模糊控制数学基础1
毕业设计107模糊逻辑控制系统的数学基础1

2. 模糊控制系统数学基础2.1 模糊集合的定义及表示方法 2.1.1 模糊集合的定义扎德(Zadeh)曾对模糊集合作如下的定义:设给定论域U,U 到[0,1]闭区间上的映射μA 都确定U 的一个模糊子集μA : U →[0,1]U →μ(u)μA 称之为 A 的隶属函数,μA (u )称之为U 对A 的隶属度。
隶属函数μA (x )表示元素x 属于A 的程度,若μA (X )=1,则表示X 完全属于A ,若μA (X )=0,则表示X 完全不属于A ,若μA (x)=0.5,则表示x 属于A 的程度只有了0.5。
2.1.2 模糊子集的表示方法 模糊子集有如下的表示方法:1)、当论域U 为离散有限集{X1,X2,...,Xn},此时,A 有两种表示方法:(1) 扎德表示法A=a1/x1+a2/x2+...+an/Xn;若有ai=0时,则可以省略。
式中“ai/Xi ”不是分数,仅表示“元素Xi属于A 的隶属度为ai ”;符号“+”也不是普通加法,仅仅是一个记号。
(2) 向量表示法A=(a1,a2,....,an);式中向量的次序是不能颠倒的,并且隶属度为零也不能省略。
2). 论域是离散无限域(1) 可数情况:扎德表示法A~∑⎰∞∞∞===111)(~)(~)(~~uiui A ui ui A ui ui A A其中U={u1,u2,…,un},μA(ui)=A(ui)。
这里“∑”,“U ”,“∫”仅仅是符号;A (ui )/ui 也不是分数。
(2)、 不可数情况:扎德表示法其中“∫”不是积分号;A(u)/u 也不是分数; μA (u )=A(u)。
3)、论域是连续域扎德表示法特别当U 是一个实数区间时,其上的模糊集可用普通的实函数表示。
[9]2.2 模糊集合的运算以及性质 2.2.1 模糊子集的运算由于模糊子集的特征函数是它的隶属函数,所以,进行两个模糊子集运算时通常都是逐点对其隶属度进行相应的运算。
模糊控制理论的基础和发展历程

模糊控制理论的基础和发展历程模糊控制理论是一种基于模糊逻辑和模糊集合的控制方法,它最早由日本学者山中伸彦于1965年提出,随后发展成熟并得到广泛应用。
模糊控制理论在现代控制领域占据重要地位,本文将探讨其基础和发展历程。
一、模糊控制理论的基础模糊控制理论的基础是模糊逻辑和模糊集合。
模糊逻辑是模糊控制理论的核心基础,它扩展了传统二进制逻辑,允许不确定性的表达和推理。
模糊逻辑中的概念和推理规则基于模糊集合的理论,模糊集合是对现实世界中模糊、不确定性和模糊性的数学上的描述。
二、模糊控制理论的发展历程1. 初期研究(1965-1980年)最早的模糊控制理论由山中伸彦提出,并于1965年发表在《计算机硬件及其应用》杂志上。
他提出了模糊集合和模糊逻辑的基本概念,并应用于水蒸气发生器的控制。
随后,日本学者田中秀夫在1969年进一步发展了模糊控制的理论框架和数学推理方法。
2. 理论完善与应用推广(1980-1990年)在上世纪八九十年代,模糊控制理论得到了进一步的完善和推广。
日本学者松井秀树于1985年提出了基于模糊推理的模糊PID控制器,极大地推动了模糊控制在实际应用中的发展。
同时,国外学者也开始关注和研究模糊控制理论,如美国学者Ebrahim Mamdani和Jerome H. Friedman等人。
3. 理论拓展与应用拓宽(1990年至今)进入21世纪,随着计算机技术和人工智能的发展,模糊控制理论得到了进一步的拓展和应用拓宽。
研究者们提出了各种新的模糊控制方法和算法,如模糊神经网络控制、模糊遗传算法控制等。
同时,模糊控制理论在各个领域得到了广泛应用,如工业控制、交通管理、机器人控制等。
总结模糊控制理论基于模糊逻辑和模糊集合,提供了一种处理不确定性和模糊性问题的有效方法。
经过多年的发展和完善,模糊控制理论在现代控制领域得到了广泛应用。
未来,随着人工智能和自动化技术的不断发展,模糊控制理论将继续发挥重要作用,并不断拓展其应用范围和理论框架。
模糊控制数学基础

