列方程解应用题的各种类型

合集下载

列方程解应用题的四种方法

列方程解应用题的四种方法

列方程解应用题的四种方法列方程(组)解应用题就是将已知量与未知量的关系列成等式,通过解方程(组)求出未知量的过程. 其目的是考查学生分析问题和解决问题的能力. 如何解决这类问题,其方法很多,现结合实例给出几种解法,以供参考.一、直译法设元后,把元看作未知数,根据题设条件,把数学语言直译为代数式,即可列出方程组. 例1(2007年南京市)某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量增长率的2倍,今年南瓜的总产量为60 000kg ,求南瓜亩产量的增长率. 分析:若设南瓜亩产量的增长率为x ,则南瓜种植面积的增长率为2x .由此可知今年南瓜的亩产量为2000(1)x +kg ,共种植了10(12)x +亩南瓜,根据总产量是60 000kg 即可列出方程.解:设南瓜亩产量的增长率为x .根据题意列方程,得10(12)2000(1)60000x x ++= .解得10.550%x ==,22x =-(不合题意,舍去). 答:南瓜亩产量的增长率为50%.二、列表法设出未知数后,视元为未知数,然后综合已知条件,把握数量关系,分别填入表格中,则等量关系不难得出,进而列出方程组.例2(2007年沈阳市)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天? 分析:解工程问题的关键是抓住工作总量、工作效率、工作时间三者间的关系,工作总量通常看作单位1. 根据题意,将关键数据分别填入表格即可列出方程.解:设甲队单独完成此项工程需要x 天,则乙队单独完成此项工程需要45x 天. 由题意得1012145x x +=.解得25x =. 经检验,25x =是原方程的解. 当25x =时,4205x =. 答:甲、乙两个施工队单独完成此项工程分别需25天和20天.三、参数法对复杂的应用题,可设参数,则往往起到桥梁的作用.例3 (2007年滨州市)某人在电车路轨旁与路轨平行的路上骑车行走,他留意到每隔6分钟有一部电车从他后面驶向前面,每隔2分钟有一部电车从对面驶向后面.假设电车和此人行驶的速度都不变(分别为12u u ,表示),请你根据图1,求电车每隔几分钟(用t 表示)从车站开出一部?分析:本题给人数量少,条件不足,好象无从下手的感觉,因此可把需要的量以辅助未知数(参数)的形式表示出来.解决本题的关键是正确求出两部电车的间隔距离,如图1(甲)所示,则从行人身后(人车同向)发来的两辆电车间的距离为:6×(电车行进的速度-行人骑车的速度);如图1(乙)所示,则从行人前方(人车异向)发来的两辆电车间的距离为:2×(电车行进的速度+行人骑车的速度).解:设电车的速度为1u ,行人的速度为2u ,电车每隔t 分钟从车站开出一部.根据题意得1211216()2()u u u t u u u t -=⎧⎨+=⎩,解得122u u =. 再把122u u =代入所列方程组的任意一个方程中,均可解得3t =(分钟).答:电车每隔3分钟从车站开出一部.四、线示法运用图线,把已知和未知条件间的数量关系,用线性图表示出来,再把数量关系写在直线图上,则等量关系可一目了然.例4(2007年梅州市)梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km 的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h ,人步行的速度是5km/h (上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你能过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.分析:(1)可把单独用一辆小汽车来回接送学生所需要的时间与42分钟做比较即可;(2)若确定去县城的最短时间,可充分考虑“汽车”和“人”这两个运动因素. 显然当汽车到达时,人也同时到达这一情况可使运送学生的总时间最短. 最短时间可利用速度比求得.解:(1)不能在限定时间内使考生到达考场.图1理由如下:如果单独用一辆小汽车来回接送,那么小汽车需要跑3趟,所需要的时间为1533(h)45604⨯==(分钟),由于45分钟42>分钟,所以不能在限定时间内到达考场. (2)方案不惟一,具有开放性. 最短时间的方案设计如下:先让4人乘车,另4人步行,如果恰当的选取第一批学生下车的位置,然后让他们步行到车站,同时第二批4人也步行;小汽车返回后接第二批步行的4人追赶第一批步行的人,使这8人同时到达火车站. 在这个过程中,8个人始终在步行或乘车,没有因为等车而浪费时间,因而应该最节约时间. 其运动过程如图2所示.设先步行的4人的行走路程AB 为km x ,后步行的4人的行走路程CD 为km z ,中间的汽车行走路程BC 为km y . 则汽车在路线A C B →→上所用时间与先步行的4人在路线A B →上所用的时间相等;汽车在路线C B D →→上所用时间与后步行的4人在路线C D →上所用的时间相等. 根据在相等的时间内,路程之比等于速度之比,可以得到::(2)5:60:(2)5:60x x y z z y +=⎧⎨+=⎩ 整理得212212x y x z y z+=⎧⎨+=⎩ 解得2,112.11x y z y ⎧=⎪⎪⎨⎪=⎪⎩ 又因为15x y z ++=,所以可得:2x =,11y =,2z =. 由题知所用最短时间为汽车行走的路程与汽车的速度之比,即3376060x y z ++=(时)37=(分钟). 因为3742<,所以他们能在截止进考场的时刻前到达考场. 图2。

