .解:由Cantor 集是疏朗的,可得'[0,1]G = 28. 证明:1R 中既开又闭的集合只能是1R 或∅.证明:设A 是非空的既开又闭集. 它必有构成区间,不妨设),(b a 是A 的一个构成区间.若a 有限, 则A a ∉; 另一方面,由A 是闭集得A A b a b a a ⊂⊂=∈')',(],[, 得到矛盾. 所以a =-∞,同理得b =+∞. 因此1A R =,所以1R 中既开又闭的集或是空集或是1R .实际上:n R 中既开又闭的集或是空集或是n R .证明: 反证法. 设nR A ⊂是既开又闭的非空又非nR 的集合. 则必存在nx R ∈,但x A ∉. 一方面因为A 是非空闭集, 所以存在A y ∈, 使得()()0,,>=y x A x ρρ. 另一方面, 因为A 又是开集, 所以y 是内点,而取得非零距离的点绝不能是内点(只能在边界上达到非零的距离),就导出了矛盾, 所以n R 中既开又闭的集或是空集或是nR . 29. 1R 中开集(闭集)全体所成之集的势为c .证明:因为开集的余集是闭集、闭集的余集是开集, 且不同集合的余集是不同的, 所以开集全体的势和闭集全体的势是一样的.设开集的全体是F . 由于全体开区间{}b a b a F <=:),(1()(b a 可取负(正)无穷)的势是c , 所以F 的势不小于c . 任取开集A F ∈, 由开集的构造知道Y ),(i i b a A =(是至多可列个并). 作对应{}ΛΛ;;,;,)(2211b a b a A =ϕ(如果是有限并,后面的点全用0代替), 则该对应是从F 到R ∞一个单射(因不同开集的构造不同), 就有F 的势不大于R ∞的势c . 综上所述,直线上开集的全体的势是c .实际上:n R 中开集(闭集)全体所成之集的势为c .证明:设n R 中开集的全体是F ,易知F 的势不小于c . 由n R 中开集的构造,每个开集A F ∈都可表示成可数多个互不交的左闭右开的有理方区间(平行坐标轴,中心的坐标和边长都是有理点,有理数){}():n I A n N ∈的并,且开集不同时表示不完全相同. 有理方区间的全体K 是可数集,所以K 的子集的全体所成之集2K 的势是2ac =. 让开集A 和它的表示{}():n I A n N ∈对应,则该对应是从F 到2K 的单射,这表明F 的势不超过c .30. 证明:nR 中的每个开集或闭集均为F σ集和G δ集.证明:设E 是闭集,它当然是F σ集(取闭集列全是E 自身即可). 令{}1:(,)n nE x x E ρ=<,则{}n E 是包含E 的开集列(第32题). 实际上,有1n n E E ∞==I. (*)显然,左是右的子集. 任取右边的元x ,则()n x E n ∈∀,即1(,)()n x E n ρ<∀,这表明(,)0x E ρ=,因此x E E ∈=,说明右边是左边的子集. 因此(*)式表明闭集E 是G δ集.由对偶性得到开集既是F σ集也是G δ集.31. 非空集合nF R ⊂具有性质:*,nx R y F ∀∈∃∈使*(,)(,)x y x F ρρ=,证明F 是闭集.证明:任取'x F ∈,则存在{}n x F ⊂,使0n x x -→,故 0(,)0n x F x x ρ≤≤-→.因此(,)0x F ρ=. 由题设,存在*y F ∈使得*(,)(,)0x y x F ρρ==,故*x y F =∈. 由'x F ∈的任意性得'F F ⊂,即F 是闭集.由于点到闭集的距离可达, 该性质是F 成为闭集的充要条件.32. 设集合,0nE R d ⊂>,点集U 为{}:(,)U x x E d ρ=<. 证明E U ⊂且U 是开集.证明:E U ⊂是显然的. 法一. 由第34题,()(,)f x x E ρ=是n R 上的连续函数,而{}:()U x f x d =<,再由第18题知U 是开集.法二. 直接证U 中的点全是内点. 任取x U ∈,则(,)x E r d ρ=<. 取正数d r δ<-. 当ny R ∈满足(,)x y ρδ<时,根据集合距离的不等式得(,)(,)(,)y E x E x y r d ρρρδ≤+<+<,即表明(,)O x U δ⊂,故x 是U 的内点. 由x U ∈的任意性知U 是开集.33. 设,nE F R ⊂是不相交的闭集,证明:存在互不相交的开集,U V ,使得,E U F V ⊂⊂.证明:法一. 由第35题,存在n R 上的连续函数()f x 使得{}:()0E x f x ==且{}:()1F x f x ==. 则{}{}1142:(),:()U x f x V x f x =<=>都是开集(由第18题)且不相交,同时还满足,E U F V ⊂⊂.法二. 因为,E F 是互不相交的闭集,所以,ccE F 是开集,且,ccE F F E ⊂⊂. 任取,c x E F ∈⊂ 因c F 是开集,故存在邻域()(,())O x O x x δ=,使得()()cx O x O x F ∈⊂⊂,即 ()O x F =∅I . (1)这样就得到E 开覆盖{}():O x x E ∈,且满足(1). 又集合E 的任一开覆盖一定有至多可数的子覆盖(第23题),所以E 可以用可数个开球()O x 来覆盖,记为{}1n n O ∞=. 即有1n n E O ∞=⊂U 且,()n O F n =∅∀I . (2)同理,存在可数个开球{}1n n B ∞=使得1n n F B ∞=⊂U 且,()n B E n =∅∀I (3)令 11\\n n n n k n k k k U O B O B ====U U , 11\\n nn n k n k k k V B O B O ====U U .则{}{}11,n n n n U V ∞∞==均是开集列(都是开集减闭集),且,(,)n m U V n m =∅∀I . 