)
且定义g(vi /vj ) =1,当i=j时。
③以g(vi /vj ) (i , j=1,2)为元素构造相及矩阵G:
G
=
⎡1
⎢ ⎣
g
(v2
/
v1 )
g(v1 / v2 )⎤
1
⎥ ⎦
推广: n个元素 (v1 , v2 ,L , vn ) 的相及矩阵G:
⎡1
g(v1 / v2 ) g(v1 / v3 ) L g(v1 / vn ) ⎤
0
x ≤0
µF (u)=
1
1
+
100 u2
x>0
可算出µF (5)=0.2, µF (10)=0.5, µF (20)=0.8
可见µF (u)是U到闭区间[0,1]的映射。
U
µF (u)
5 10 20
[0,1]
0.2 0.5 0.8
模糊集合的表示方法:
1、论域U为离散域(即论域U是有限集合)
(1)查德表示法
两个模糊集A和B,若对所有元素u,它们的 隶属函数相等,则A和B也相等。即
A = B ⇔ µ A (u) = µ B (u)
设A、B为U中的两个模糊子集,隶属函 数分别为µA 和µB,则模糊集合中的并、交、 补等运算按如下定义: 并(析取):并(A∪B)的隶属函数µA∪B对 所有的u ∈U 被逐点定义为取大运算,即: µA∪B= µA(u)∨µB(u) 式中,符号“∨”为取大 值运算。
µF (u)=1:u完全属于U; µF (u)= 0:u完全不属于U; 0< µF (u)<1:u部分属于U。
U中的模糊集F可以用元素u和它的隶属度 来表示:
F={(u ,µF (u) )| u∈U}
模糊控制的数学基础-1(2-16至2-30)模糊运算、分解定理

从中可见,随着实验次数n 的增加,27岁对“青年人”的频率基本稳定在0.78附近,近似可取()78.027~=A μ。
②例证法此法是扎德教授于1972年提出的。
基本思想—从模糊子集~A的有()x A ~μ的值,估计出论域U 上~A 的隶属函数。
例如:取论域U 是实数域R 中的一部分[0,100], ~A 是U 上―较大的数‖,虽然~A 是U 上的模糊子集。
为确定()x A ~μ的分布,选定几个语言真值(即一句话为真的程度)中的一个,来回答[0,100]中的某数是否算―较大‖。
如果语言真值分为―真的‖、―大致真的‖、―半真半假‖、―大致假的‖、“假的”。
把这些语言真值分别用[0,1]之间的数字表示,即分别为1,0.75,0.5,0.25和0。
对[0,100]用的αϕ个不同的数都作为样本进行询问,就可得~A 的模糊分布()x A ~μ的离散表示法。
③专家评分法(德尔菲法)该法40年代以来就已广泛应用于经济与管理科学的各个领域,典型的例子是在体操比赛中对运动员的评分,“技术好”是运动员集上的一个模糊 ,所有评委打分的平均值(有时去掉一个最高分和一个最低分)就是运动员“技术好”的隶属度。
这种方法也可以用来求模糊分布,在应用时,为了区别专家的学术水平和经验的多少,还可以采用加权平均法。
§2—2 模糊子集的特性及运算法则前面已讨论过普通集合的基本运算,下面对模糊子集的运算另作定义。
一、 模糊子集的运算法则 ① Fuzzy 子集的包含与相等设~A 、~B 为论域U 上的两个模糊子集,对于U 中的每一个元素x ,都有()x A ~μ≥()x B ~μ,则称~A 包含~B ,记作~A ⊇~B 。
如果,~A ⊇~B 且~B ⊇~A ,则说~A 与~B 相等,记作~A =~B 。
或者,若对所有x ∈U ,都有()x A ~μ=()x B ~μ,则~A =~B 。
②模糊子集的并、交、补运算设~A 、~B 为论域U 上的两个模糊子集,规定~A ~B 、~A ~B 、~A 的隶属函数分别为~~BAμ、~BAμ、~A μ,并且对于U 的每一个元素x 都有~~BAμ()∆x ()x A ~μ∨()x B ~μ=max[()x A ~μ,()x B ~μ] —~A ,~B 的并~~BAμ()∆x ()x A ~μ∧()x B ~μ=min[()x A ~μ,()x B ~μ]— ~A ,~B 的交~Aμ()∆x 1–()x A ~μ —~A 的补eg,设论域U={}4321,,,x x x x ,~A 、~B 是论域U 上的两个模糊集。
模糊控制的数学基础