初一一元一次方程解应用题全部类型

初一一元一次方程解应用题全部类型

1、和、差、倍、分问题;这类问题主要应搞清各量之间的关系,注意关键词语。

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

(2)多少关系:通过关键词语“多少、和、差、不足、剩余……”来体现。

例1、某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?分析:相等关系是:今年捐款=去年捐款×2+1000。

解:设去年为灾区捐款x元,由题意得,2x+1000=250002x=24000∴ x=12000答:去年该单位为灾区捐款12000元。

例2、旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?分析:等量关系为:油箱中剩余汽油+1=用去的汽油。

解:设油箱里原有汽油x公斤,由题意得,x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%去分母整理得,9x+20=5x+6x∴ 2x=20∴ x=10答:油箱里原有汽油10公斤。

2、等积变形问题:“等积变形”是以形状改变而体积不变为前提。

常用等量关系为:原料体积=成品体积。

例3、现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?分析:等量关系为:机轴的体积和=钢坯的体积。

解:设可足够锻造x根机轴,由题意得,π()2×3x=π()2×30解这个方程得x=x=×10×==40答:可足够锻造直径为0.4米,长为3米的圆柱形机轴40根。

3、劳力调配问题:这类问题要搞清人数的变化,常见题型有(1)既有调入又有调出。

(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。

例4、有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的,应从乙队调多少人到甲队?分析:此问题中对乙队来说有调出,对甲队来说有调入。

列方程解应用题的常见题型(参考)

列方程解应用题的常见题型(参考)

列一元一次方程解应用题的常见题型1、和、差、倍、分问题1.某校初中一年级328名师生乘车外出春游,已有2辆校车可乘坐64人,还需租用44座的客车多少辆?2.一年级三个班为希望小学捐赠图书。

(1)班捐了152册,(2)班捐书数是三个班级的平均数,(3)班捐书数是年级总数的40%,三个班共捐了多少册?3.学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,杉树的棵数比总数的1/3少14棵,两类树各种了多少棵?2、等积形变问题某工厂锻造直径为60毫米,高20毫米的圆柱形瓶内装水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。

3、工作(工程)问题1.师徒两人检修一条长180米的自来水管道,师傅每小时检修15米,徒弟每小时检修10米,现两人合作,多少时间可以完成整条管道的检修?2.学校校办厂需制作一块广告牌,请来两名工人。