还由(2)(3)式知{}{}11,n n n n U V ∞∞==还分别是,E F 的开覆盖(因由构造,n O 中去掉的都不是E 中的点). 取11,n n n n U U V V ∞∞====U U ,则它们即为所求.34. 设,nE R E ⊂≠∅,证明(,)x E ρ作为x 的函数在n R 上是一致连续的.证明:命题直接由不等式(,)(,)x E y E x y ρρ-≤-得到.35. 设,E F 为n R 中互不相交的非空闭集,证明存在n R 上的连续函数()f x 使得:(1). 0()1,nf x x R ≤≤∀∈;(2). {}:()0E x f x ==且{}:()1F x f x ==. 证明: 实际上(,)()(,)(,)x E f x x E x F ρρρ=+满足要求.36. 设0,n nE R x R ⊂∈. 令{}{}00:E x x x x E +=+∈,即{}0E x +是集合E 的平移,证明:若E 是开集,则{}0E x +也是开集.证明:因为开球平移后还是开球.。
实变函数第二章习题解答

第二章习题参考解答1:证明:有理数全体是R '中可测集,且测度为0.证:(1)先证单点集的测度为0.R x '∈∀,令}{x E =.0>∀ε,N n ∈∀)2,2(11+++-=n n n x x I εεε,因为E I I E m n n n n ⊃=∞=∞=∑11||inf{* ε,n I 为开区间≤}∑∑∞=∞===112||n n n n I εεε.故0*=E m .所以E 可测且0=mE .(2)再证:R '中全体有理数全体Q 测度为0.设∞=1}{n n r 是R '中全体有理数,N n ∈∀,令}{n n r E =.则}{n E 是两两不相交的可测集列,由可测的可加性有:∑∑∞=∞=∞=====11100)(*n n n n n mE E m Q m .法二:设∞==1}{n n r Q ,N n ∈∀,令)2,2(11+++-=n n n n n r r I εεε,其中ε是预先给定的与n 无关的正常数,则:∑∑∑∞=∞=∞=∞===≤⊃=11)(112||}||inf{*i i nin i i nIQ I IQ m εεε .由ε得任意性,0*=Q m .2.证明:若E 是nR 有界集,则+∞<E m *.证明:若E 是nR 有界.则∃常数0>M ,使E x x x x n ∈=∀),,(21 ,有=EM x x ni i ni i ≤=-∑∑==1212)0(,即)1(n i i <≤∀,有M x i ≤,从而],[1M x M x E i n i i +-⊂∏=.所以+∞<=≤+-≤∑∏==nni ini i M M M x M x m E m )2(2],[**113.至少含有一个内点的集合的外测度能否为零?解:不能.事实上,设nR E ⊂,E 中有一个内点 E x x x n ∈=),(1 .0>∃δ,使得E x x x O i ni i ⊂+-=∏=)2,2(),(1δδδ.则0)]2,2([**1>=+-≥∏=n i ni i x x m E m δδδ所以0*≠E m . 4.在],[b a 上能否作一个测度为a b -,但又异于],[b a 的闭集? 解:不能事实上,如果有闭集],[b a F ⊂使得a b mF -=.不失一般性,可设F a ∈且F b ∈.事实上,若F a ∉,则可作F a F }{*=,],[*b a F ⊂.且mF mF a m mF =+=}{*.这样,我们可记*F 为新的F ,从而),(),(),(],[b a F b a F b a F b a -=-=-.如果∅≠-F b a ],[,即F b a F b a x -=-∈∃),(],[,而F b a -),(是开集,故x 是F b a -],[的一个内点,由3题,0),()],([)],([*≠-=-=-mF b a m F b a m F b a m .这与a b mF -=矛盾.故不存在闭集],[b a F ⊂且a b mF -=5.若将§1定理6中条件")("0∞<≥n k n E m 去掉,等式∀n n n n mE E m ∞→∞→<lim )lim (是否仍成立? 解:§1定理6中条件")("0∞<≥n k n E m 是不可去掉的.事实上,N n ∈∀,令),1[n n E n --,则∞=1}{n n E 是两两相交的可测集列,由习题一得15题:∅==∞→∞→n n n n E E lim lim .故0)lim (=∞→n n E m ,但N n ∈∀,1),1[=-=n n m mE n .所以1lim =∞→n n mE .从而)lim (lim n n n n E m mE ∞→∞→≠.6.设1E , ,2E 是)1,0[中具有下述性质的可测集列:0>∀ε,N k ∈∃使ε->1k mE ,证明:1)(1=∞=i i E m证:事实上,0>∀ε,因为N k ∈∃,ε->1k mEε->≥≥≥∞=1)(]1,0[11k i i mE E m m7.证明:对任意可测集B A ,,下式恒成立.mB mA B A m B A m +=+)()( .证明:A A B A B A )(-=且∅=-A A B A )(故 mA A B A m B A m +-=)()( .即)()()(A B m A B A m mA B A m -=-=-又因为)()(A B A B B -=.且∅=-)()(A B A B ,所以=mB)()(A B m A B m +-故)()(B A m mB mA B A m -=-,从而mB mA B A m B A m +=+)()( 8.设是1A ,2A 是]1,0[中的两个可测集且满足121>+mA mA ,证明:0)(21>A A m .证:212121)()(mA mA A A m A A m +=+ .