选择题
模糊控制理论中的核心概念之一是模糊集合,它主要由谁提出?
A. 扎德(Zadeh)(正确答案)
B. 牛顿
C. 莱布尼茨
D. 欧拉
模糊集合论中,用于描述元素属于集合程度的函数是什么?
A. 隶属函数(正确答案)
B. 概率函数
C. 分布函数
D. 密度函数
在模糊逻辑中,处理不确定性和模糊性的基本工具是什么?
A. 模糊规则
B. 模糊推理系统(正确答案)
C. 模糊数
D. 模糊关系
模糊控制中,用于将模糊量转换为精确量的过程称为?
A. 模糊化
B. 清晰化(正确答案)
C. 模糊推理
D. 模糊规则生成
下列哪一项是模糊控制系统中常用的清晰化方法?
A. 最小二乘法
B. 质心法(正确答案)
C. 牛顿法
D. 拉格朗日法
模糊集合的运算中,表示两个模糊集合合并的操作是什么?
A. 模糊交
B. 模糊并(正确答案)
C. 模糊补
D. 模糊蕴含
在模糊逻辑中,用于表示模糊命题之间逻辑关系的运算是什么?
A. 模糊蕴含(正确答案)
B. 模糊加法
C. 模糊减法
D. 模糊乘法
模糊控制器的设计过程中,确定输入输出变量模糊子集及其隶属函数的过程称为?
A. 模糊规则设计
B. 模糊化设计
C. 模糊关系设计
D. 隶属函数设计(正确答案)
模糊控制系统性能的好坏很大程度上取决于什么的设计?
A. 模糊规则库(正确答案)
B. 模糊推理机
C. 模糊化接口
D. 清晰化接口。
模糊控制系统的设计分析

它主要由模糊化、 知识库、 模糊推理机、 清晰化四个部分组成。
糊概念 。模糊概念不能用普通 的集合来描述 ,而只能用模糊集 合来描述 。因此 ,元素对于模糊集合 ,不存在 “ 属于”和 “ 不 属于 ”的概念 ,只是元素属于这个模糊集合 的程度不同而已。 在模糊集合中 , 为了描述元素属于模糊集合 的程度 , 引入 了隶属函数的概念。用 [ 0 ,1 ]闭区间中的一个数来描述元素 属于模糊集合 A的程度 ,这个数就称为 对 的 “ 隶属度 ” ,用 ( ) 表示 。该映射可表示为 : : 一[ 0 ,1 ] 或 A( X o ( ) 表示模糊集合 』 4的隶属 函数 。 ( ) 越接 近 1 ,表 示 X属于 A的程度越高 ; A( x) 越接近 0 ,表示 属 于 的程 度越低。
一
{ NB、NM 、NS 、Z、P S 、P M 、P B}
专家经验法是根据某控制过程 的实际经验对模糊信息进行 处理进而确定隶属度函数的一种方法 。其公式为 :
’ 一
般情况下选择上述 7个词汇 比较合适。选择较 多的词汇 可以精确描述变量 ,提高控制精 度 ,但使 控制 规则变得 复杂 ; 选择的词汇过少使变量 的描述太粗糙 ,导致控制其性能变坏 。
科 学 之友
F r i e n d o f S c i e n c e A m a t e u r s
2 0 1 3 年1 0 月
模 糊 控 制 系统 的设计 分 析
张 文儒
( 潍坊科技学院 ,山东 摘 潍坊 2 6 2 7 0 0 )
要 :通过在不需要建立被控 对象的精确 的数 学模型 ,依 赖控制规则库进行控制 ,能
1 . 2 隶 属 度 函数 隶属度和隶属函数 是描述客 观事物模糊性 的关键 ,它必须 符合客观规律 。隶属度函数的确定 可通过 主观途径 和客观两种 途径进行 ,尤其当隶属度无 法通 过主观途径 给出时 ,往往需要 在实验基础上 获得 。
模糊控制 - 数学基础