已知师傅单独完成需4天,徒弟单独完成需6天。

(1)两人合作需几天完成?(2)现由徒弟先做1天,再两人合作,共需几天完成?完成后共得到报酬450元,如果按各人完成的工作量计算报酬,那么该如何分配?3.有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有40m2墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面.每名师傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的墙面面积;(2)张老板现有36个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?(3)已知每名师傅,徒弟每天的工资分别是85元,65元,张老板要求在3天内完成,问如何在这8个人中雇用人员,才合算呢?4、比例问题甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两仓存粮数之比是1:2,乙、丙两仓存粮数之比是1:2.5,求甲、乙、丙三个粮仓各存粮多少吨?5、劳动力分配问题1.在甲处劳动者有31人,在乙处劳动者有21人,现另调23人去支援甲、乙两处,使在甲处劳动的人数是在乙处劳动人数的2倍.问应往甲、乙两处各调多少人?2.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?3.有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍.”乙回答说:“最好还是把你的羊给我一只,我们的羊数就一样了.”两个牧童各有多少只羊?4、红光服装厂要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?6、行程问题1.一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?2.一次路程为60千米的远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发,这辆汽车开到目的地后,再回头接步行这部分人,若步行者的速度为5千米/时,比汽车提前一小时出发,汽车的速度为60千米/时,问步行者出发后经过多少时间与回头接他们的汽车相遇?3.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问(1)小刚在冲刺阶段花了多少时间?(2)小刚在离终点多远时开始冲刺?4.某学生乘船由甲地顺流而下到乙地,然后又逆流而上到丙地,共有用3小时。

小学数学六年级列方程解应用题的类型

小学数学六年级列方程解应用题的类型

列方程解应用题的类型(一)直接设未知数例1.甲的存款是乙的4倍,如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍,问甲乙原来各有存款多少元?解析:这是一道较复杂的和差倍问题.但用方程思维来解,就好理解了.解:设乙原来有存款x元,(直接设未知数,求两个量以上的,一般设最小的那个),那么甲原来的存款数就是4x元(用未知数表示另外的量)根据题中“现在,乙的存款是甲的3倍”这一数量关系式,我们可以列出方程(x+110)=(4x-110)×3(二)间接设未知数例2.盒子里装有白球的个数是红球的3倍.每次取出3个红球和4个白球,取了若干次以后,红球正好取完,白球还有20个,盒子里原来共有多少个球?解析:如果直接设未知数,设原来共有X个球,你就无法用未知数表示出白球和红球的数量,自然也不能用方程列出两种球的数量关系式.所以直接设对这类型题不合适.从题意中我们发现,如果知道取了多少次,这道题就简单多了解:设共取了x次,题目中”盒子里白球的个数是红球的3倍”说出了两者的数量关系式,我们可以列出方程4x+20=3x×3(三).方程在其他题目中的运用例3.计算(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)解析: 如果直接去括号计算,三个数乘以三个数的乘法分配律,还没学.但仔细观察下,发现,算式中有好多数是相同的.我们可以把这些相同的数当成一个数,这样算式就简化了解:设0.12+0.23=x,设1+0.12+0.23=y原式=y×(x+0.34)-(y+0.34)×x=x×y+0.34×y-x×y-0.34×x (式子中的”×”号可不写)=0.34y-0.34x=0.34(y-x)=0.34(提醒:原来,设未知数的目的在于简化计算过程,到最后,含有未知数的全部抵消掉了 )例4. 有一个三位数:十位上的数字是0,其余两位上的数字之和是12。