又因为1])1,0([)(21=≤m A A m所以01)()(21212121>-+≥-+=mA mA A A m mA mA A A m9.设1A ,2A ,3A 是]1,0[中的两个可测集,且2321>++mA mA mA ,证明:0)(321>A A A m证:321321321)(])[()(mA A A m A A A m A A A m +=+ =)()()()(21321A A m A m A m A m -++.所以)()()()()][()(32132132121A A A m A m A m A m A A A m A A m -++=+又因为)]()()[(133221A A A A A A m =)]()[(32121A A A A A m =)][()(32121A A A m A A m +)][()[(32121A A A A A m -=)(21A A m + 321)[(A A A m ]][(321A A A m -.所以=)(321A A A m -+)][()(32121A A A m A A m )]()()[(133221A A A A A A m =)]()()[()()()()(133221321321A A A A A A m A A A m A m A m A m --++因为1]1,0[)(321=≤m A A A m1]1,0[)]()()[(133221=≤m A A A A A A m .所以02)()()(11)()()()(321321321>-++=--++≥A m A m A m A m A m A m A A A m .10.证明:存在开集G ,使mG G m >证明:设∞=1}{n n r 是]1,0[闭区间的一切有理数,对于N n ∈∀,令)21,21(22+++-=n n n n n r r I ,并且n n I G ∞==1是R '中开集2121121212111=-==≤∑∑∞=+∞=n n n n mI mG .而,]1,0[⊃G ,故mG m G m =>=≥211]1,0[.11.设E 是R '中的不可测集,A 是R '中的零测集,证明:CA E 不可测.证明:若CA E 可测.因为A A E ⊂ ,所以0*)(*=≤A m A E m .即0)(*=A E m .故A E 可测.从而)()(CA E A E E =可测,这与E 不可测矛盾.故CA E 不可测. 12.若E 是]1,0[中的零测集,若闭集E 是否也是零测集.解:不一定,例如: E 是]1,0[中的有理数的全体.]1,0[=E .0=mE ,但1]1,0[==m E m .13.证明:若E 是可测集,则0>∀ε,存在δG 型集E G ⊃,σF 型集E F ⊃,使ε<-)(F E m ,ε<-)(F G m证明:由P51的定理2,对于nR E ⊂,存在δG 型集E G ⊃,使得E m mG *=.由E得可测性,mE E m =*.则0>∀ε.0)(=-=-mE mG E G m .即0>∀ε,ε<-)(F G m . 再由定理3,有σF 型集F 使得E F ⊃.且ε<=-=-0)(mF mE F E m15.证明:有界集E 可测当且仅当0>∀ε,存在开集E G ⊃,闭集E F ⊃,使得ε<-)(F G m .证明:)(⇐N n ∈∀,由已知,存在开集E G n ⊃,闭集E F n ⊃使得nF G m n n 1)(<-. 令n n G G ∞==1,则E G ⊃.N n ∈∀,)(*)(*)(*n n n F G m E G m E G m -≤-≤-)(01∞→→<n n.所以,0)(*=-E G m .即E G -是零测集,可测. 从而,)(E G G E --=可测)(⇒设E 是有界可测集因为E I IE m n n n n⊃=∞=∞=∑11||inf{* ,n I 为开长方体+∞<}.故,0>∀ε,存在开长方体序列∞=1}{n n I ,使得E I n n ⊃∞=1.有2*||*1ε+<≤∑∞=E m IE m n n.另一方面,由E 得有界性,存在nR 中闭长方体E I ⊃.记E I S -=,则S 是nR中有界可测集.并且mE mI mS -=.由S 得有界可测性,存在开集S G ⊃*有2)(*ε<-S G m .因为E I ⊃,故S I G ⊃ *.因此mS I G m S I G m -=->)()(2** ε==--)()(*mE mI I G m))((*I G m mI mE --)(*I G I m mE --=令,I G I F *-=,则F 是一个闭集,并且由E I S I G -=⊃ *,有F IG I E =-⊃ *.因此2)()(*ε<--=-=-I G I m mE mF mE F E m ,从而,存在开集E G ⊃,闭集E F ⊃.有))()(()(F E E G m F G m --=- )(E G m -≤)(F E m -+εεε=+<22.由ε的任意性知,0})0{(*=⨯'R m .即}0{⨯'R 是零测集.从而,位于ox 轴上的任意集}0{⨯'⊆R E ,因此,E 为零测集.16.证明:若nm R E ⊂是单调增加集列(不一定可测)且m n E ∞=1,则m m m n E m E m *lim )(*1∞→∞==证明:m n E E ∞==1,即,E 有界并且E E E E E n ⊂⊂⊂⊂⊂⊂ 321故+∞<≤≤≤≤≤≤E m E m E m E m E m n *****321 ,即∞=1}*{m m E m 单调递增有上界.所以,m m E m *lim ∞→存在并且E m E m m m **lim ≤∞→下证:E m E m m m **lim ≥∞→.由于E 有界,可作一个开长方体),(1∏==∆ni iiβα,有N n ∈∀,∆⊂⊂E En.0>∀ε,因为n i n i i n E I I E m ⊃=∞=∞=∑11||inf{* ,i I 为开长方体}.