一、模糊集合
6、运算性质
F集幂等律: A A=A,A A=A F集两极律:A =,A U=U F集同一律: A U=A,A =A F集交换律: A B=B
A,A B =B A
F集结合律: A B C =A
B
C , A B C =A
4
一、模糊集合
例1 设集合U 由1到5的五个自然数组成,用上述前三 种方法写出该集合的表达式。
解:(1)列举法 U ={1,2,3,4,5} (2)定义法 U ={u|u为自然数 且 1u5 }
(3)归纳法 U ={ui+1 = ui+1, i = 1,2,3,4, u1 = 1}
(4)特征函数表示法:集合U通过特征函数来TU(u)表示 u U 1 TU (u) u U 0
A
其中隶属函数定义为
x, ( x) x U
A
A ( x)
1 1 10 x 2
“接近于0的实数”之模糊集合
12
一、模糊集合
例:拥有离散性论域的模糊集合 假设U ={ 0,1,2,...,9 } 为代表一个家庭中,所可能拥有子女个数的集 合,令三个模糊集合之定义为A:子女数众多,B:子女数适中,C:子 女数很少,其隶属函数的定义如表所示。
子女数 0 1 2 3 4 5 6 7 8 9 子女众多 (A) 0 0 0 0 0 0.1 0.3 0.8 1 1 子女适中 (B) 0 0 0.2 0.7 1 0.7 0.2 0 0 0 子女很少 (C) 1 1 0.8 0.2 0.1 0 0 0 0 0
一、模糊集合
3、模糊集合的表示
当论域U由有限多个元素组成时,模糊集合可用向量表示法或扎德 表示法表示。设 U {x1 , x2 , , xn } { 0,1, 2,..., 9 }
第3章 模糊控制理论的基础讲解

(3)模糊控制易于被人们接受。模糊控 制的核心是控制规则,模糊规则是用语言 来表示的,如“今天气温高,则今天天气 暖和”,易于被一般人所接受。 (4)构造容易。模糊控制规则易于软件 实现。 (5)鲁棒性和适应性好。通过专家经验 设计的模糊规则可以对复杂的对象进行有 效的控制。
第二节 模糊集合
一、模糊集合 模糊集合是模糊控制的数学基础。
c (x) Min A (x), B (x)
② 代数积算子
c (x) A (x) B (x)
③ 有界积算子
c (x) Max0, A (x) B (x) 1
(2)并运算算子 设C=A∪B,有三种模糊算子: ① 模糊并算子
c (x) Max A (x), B (x)
c (x) A (x) B ( x) 1 1 (1 A (x)) (1 B (x))
γ取值为[0,1]。
当γ=0时, c (x) A (x) ,B相(x当) 于A∩B
时的算子。
当γ=1时,c (x) A(x) B (x) A(,x)相.B (x)
(3)等集
两个模糊集A和B,若对所有元素u,
它们的隶属函数相等,则A和B也相等。
即
A B A (u) B (u)
(4)补集 若 A 为A的补集,则
A A (u) 1 A (u)
例如,设A为“成绩好”的模糊集, 某学生 u0 属于“成绩好”的隶属度为:
A (u0 ) 0.8 则u0 属于“成绩差”的隶属度
第三章 模糊控制的理论基础
第一节 概 述 一、 模糊控制的提出
以往的各种传统控制方法均是建立在 被控对象精确数学模型基础上的,然而, 随着系统复杂程度的提高,将难以建立 系统的精确数学模型。