常见列方程解应用题的几种类型:.doc

常见列方程解应用题的几种类型:.doc

顺逆流问 顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度
甲走的路程+乙走的 路程=两地距离 同地不同时出发:前 者走的路程=追者走 的路程 同时不同地出发:前 者走的路程+两地距 离=追者所走的路程 顺流的距离=逆流的 距离 从调配后的数量关系 中找相等关系,要抓 住“相等”“几倍”“几 分之几”“多”“少” 等关键词语
100%
售价=进价×(1+利润率)
设一个两位数的十位上的数字、 抓住数字家或新数、原数之
个位上的数字分别为 a,b,则这 间的关系
个两位数可表示为 10a+b
利息=本金×利率×期数
本 息 和= 本金 + 利息 =本 金
+ 本 金× 利率 × 期数 × (1 -
利息税率)
甲∶乙∶丙=a∶b∶c
全 部 数量 =各 种 成分 的数 量
之和(设一份为 x)
日历中每一行上相邻两数,右边 日历中的数 a 的取值范围是 1
的数比左边的数大 1;日历中每 ≤a≤31,且都是正整数
一列上相邻 的两数, 下边的数比
上边的数大 7
类型 (5)工程问题 (6)利润率问题
(7)数字问题 (8)储蓄问题 (9)按比例分配问题 (10)日历中的问题
基本数量关系 工作总量=工作效率×工作时间 商品利润=商品售价-商品进价
商品利润 商 品 利 润 率 = 商品进价 ×
等量关系 各部分工作量之和=1 抓 住 价格 升降 对 利润 率的 影 响来考虑
常见列方程解应用题的几种类型:
类型
基本数量关系
(1)和、差、倍、分问题
①较大量=较小量+多余量
②总量=倍数×倍量
(2)等积变形问题
V长方体=abh,V正方体=a3

列方程组解应用题的常见题型

列方程组解应用题的常见题型

列方程组解应用题的常见题型.1和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量 2产品配套问题:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么ba 乙产品数甲产品数= (2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:cb a 丙产品数乙产品数甲产品数===原量×(1+减少率)=减少后的量7浓度问题:溶液×浓度=溶质8经济类问题:利息=本金×利率×期数本息和=本金+利息=本金+本金×利率×期数利润=售价-进价利润=进价×利润率打x 折: 原价×0.1x9盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量10数字问题:当n 为整数时,奇数可表示为2n +1(或2n -1),偶数可表示为2n . 有关两位数的基本等量关系式为:两位数=十位数字×10+个位数字.有关三位数的基本等量关系式为:三位数=百位数字×100+十位数字×10+个位数字.被减数=减数+差 减数=被减数—差 差=被减数—减数 加数=和—另一个加数因数=积÷另一个因数被除数=除数×商+余数12年龄问题:一个人的年龄变化(增大、减小)了,其他人也一样增大或减小,并且增大(或减小)的岁数是相同的(相同的时间内)。

.13、等积类问题:“等积变形”是以形状改变而体积不变为前提。

常用等量关系为: ①形状面积变了,周长没变。

②变形前后的质量(或体积)不变.14.优化方案问题:在解决问题时,常常需合理安排。

需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案。

四.解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.第六章 数据的分析1.平均数:(1)算术平均数:一组数据中,有n 个数据n x x x ,,, 21,则它们的算术平均数为n x x x x n +++= 21. (2)加权平均数:若在一组数字中,出现次,出现次,…,出现次,那么叫做、、…、的加权平均数。

列方程解应用题的常见十大类题型

列方程解应用题的常见十大类题型

怎样找等量关系?10种类型方程解应用题根据常见的数量关系/计算公式找等量关系。

每份数×份数=总数工作效率×工作时间=工作总量单价×数量=总价速度×时间=路程单产量×数量=总产量速度和x相遇时间=路程和长方形的周长=(长+宽)×2长方形面积=长×宽正方形周长=边长×4正方形面积=边长×边长问什么就设什么。

(一)比多比少问题Χ+a=b↓多几个(或少几个)李阿姨买了36元的苹果,比买梨子多花了14元,请问李阿姨买了多少元的梨子?解:设李阿姨买了Χ元的梨子Χ+14=36Χ=36-14Χ=22答:............李阿姨买苹果和梨子一共花了58元,苹果比梨子多花了14元,请问李阿姨各买了多少元的苹果和梨子?解:设李阿姨买了Χ元的梨子,则买了Χ+14元的苹果。