故,存在开长方体序列}{i I 使得n i n E I ⊃∞=1,且ε+<=≤≤∑∑∞=∞=∞=111*||*)(**i n i i i i n n E m I I m I m E m .令∆=∞= )(1i n n I G ,则nG 为有界开集,且∆⊂⊂n n G E ,ε+<≤≤∞=n n i n n E m I m G m E m *)(***1.N n ∈∀,又令=n A k n G ∞=1),2,1( =n .且n n A A ∞==1,则由∆⊂⊂n n A E 知,}{n A 是单调递增的可测序列,由P46的定理4,n n n n mA A m mA E m ∞→∞→==≤lim lim *.又由,)(N n G A n n ∈∀⊂,有ε+<≤n n n E m mG mA *.从而ε+≤∞→∞→n n n n E m mA *lim lim .故ε+≤∞→n n E m E m *lim *.由ε得任意性,即得n n n E m mA *lim ∞→≤.从而,n n n m n E m E m mA *lim )(*1∞→∞=== .17.证明:n R 中的Borel 集类具有连续势.证明:为了叙述方便,我们仅以1=n 为例进行证明:用[,]b a 表示R '上的开区间,用),(b a 表示上的一个点.A 表示R '上的所有开区间的集合;Q 表示R '所有闭集;σρ和δϑ分别表示所有的σF 型集,所有δG 型集.因为R R b a R b a b a R b a b a A '⨯'⊂<'∈'∈=},,|),{(~},[,{],又因为A R a b a R ⊂'∈'}[,{]~.故C R R A R ='⨯'≤≤'.所以C A =.又因为|{O A ⊆存在可数个开区间}{k I ,有}1k k I O ∞== .所以Q A ≤.又定义映射Q A →∞:ϕ,∞=∈∀∏A I ni i 1,有Q I I k k ni i ∈=∞==∏11)( ϕ.故ϕ是一个满射.所以C A A Q A C =≤=≤=∞∞)(ϕ. 故C A =.又定义:→∞Q:ψδϑ,→∞Q :τσρ,i i ni i O O ∞===∏11)( ψ,ci i ni i O O ∞===∏11)( τ则ψ与τ都是满射.所以 C Q Q Q C =≤==≤∞∞)(ψϑδ.即,C =δϑ.同理,C =σρ.记β时R '上的Borel 集的全体.因集合的“差”运算可以化成“交”运算,例如:c B A B A =- .因此,β中的每个元都是δσϑρ 中可数元的并,交后而成.故C C =≤≤=∞)(δσδσϑρβϑρ .∆⊂=⊂=∞=∞=A A E E n n n n 11从而,C =β.即,R '上Borel 集的全体的势为C .18.证明对任意的闭集F ,都可找到完备集F F ⊂1,使得mF mF =1.19.证明:只要0>mE ,就一定可以找到E x ∈,使对0>∀δ,有0)),((>δx O E m .证明:设n R E ⊂,0>mE .首先将n R 划分成可数边长为21的左开右闭的n 维长方体 }|)21,2({1Z m m m i i ni i ∈+= .则}|)21,2({11Z m m m E i i ni i ∈+== β互不相交且至多可数.不妨记为1}{)1(1A k k E ∈=β,N A ⊂1.因)1(1k k E E ==β,则0)1(>=∑kkE m mE .故N k ∈∃1,有0)1(1>k mE .又因}|)21,2({212)1(2Z m m m E i i ni i k∈+== β互不相交且至多可数.故可记2}{)2(2A k k E ∈=β,其中 N A ⊂2,又由,)2(2)1(k k k E E ==β.故0)2()1(>=∑k kk E mE ,所以, N A k ⊂∈∃22,有0)2(>k mE .这样下去得一个单调递减的可测集列 ⊃⊃⊃=)2()1()0(210k k k E E E E ,其中:N j >∀,)]21,2([)]21,2([{111j i n i j i j i ni j i j k jk m m E m m EE j j+=+===- .记)]21,2([1j i ni ji j m m E F +== ,故闭集列∞=1}{j j F 单调递减且N j >∀,)(0)21(21)(0)(+∞→→=≤≤<j mF E m jn nj j k jj . 由闭集套定理,j j F x ∞=∈∃1! .对于0>∀δ,因j nj mF )21(≤,取N j >0,使δ<0)21(j n .则 E x O m m E F x j i ni j i j ),()]21,2([0001δ⊂+=∈=,故0)),((0>≥j mF x O E m δ .20.如果nR E ⊂可测,0>α,记}),,(|),,{(11E x x x x E n n ∈= ααα.证明:E α也可测,且mE E m n⋅=αα)(.证明:(1)先证:E m E m n*)(*⋅=αα因为E I IE m i i i iαα⊃=∞=∞=∑11||inf{)(* ,i I 为开长方体},对于开长方体序列∞=1}{i n I ,若E I i i α⊃∞=1,则E I i i ⊃∞=α11,E I i i ⊃∞=α11也是开长方体序列,且∑∞=≤1|1|*i i I E m α=∑∞=1||1i inIα.即∑∞=≤⋅1||*i i nI E m α.因此≤⋅E m n*αE I I i i i i α⊃∞=∞=∑11||inf{ ,i I 为开长方体}.另一方面,0>∀ε,因为E I IE m i i i i⊃=∞=∞=∑11||inf{* ,i I 为开长方体}.故存在开长方体序列n i i E m I αε+<∑∞=*||1*.