第五章-低速翼型的气动特性PPT课件
合集下载
低速翼型的气动特性和方程讲解

低速翼型的气动特性和 方程讲解
5.1 翼型的几何参数及表示方法
5.1.1 翼型的几何参数 5.1.2 NACA翼型 5.1.3 NACA五位数 5.1.4 层流翼型 5.1.5 超临界机翼
5.1.1 翼型的几何参数
翼的横剖面形状,又称为翼剖面。在空气动力学中,翼型通 常理解为二维机翼,即剖面形状不变的无限翼展机翼。
在上世纪三十年代初期,美国国家航空咨询委员会 ( National Advisory Committee for Aeronautics,NACA, National Aeronautics and Space Administration, NASA ) 对低速翼型进行了系统的实验研究。
将当时的几种优秀翼型的厚度折算成相同厚度时,厚度分布 规律几乎完全一样。在当时认为是最佳的翼型厚度分布作为 NACA翼型族的厚度分布。厚度分布函数为:
莱特兄弟所使用的翼 型与利林塔尔的非常 相似,薄而且弯度很 大。这可能是因为早 期的翼型试验都在极 低的雷诺数下进行, 薄翼型的表现要比厚 翼型好。
随后的十多年里,在反复试验的基础上研制出了大量翼型, 如RAF-6, Gottingen 387,Clark Y。这些翼型成为NACA 翼型家族的鼻祖。
例: NACA 2 3 0 1 2
20 3
C
L设
2
C L设
2
3 20
0.3
2 x f 30 % x f 15 %
中弧线 0:简单型 1:有拐点
t 12%
CL设:来流与前缘中弧线平行时的理论升力系数
1939年,发展了NACA1系列层流翼型族。其后又相继发展 了NACA2系列,3系列直到6系列,7系列的层流翼型族。
(12p)2pxx2
5.1 翼型的几何参数及表示方法
5.1.1 翼型的几何参数 5.1.2 NACA翼型 5.1.3 NACA五位数 5.1.4 层流翼型 5.1.5 超临界机翼
5.1.1 翼型的几何参数
翼的横剖面形状,又称为翼剖面。在空气动力学中,翼型通 常理解为二维机翼,即剖面形状不变的无限翼展机翼。
在上世纪三十年代初期,美国国家航空咨询委员会 ( National Advisory Committee for Aeronautics,NACA, National Aeronautics and Space Administration, NASA ) 对低速翼型进行了系统的实验研究。
将当时的几种优秀翼型的厚度折算成相同厚度时,厚度分布 规律几乎完全一样。在当时认为是最佳的翼型厚度分布作为 NACA翼型族的厚度分布。厚度分布函数为:
莱特兄弟所使用的翼 型与利林塔尔的非常 相似,薄而且弯度很 大。这可能是因为早 期的翼型试验都在极 低的雷诺数下进行, 薄翼型的表现要比厚 翼型好。
随后的十多年里,在反复试验的基础上研制出了大量翼型, 如RAF-6, Gottingen 387,Clark Y。这些翼型成为NACA 翼型家族的鼻祖。
例: NACA 2 3 0 1 2
20 3
C
L设
2
C L设
2
3 20
0.3
2 x f 30 % x f 15 %
中弧线 0:简单型 1:有拐点
t 12%
CL设:来流与前缘中弧线平行时的理论升力系数
1939年,发展了NACA1系列层流翼型族。其后又相继发展 了NACA2系列,3系列直到6系列,7系列的层流翼型族。
(12p)2pxx2
dxja

第五章
低速翼型的气动特性 翼面压力分布
§5.2 低速翼型的流动特点及起动涡
ห้องสมุดไป่ตู้
(a)小迎角无分离 小迎角无分离
(b)厚翼型后缘分离 厚翼型后缘分离
(c )薄翼型前缘分离 薄翼型前缘分离
小迎角无分离时, 小迎角无分离时,粘性作用对翼面压力分布没有本质改变
空气动力学
第五章 低速翼型的气动特性
退出
第五章
低速翼型的气动特性
§5.1 翼型的几何参数
几何弦长、前缘半径、后缘角; 几何弦长、前缘半径、后缘角; 翼面坐标、弯度分布、 翼面坐标、弯度分布、厚度分布
第五章
低速翼型的气动特性
§5.2 低速翼型的流动特点及起动涡
翼型绕流图画
(c) 150迎角绕流
(d) 200迎角绕流
第五章+机翼低速气动特性(4)