Χ+Χ+14=582Χ+14=582Χ=58-142Χ=44Χ=22答:...........(二)几倍问题存在倍数关系,一般设较小的数为Χa.Χ=b↓↓↓倍数小数大数秋游时,学校租了一大一小的两辆车,大车可以载63人,是小车可载人数的3倍。

小车能载多少人?解:设小车能载Χ人。

3Χ=63Χ=63÷3个数各是是多少,我们通常称为和倍问题。

几倍量+1倍量=总数和aΧ+x=c↓↓↓倍数一倍量(标准量)总数和两个数的和是369,第二个数是第一个数的2倍,请问这两个数分别是多少?解:设第一个数是Χ,则第二个数是2Χ。

Χ+2Χ=369个数各是是多少,我们通常称为差倍问题。

几倍量-1倍量=两数之差aΧ-x=c↓↓↓倍数一倍量(标准量)相差的量妈妈今年的年龄是小乐年龄的3倍,妈妈比小乐大26岁,请问妈妈和小乐今年各是多少岁?解:设小乐今年Χ少岁,则妈妈今年3Χ岁。

(妈妈的年龄-乐乐的年龄=26岁)3Χ-Χ=26(五)倍多倍少问题存在倍数关系,一般设较小的数为ΧaΧ+b=c↓↓↓倍数多几个(或少几个)大数冬冬和佳佳收集邮票,冬冬收集了96枚邮票,比佳佳收集的3倍还多2枚,佳佳收集了多少枚邮票?解:设佳佳收集了Χ枚邮票?3Χ+2=96(六)行程问题基本行程问题:速度×时间=路程相遇问题:速度和×相遇时间=路程和甲乙两地相距471千米,客车和货车同时分别从两地同时出发,经过3小时相遇,已知客车每小时行52千米,货车每小时行多少千米?解:设货车每小时行Χ千米?3(Χ+52)=471(七)套装:桌椅、服装、甲乙的单价和×套数=总价学校阅览室新购进了40套桌椅,共用去8000元,已知每把椅子75元,每张桌子多少钱?解:设每张桌子Χ钱?(Χ+75)×=8000(八)购物问题1.甲的总价+乙的总价=总共用的钱2.付出的钱-用掉的钱=找回的钱用掉的钱+找回的钱=找回的钱张阿姨买了苹果和梨各2千克,共花费了10.4元,梨每千克2.8元,请问苹果每千克多少钱?解:设苹果每千克Χ元钱。

常见列方程解应用题类型及其教案分享。

常见列方程解应用题类型及其教案分享。

常见列方程解应用题类型及其教案分享。

一、线性方程组线性方程组是解应用题中的一种重要类型。

通常,这种题目会要求我们根据给定的条件列出方程组,并通过解方程组来求解问题。

例如:有两堆麦子,第一堆麦子重x千克,第二堆麦子重y千克,已知两堆麦子的总重量为15千克,且第一堆麦子的质量是第二堆的两倍。

求第一堆麦子的质量和第二堆麦子的质量分别是多少?针对这种类型的题目,我们可以先设出未知数,然后根据题目中的条件列出方程,再通过解方程组来求解问题。

通过这种方法,不仅可以更好地理解线性方程组,而且还能锻炼我们的逻辑思维和解题能力。

二、二元一次方程二元一次方程也是解应用题中的一种重要类型。

通常,这种题目给出两个未知数,要我们求解这两个未知数的值。

例如:小明和小华买了若干个水果,其中小明买了3个苹果和5个橘子,花费28元;小华买了2个苹果和3个橘子,花费16元。

问苹果和橘子的单价各是多少元?针对这种类型的题目,我们可以先设出未知数,然后根据题目中的条件列出方程,再通过解方程来求解问题。

通过这种方法,不仅可以更好地理解二元一次方程,而且还能锻炼我们的逻辑思维和解题能力。

三、一元一次方程一元一次方程也是解应用题中的一种基础类型。

通常,这种题目给出一个未知数,要我们求解这个未知数的值。

例如:从售价为x元的商品上打7折,再轻微讲价4元,最终售价为18元,求商品原价是多少元?针对这种类型的题目,我们可以先设出未知数,然后根据题目中的条件列出方程,再通过解方程来求解问题。