所以E I i i αα⊃∞=*1 ,故εαααα+<==∑∑∞=∞=E m I I E m n i i n i i *||||)(*1*1*.由ε得任意性,知E m E m n *)(*αα≤.从而E m E m n *)(*αα=(2)再证:E α可测事实上,nR T ⊂∀,n R T ⊂α1,由E 得可测性,=)1(T m α+)1(*E T m α)1(*CE T m α.故,=)(1T m n α+)(*1E T m n αα )(*1CE T m n αα.因此=T m *+)(*E T m α )(*CE T m α .E α可测. 因此,当E 可测时,mE E m nαα=*.下面是外测度的平移不变性定理.定理(平移不变性)设nR E ⊂,nR x ∈0,记}|{}{00E x x x x E ∈+=+.则E m x E m *}){(*0=+证明:当E 是nR 中开长方体时}{0x E +也是一个开长方体,且其相应的边均相同,故E m E x E x E m *|||}{|}){(*00==+=+.如果E 是nR 中的任意点集,对于E 德任意由开长方体序列∞=1}{i i I 构成的覆盖,∞=+10}}{{i i x I 也是覆盖}{0x E +,且仍是开长方体序列,故≤+}){(*0x E m∑∑∞=∞==+110|||}{|i i i iI x I.所以≤+}){(*0x E m E I I i i i i ⊃∞=∞=∑11||inf{ ,i I 为开长方体}=E m *.即≤+}){(*0x E m E m *.下证:E m *≤}){(*0x E m +令}{01x E E +=,由上面的证明知,}){(*01x E m -+≤1*E m .所以=E m *}){(**}){(*0101x E m E m x E m +=≤-+.从而,E m x E m *}){(*0=+.21.设2)(x x f =,R E '⊂.是零测集,证明:}|)()(2E x x x f E f ∈==也是零测集.证明:设R E '⊂,0=mE(1)当)1,0(⊂E 时,0>∀ε,当0*=E m ,则存在开区间到∞==1)},({i i i i I βα使得)1,0(),(1⊂⊂∞=i i i E βα ,且2)(||11εαβ<-=∑∑∞=∞=i i i i iI.故==∞=)),(()(1i i i f E f βα)1,0(),(221⊂∞=iii βα .))(()(|)(|)(*12211i i i i i iii i i I f E f m αβαβαβ+-=-=≤∑∑∑∞=∞=∞=εεαβ=-=-≤∑∞=22)(21i i i .所以0)(*=E f m .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章习题答案1.若 x m x且 y m y ,则( x m , y m )( x , y ) .特别的 , 若x m x ,则 ( x m , y )( x , y ) .证明:这实际上是表明( x, y)是 R n R n上的连续函数 .利用三角不等式 ,得到( x m , y m )( x, y)( x m , y m )( x, y m )( x, y m )( x, y).( x , x m )( y, y m )0,( m)2.证明:若 x1 O x 0 ,,则1,使得 O x1 ,1O x 0 ,.证明:实际上取01( x 0 , x1 ) 即可,因为此时对任意的x O x1 , 1 ,有( x , x 0 )( x, x1 )( x1 , x 0 )1( x 1 , x 0 ),即 x O x0 , .3.证明以下三条等价: (1). x E;(2).x 0的任意邻域中都有 E 中的点;(3).存在E中的点列 x n收敛到 x 0. 进而,若 x0 E ,则存在0,使得 O ( x 0 ,)E.证明:注意到 E E E ' .( i) .若( 1)成立,则x0 E 或 x 0 E ' .若前者成立,显然( 2)成立;若后者x0 E ' 成立,由极限点的定义也有(2)成立.总之,由(1)推出(2).(ii).若(2)成立,则对任意的n ,有O ( x0,1n)E,在其中任选一点记为x n.这样就得到点列x n E ,使得( x n , x0 )1n,即(3)成立.(iii).设(3)成立.若存在某个n 使得x n x0,当然有x0x n E E ;若对任意的n ,都有 x0x n,则根据极限点的性质知x0 E ' E . 总之,( 1)成立 .5.证明:A B A B.证明:因为 A B ' A' B',所以有A B A B A B ' A B A' B'A A'B B'A B.6. 在 R1中,设E Q[0,1] ,求 E ', E .解: E ' E[0,1]7. 在 R 2中,设 E( x, y ) : x2y 2 1,求E',E .解:E'E( x , y ) : x 2 y 218. 在 R 2中,设 E 是函数 ysinx1, x0,0,x的图形上的点的全体所成之集,求E ' .0,解:E'E(0, a ) : 1a1 . 因对任意的1 a1 ,有 E 上的点列1, y ( 1) (0, a ) .2 narcsin a arcsin2 na9. 证明:当 E 是不可数集时, E ' 也必是不可数集 .证明: 注意到 E EE 'E E ' .而EE '是 E 中孤立点的全体,它是一个孤立集,故是至多可数集 . 若 E ' 不是不可数集,则E ' 是至多可数集,其子集E E ' 也必为至多可数集,就得到EEE 'EE ' 也是至多可数集(因右边两个都是至多可数集),与题设矛盾 . 所以 E ' 必是不可数集 .1inf E ,sup E , 证明 E , E .10.