通过这种方法,不仅可以更好地理解一元一次方程,而且还能锻炼我们的逻辑思维和解题能力。

四、教案分享上述三种类型的解应用题都需要我们具备一定的解题方法和解题思路。

因此,我们可以通过一些教学方案来帮助学生更好地掌握这些知识点。

以下是我个人总结的教案分享:一、线性方程组教学目标:1、能够正确地列出线性方程组。

2、掌握解线性方程组的方法。

3、能够独立地解决与线性方程组相关的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程解应用题的各种类型一、和、差、倍、分问题此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。

审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。

例题:红光服装厂要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套解:设应用X米布料生产上衣,则生产裤子的布料为米。

等量关系上衣数=裤子数列方程。

x/3×2=(600-x)/3×3x=360二、等积变形问题此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。

例题:平行四边形ABCD周长为75厘米,以BC为底时高为14厘米(图略);以CD为底时高是16厘米。

求:平行四边形ABCD的面积。

解:设BC边长为x厘米,CD边长为y厘米。

则平行四边形ABCD的面积= 14x = 16y。

所以x/y = 8/7平行四边形ABCD的周长= 2x + 2y = 75厘米,所以x = 20厘米,y = 17.5厘米。

所以平行四边形ABCD的面积= 14x = 280平方厘米。

三、调配问题从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。

例题:甲乙两书架上有书若干本,如果从乙架上取100本放到甲架上,那么甲架上的书比乙架上所剩余的书多5倍。

如果从甲架上取50本书放到乙架上,两架的书就一样多,问原来每个书架上各有书多少本?分析:我们根据从甲架上取50本书放到乙架上,两架的书就一样多可以知道甲比乙多50×2=100本.解:设乙有x本,则甲有x+100本,那么6×(x-100)=x+100+1006x-600=x+2005x=800x=160本乙有160本,甲有160+100=260本答原来甲、乙书架上各有书260本、160本。

四、行程问题要掌握行程中的基本关系:路程=速度×时间。

行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点1、相遇问题(相向而行)相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。

例题:甲乙两人都以不变的速度在环形路上跑步,如果同时同地出发。

相向而行,每隔2分钟相遇一次;如果同向而行,每隔6分钟相遇一次。

已知甲比乙跑得快,甲乙每分各跑多少圈?解:设甲每分跑x圈,乙每分跑y圈,则2x+2y=1 ①{6X-6Y=1 ②解得x=1/3{y=1/62、追及问题(同向而行)追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系例题:甲乙两人相距100米,甲在前每秒跑3米,乙在后每秒跑5米。

两人同时出发,同向而行,几秒后乙能追上甲?分析:在这个直线型追及问题中,两人速度不同,跑的路程也不同,后面的人要追上前面的人,就要比前面的人多跑100米,而两人跑步所用的时间是相同的。

所以有等量关系:乙走的路程-甲走的路程=100 解:设x秒后乙能追上甲根据题意得5x-3x=100x=50答:50秒后乙能追上甲。

3、环形跑道上的相遇和追及问题环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

例题:一条环形跑道长400米,甲练习骑自行车,平均每分钟骑550米,乙练习跑步,平均每分钟跑250米,两人同时同地出发。

1.若两人背向而行,则他们经过多长时间首次相遇?2..若两人同向而行,则他们经过多长时间首次相遇?1、分析:背向而行,在环形跑道上要走一圈才能相遇。

解:设经过x分钟,甲乙两人相遇,根据题意,得:550x+250x=400解得,x=1/2答:经过1/2分钟甲乙相遇。

2、分析:同向而行相当于快者追慢者,在环形跑道上要多走一圈才能又相遇。

解:设经过x分钟,甲乙两人相遇,根据题意,得:550x-250x=400解得,x=4/3答:经过4/3分钟甲乙相遇。

4、航行问题航行问题:相对运动速度关系是:顺水速度=静水中速度+水流速度;逆水速度=静水中速度-水流速度。

例题:一艘船航行于沿河的两港之间,河水流速是每小时7千米,船速是11千米,往返一次用2.2小时,求两港距离多少?解法一:设船顺水从一港到另一港的时间为x小时,那么逆水行驶的时间为(2.2-x),由于两港间的距离已定,所以得出方程式:(11+7)x=(2.2-x)(11-7)解得x=0.4两港间里的距离为(11+7)×0.4=7.2(千米)答两港间的距离为7.2千米。

解法二:设两港间的距离为x千米,船顺水行驶的时间为x/(11+7),逆水行驶的时间为x/(11-7),船往返两港的时间为x/(11+7)+x/(11-7)=2.2解得x=7.2 (千米)答两港间的距离为7.2千米。

其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。

当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。

例题:一项工程,甲单独做63天,由乙单独做28天完成,甲先做42天,乙做还要几天?七、利润率问题其数量关系是:商品的利润=商品售价-商品的进价;商品利润率=商品利润/商品进价×100%,注意打几折销售就是按原价的百分之几出售。

例题:某商品标价是2200元,按此标价的八折出售,利润率为10%。

求此商品的进价。

解:设此商品进价为x元,根据题意,得2200×80﹪-x=10﹪×xx =1600(元)答:此商品的进价为1600元。

八、银行储蓄问题其数量关系是:利息=本金×利率×存期;本息=本金+利息,利息税=利息×利息税率。

注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。

例题:小明存入1000元钱,一期取出200元,剩下的800元和应得的利息继续按一年期存入银行,若年利率保持不变,这样到期后可得本金和利息共892.5元,求这种存款的年利率是多少?解:设这种存款的年利率是x则(1000x+800)(1+x)=892.5x=0.05即5%。

答这种存款的年利率是5%。

九、数字问题要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。

列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。

例题:一个六位数,首位是1,若将这个1移到个位,那么新的六位数是原数的三倍,求原数。

解:设原数的后五位数的数值为X,则10X+1=3×(1×100000+X)解出X=42857所以,原数位142857答原数位142857。

十、年龄问题年龄问题其基本数量关系:大小两个年龄差不会变。

这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。

例题:父亲今年38岁,母亲今年36岁,儿子今年11岁,多少年后,父母亲的年龄之和是儿子的年龄的4倍?解:设x年后,父母亲的年龄之和是儿子的年龄的4倍。

则38+x+36+x=4×(11+x)解方程得x=15答15年后,父母亲的年龄之和是儿子的年龄的4倍。

把若干物体平均分给一定数量的对象,并不是每次都能正好分完。

如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。

凡是研究盈和亏这一类算法的应用题就叫盈亏问题。

例题:某种商品每件的进价为250元,按标价的九折销售时,利润率为15.2%,这种商品每件标价是多少?分析:售价-进价=利润解:设标价为x元,则有0.9x-250=250×15.2%解得x=320十二、鸡兔同笼"鸡兔同笼"是一类有名的中国古算题。

最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解。

例题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。

问笼中各有几只鸡和兔?解法一:设兔有x只,则鸡有(35-x)只。

4x+2(35-x)=944x+70-2x=942x=24x=24÷2x=1235-12=23答:兔子有12只,小鸡有23只。

解发二:设鸡有x只,兔有y只。

x+y=352x+4y=94(x+y=35×2=2x+2y=70(2x+2y=70)-(2x+4y=94)(2y=24)y=12把y=12代入(x+y=35)x+12=35x=35-12x=23。

答:兔子有12只,小鸡有23只。

相关文档
最新文档