设ER,证明: 由确界的定义知有E 中的点列x n 收敛到 ,再由第 3 题即得结果 .11. 证明以下三个命题等价 :(1) E 是疏朗集 .(2) E 不含任何邻域 .(3) ( E ) c 是稠密集 .证明: (1) (2) :反证法 假设存在 O ( x , r ) E , 按闭包的等价定义, O ( x, r ) 中任意点的任意邻域中都含有E 中的点 , 与疏朗集的定义矛盾 .(2)(3) :由假设 , 对 x ,0 , 有 O ( x, )E , 从而 O ( x,)Ec,即任一点的任一邻域中都有( E ) c 中的点,也即 (E ) c 是稠密集 .(3)(1) :反证法 若 E 不是疏朗集, 则存在 O ( x , ) ,使得 O ( x ,) 中没有子邻域与 E 不相交 . 这实际上意味着对任意的O ( y, r )O ( x, ) 都有 O ( y , r ) E,由 r 的任意小c性知道 y E , 再由 y 的任意性知道 O ( y , r ) E , 由此知道 E 不是稠密的 .由这个命题知道疏朗集的余集是稠密的, 但稠密集的余集不一定是疏朗的, 如Q .12.设 E R n,证明:E是疏朗集的充要条件是任一闭区间中均有子闭区间与E不相交.证明:因为任一闭区间中必含开区间,而任一开区间中也必含闭区间.13.证明:疏朗集的余集必是稠密集,但稠密集的余集未必是疏朗集.c 证明:由第 11 题知若E是疏朗集,则( E )c是稠密集 .而由于 E E,故E E c,从而由 ( E ) c是稠密集得到 E c是稠密的 .反例: Q 和 Q c都是稠密集 .14.构造反例说明:非稠密集未必是疏朗集,非疏朗集未必是稠密集.反例: [ 0,1]15.证明: R1中的非空闭区间不能表示成可数个疏朗集的并.证明:反证法 . 若否,设[ a , b ] E n,其中 E n都是疏朗集 . 利用 12 题,因 E 1疏n 1朗,故 [ a , b ] 中有非空子闭区间[ a1, b1][ a , b ] ,使 b1a1 1 且[ a1, b1]E1;同样,因 E 2疏朗,存在 [ a 2 , b 2 ][ a1 , b1 ] ,使b21a 2并且 [ a2 , b2 ] E 2;一直下去,得2到一列闭区间套 [ a n , b n ],使得 b n a n 1,[ a n1 , b n 1 ][ a n , b n] ,且 [ a n, b n] E n. n由数学分析中的闭区间套定理,存在唯一的x[ a , b] 含于所有的闭区间[ a n , b n],并且成立 x E n (n ) ,这与 x[ a , b ] E n矛盾.n 116.孤立集 E R n必是至多可数集 .证明:令 E k E O (0, k ) ,则 E k是有界集列,且E E k,故只需要证明每k1个 E k是至多可数集即可.注意到 E k也是孤立集并且有界,方便起见,不妨仍记 E k为 E .这样,问题转为证明:有界的孤立集 E 是至多可数集.任取 x E ,由孤立性,存在( x) 0 使得O ( x ,( x ) ) E x( * ).得到满足( * )式开球族O ( x, ( x)) : x EK . 明显的,E和开球族K对等. 对K中的球按半径分类 .令 K n是 K 中半径大于1的球的全体 . 则K K n,若能证明每个K n都是有限集,n n 1就得到 K 是至多可数集,从而 E 是至多可数集.下证明:Kn都是有限集.注意到K n中每个球的半径大于1,且每个球的球心不在其他n1的球中(由( * )式),这表明各个球心之间的距离大于. 另一方面,这些球心是一致有界n的.再结合有界的无限集必有收敛的子列这一命题,知K n中只能有有限个球.17.设 E R n,证明 E 是R n中包含 E 的最小闭集.证明:当然, E 是包含 E 的闭集.任取闭集 F ,且 E F .来证 E F .任取 x0 E ,则存在 E 中的点列 x n收敛到 x0( 第 3 题中闭包的性质 ).而 E F ,所以点列x n含于F 中且收敛到 x0,这表明 x0 F. 又F是闭集,所以F F ,即有 x0 F .再由 x0E 的任意性知 E F ,即 E 是包含 E 的最小闭集.18.设 f( x ) 是R n上的实值连续函数 . 证明:对任意的实数 a ,集合x : f ( x) a 是开集 ,集合 x : f ( x) a 是闭集 .证明:( 1)任取 x : f ( x) a中的点 x0,则 f ( x0 ) a .由连续函数的性质(保号性)知:0 ,使得当x x0时,恒有 f ( x ) a ,即O ( x0,)x : f ( x) a ,也就证明了 x0是x : f ( x) a 的内点 . 由x0的任意性知x : f ( x)a是开集 .(2)证明 Ex : f ( x) a 是闭集 .法一 .类似于( 1),知x : f ( x) a 是开集 .由于开集的余集是闭集,所以x : f ( x )a x : f ( x )a c是闭集 .法二 .直接证 . 任取x0 E ',则存在点列x n E ,使得lim n x n x0.再由函数的连续性知lim n f( x n ) f ( x0) .又 f ( x n ) a (n ) ,结合连续函数的性质(保号性),必有 f ( x 0 ) a ,即 x0 E .由 x0 E '的任意性得到 E 'E,也即E是闭集.19.证明: R1中可数个稠密的开集之交是稠密集.证明:反证法.设En1E n,其中 E n是一列稠密的开集.若 E不是稠密集,则存在某个邻域O ( x0 , ) 与 E 不相交,这时必有闭区间I [ x 02, x2]E c .( 1)而E ccE n c ,n E nn( 2)11这里 E n c是一列疏朗集 (因为稠密开集的余集是疏朗的 ).E n cI 也是一列疏朗集 (疏朗集的子集当然是疏朗的) ,再由( 1),( 2)两式得到II E cIE n cn 1IE n c ,n 1这表明非空闭区间 I 可以表示成一列疏朗集cI 的并,与第 15 题矛盾 .E n补:稠密开集E 的余集 E c 是疏朗的 .证明:反证法 . 若 E c 不是疏朗集,由疏朗集的等价条件(第11 题)知存在邻域O ( x 0 , )E c . 又 E 是开集,所以 E c 是闭集,故 E cE c . 结合起来有 O ( x 0 , )E c ,这表明 O ( x 0 , )E,与 E 是稠密集矛盾 .20. 设 f ( x ) 是 R 1 上的实函数 . 令( x ) limsupy xf ( y )inf y x f ( y ) .证明 :( 1)对任意的 0 ,集合 x : ( x )是闭集 .( 2 ) f ( x ) 的不连续点的全体成一 F 集 .( x) limsupy ' , y '''f ( y '',它是 f ( x ) 在 x 处的振幅 .证明: 注意到O ( x , )f ( y ) ) (1). 等价于证明 E x : ( x)是开集 .任取 x 0E ,因为( x 0 ),由极限的性质,存在0 ,使得sup y ', y'''f ( y ''O ( x , )f ( y )).任取 xO ( x 0 , ) ,则存在 1 0 ,使得 O ( x ,1)O ( x 0 , ) . 显然有sup'f ( y ''supf ''''''f ( y ) )'''O ( x 0 , )( y )f ( y ).y , yO ( x , 1 )y , y这表明( x ), x E . 故 O ( x 0 , ) E ,说明 E 中的点全是内点,E 是开集.( 2). 注意到连续点的振幅是零,不连续点的振幅大于零. 设不连续点的全体是 K .令 K nx R 1 :( x )1 . 则 K n是闭集列,且Kn K n ,即K 是F 集.n121.证明: [ 0 ,1] 中无理数的全体不是 F 集.证明:反证法 . 若[0,1]Q 是 F 集,则 [0,1]Q E n,其中E n是 [ 0,1] 中的闭n 1集列 . 因为每个E n都是闭集且都不含有理数,所以它必是疏朗集(因若不疏朗,则 E n中必有邻域,而任意邻域中都有有理数).而 [ 0,1]中有理数的全体Q[0,1]是可数集,设Q[0,1]r1 , r2 , , r n ,nr n.单点集列 r n当然是疏朗集列 .结合起来,有1[0,1][0,1]Q[0,1]Q E n r n,n 1n 1等式的右边都是疏朗集,故上式表明闭区间[ 0 ,1] 可表示成一列疏朗集的并,与第 15 题矛盾 .22.证明:定义在 [ 0 ,1]上具有性质:“在有理点处连续,在无理点处不连续”的函数不存在.证明:结合第 20 题( 2)和第21 题直接得结论 .23.设 E R n,证明 E 的任意开覆盖必有至多可数的子覆盖. (Lindelof定理)证明:设 E:是 E 的任一开覆盖.任取 E 中的点x,必有某,使得 x E .存在有理开区间I x,使得x I x E.( * )就得到 E 的有理开区间族覆盖I x: x E(称为E:的加细开覆盖),其中 I x对某个 E 满足(*)式.因为有理开区间的全体是可数集,所以I x : x E作为集合来看是至多可数集,记为 I n. 则 E I n,对I n,取满足( * )式的相应E记为 E n,这时E nn是至多可数个且覆盖 E .24.用 Borel 有限覆盖定理证明 Bolzano-Weierstrass 定理 .证明:反证法 . 设E是有界的无限集 . 若E没有极限点,则它是有界闭集,还是孤立集.由孤立性,对任意的x E ,存在( x )0 使得O ( x, ( x)) E x( * )这样,得到满足( * )式的开球族O ( x, ( x)) : x E且覆盖E.因 E 是有界闭集,由Borel有限覆盖定理,存在有限的子覆盖,记为 O ( x i) : i1, , k .k O ( x i ) ,又 E即有 Ei1是无限集,所以至少存在一个O ( x i ) 含有 E 中的多个点,这与(* )式矛盾 .25.设E R n是 G集,且 E 含于开集 I之中,则 E 可表为一列含于I 的递减开集之交.证明:设E E n,其中E n是开集列 .取 F n n E k,则F n是递减的开集kn 11列(因有限个开集的交是开集),且 E F n. 又I是开集,故 F n I是含于 I 中的n 1递减开集列 .结合 E I,得E E In 1F n I F n I. { F n I} 为所求.n 126.设 f n ( x )为 R n上的连续函数列 .证明:点集 E x : lim f n ( x)0为一 F集 .证明:注意到对任意的 a , x : f n ( x)a f n a都是闭集(第18题).而E x : lim f n ( x )01. k 1N1n Nf nk又f n 1是闭集(任意多个闭集的交还是闭集),结合上式表明E为一F 集.n Nk27.设 G 为Cantor开集,求 G ' .解:由 Cantor 集是疏朗的,可得G ' [0,1]28.证明: R1中既开又闭的集合只能是 R1或 .证明:设 A 是非空的既开又闭集. 它必有构成区间,不妨设( a, b)是A的一个构成区间 .若 a 有限 , 则a A ;另一方面,由 A 是闭集得 a[ a, b ]( a , b)'A' A,得到矛盾.所以 a,同理得 b.因此A R1,所以R 1中既开又闭的集或是空集或是R1 .实际上: R n中既开又闭的集或是空集或是R n .证明:反证法 . 设A R n是既开又闭的非空又非R n的集合 . 则必存在x R n,但x A .一方面因为 A 是非空闭集,所以存在 y A ,使得x, A x, y0.另一方面, 因为A又是开集 , 所以y是内点,而取得非零距离的点绝不能是内点(只能在边界上达到非零的距离),就导出了矛盾, 所以 R n中既开又闭的集或是空集或是R n .29.R1中开集(闭集)全体所成之集的势为c .证明:因为开集的余集是闭集、闭集的余集是开集, 且不同集合的余集是不同的, 所以开集全体的势和闭集全体的势是一样的.设开集的全体是 F .由于全体开区间F1( a , b ) : a b ( a ( b )可取负 (正 )无穷 )的势是c , 所以F的势不小于 c . 任取开集A F ,由开集的构造知道A( a i , b i ) (是至多可列个并 ). 作对应 ( A ) a 1 , b1 ; a 2 , b2 ;;(如果是有限并,后面的点全用0代替) ,则该对应是从 F 到R一个单射(因不同开集的构造不同), 就有F的势不大于 R 的势 c . 综上所述,直线上开集的全体的势是 c .实际上: R n中开集(闭集)全体所成之集的势为 c .证明:设 R n中开集的全体是 F ,易知 F 的势不小于 c .由 R n中开集的构造,每个开集A F 都可表示成可数多个互不交的左闭右开的有理方区间(平行坐标轴,中心的坐标和边长都是有理点,有理数)I n ( A ) : n N的并,且开集不同时表示不完全相同. 有理方区间的全体 K 是可数集,所以K 的子集的全体所成之集2K的势是 2 a c .让开集 A 和它的表示 I n ( A) : n N对应,则该对应是从 F 到2K的单射,这表明 F的势不超过 c .30.证明: R n中的每个开集或闭集均为 F 集和G 集.证明:设 E 是闭集,它当然是 F 集(取闭集列全是 E 自身即可).令 E n x :( x, E )n1,则 E n是包含 E 的开集列(第32题) . 实际上,有E n.( * )En 1显然,左是右的子集.任取右边的元x ,则x E n(n) ,即( x , E )n1 (n) ,这表明( x , E )0 ,因此x E E ,说明右边是左边的子集.因此( * )式表明闭集E是G集 .由对偶性得到开集既是 F 集也是G集 .31.非空集合 F R n具有性质:x R n , y* F 使( x, y *)( x , F ) ,证明 F 是闭集.证明:任取 x F ',则存在x n F,使 x x n0,故 0( x, F )x x n0 .因此( x , F )0.由题设,存在y *F使得( x, y * )( x , F )0 ,故 x y *F. 由x F'的任意性得F'F,即F是闭集.由于点到闭集的距离可达, 该性质是F成为闭集的充要条件 .32. 设集合 En0,点集U 为 U x : ( x, E ) d . 证明 E U 且U 是开集.R , d证明: EU 是显然的 . 法一 . 由第 34 题, f ( x )( x , E ) 是 R n 上的连续函数,而Ux : f ( x ) d ,再由第 18 题知U 是开集 .法二. 直接证 U中的点全是内点 .任取 xU ,则( x, E) r d . 取正数d r .当 yR n 满足( x , y )时,根据集合距离的不等式得( y , E )( x , E )( x , y )rd ,即表明 O ( x , ) U ,故 x 是 U 的内点 . 由 x U 的任意性知 U 是开集.33. 设E,FR n 是不相交的闭集, 证明:存在互不相交的开集U,V ,使得EU , F V .证明:法 一 . 由 第 35 题 ,存在 R n 上的 连续函 数 f ( x) 使得 Ex : f ( x) 0 且Fx : f ( x )1 . 则 Ux : f ( x )41,Vx : f ( x)21都是开集(由第18 题)且不相交,同时还满足EU , FV .法二 . 因为 E , F 是互不相交的闭集,所以E c ,F c 是开集,且 E F c, F E c .任取xEF c , 因 F c 是开集,故存在邻域 O ( x )O ( x , ( x )) ,使得x O ( x ) O ( x) F c ,即 O ( x )F .( 1)这样就得到 E 开覆盖 O ( x) : x E ,且满足( 1). 又集合 E 的任一开覆盖一定有至多可数的子覆盖(第23 题),所以 E 可以用可数个开球 O ( x ) 来覆盖,记为O n. 即有n 1En O n 且 O nF, ( n ) .( 2)1同理,存在可数个开球B nn 1使得Fn B n 且 B nE, (n)( 3)1令 U nO n nB kO n n B k ,V nB nn O kB nnO k .k kkk1111则 U nn, V n均是开集列 (都是开集减闭集) ,且 U n V m, ( n , m) .还由( 2)( 3)1n 1式知 U nn 1,V nn 1还分别是 E , F 的开覆盖(因由构造, O n 中去掉的都不是 E 中的点) .取UnU n ,VnV n,则它们即为所求 . 1134.设 E R n , E,证明( x, E ) 作为x的函数在R n上是一致连续的.证明:命题直接由不等式( x, E )( y, E )x y 得到 .35.设E,F为 R n中互不相交的非空闭集,证明存在R n上的连续函数 f ( x) 使得:(1).0 f ( x )1,x R n;(2).Ex : f ( x)0且 F x : f ( x ) 1 .证明:实际上 f ( x)( x , E )满足要求 . ( x, E )( x, F )36.设 E R n , x0R n.令Ex0x x0: x E ,即Ex 0是集合 E 的平移,证明:若 E 是开集,则 E x0也是开集 .证明:因为开球平移后还是开球 .。