第5章 机翼低速气动特性(4) 机翼低速气动特性(4)
7 升力面理论
z
ξ
A
dξ
o
B
x
MdζζC NhomakorabeaD
z
x
升力线理论的应用范围
升力线理论的应用有一定的范围: 升力线理论的应用有一定的范围 (1)迎角不能太大(α<10°)。升力线理论没有考虑空气 迎角不能太大( 迎角不能太大 °。 的粘性,而在大迎角下的流动出现了明显的分离。 的粘性,而在大迎角下的流动出现了明显的分离。 (2)展弦比不能太小(λ≥5)。 展弦比不能太小(λ≥5)。 展弦比不能太小 (3)后掠角不能太大(χ≤20°)。 后掠角不能太大( ≤20 后掠角不能太大 ≤20°
∂y ′ V∞ − v =0 ∂x 面
确定γ(ξ,ζ)的积分方程
可取翼面边界条件近似在y=0平面 即XOZ平面 平面(即 平面) 可取翼面边界条件近似在 平面 平面 上满足, 上满足,即根据泰勒级数表示式有
∂v (v)面 = (v) y=0 + ⋅ y +L ∂y y=0
y
V∞
o
x
z
升力面气动模型
求解大后掠角或中小展弦比机翼的迎角—弯度问题虽然 求解大后掠角或中小展弦比机翼的迎角 弯度问题虽然 仍可用П形马蹄涡作为基本解来与直匀流叠加, 仍可用П形马蹄涡作为基本解来与直匀流叠加,但应抛弃 使用一条附着涡线来代替机翼附着涡系的假设, 使用一条附着涡线来代替机翼附着涡系的假设,而是将机 翼改用附着涡面来代替, 翼改用附着涡面来代替,此时涡密度是 γ (ξ,ζ ) 。这就是升 力面模型。 力面模型。 升力面模型: 直匀流+附着涡面 附着涡面+自由涡面 升力面模型: 直匀流 附着涡面 自由涡面
7 升力面理论
z
ξ
A
dξ
o
B
x
MdζζC NhomakorabeaD
z
x
升力线理论的应用范围
升力线理论的应用有一定的范围: 升力线理论的应用有一定的范围 (1)迎角不能太大(α<10°)。升力线理论没有考虑空气 迎角不能太大( 迎角不能太大 °。 的粘性,而在大迎角下的流动出现了明显的分离。 的粘性,而在大迎角下的流动出现了明显的分离。 (2)展弦比不能太小(λ≥5)。 展弦比不能太小(λ≥5)。 展弦比不能太小 (3)后掠角不能太大(χ≤20°)。 后掠角不能太大( ≤20 后掠角不能太大 ≤20°
∂y ′ V∞ − v =0 ∂x 面
确定γ(ξ,ζ)的积分方程
可取翼面边界条件近似在y=0平面 即XOZ平面 平面(即 平面) 可取翼面边界条件近似在 平面 平面 上满足, 上满足,即根据泰勒级数表示式有
∂v (v)面 = (v) y=0 + ⋅ y +L ∂y y=0
y
V∞
o
x
z
升力面气动模型
求解大后掠角或中小展弦比机翼的迎角—弯度问题虽然 求解大后掠角或中小展弦比机翼的迎角 弯度问题虽然 仍可用П形马蹄涡作为基本解来与直匀流叠加, 仍可用П形马蹄涡作为基本解来与直匀流叠加,但应抛弃 使用一条附着涡线来代替机翼附着涡系的假设, 使用一条附着涡线来代替机翼附着涡系的假设,而是将机 翼改用附着涡面来代替, 翼改用附着涡面来代替,此时涡密度是 γ (ξ,ζ ) 。这就是升 力面模型。 力面模型。 升力面模型: 直匀流+附着涡面 附着涡面+自由涡面 升力面模型: 直匀流 附着涡面 自由涡面
低速翼型的气动特性PPT课件

第23页/共99页
(2)对于有弯度的翼型升力系数曲线是不通过原点的,
通常把升力系数为零的迎角定义为零升迎角0,而过后缘 点与几何弦线成0的直线称为零升力线。对有弯度翼型0 是一个小负数,一般弯度越大, 0的绝对值越大。
第24页/共99页
(3)阻力 在二维情况下,主要是粘性引起的摩擦与压差阻 力。在小迎角时,翼型的阻力主要是摩擦阻力,阻力系数随 迎角变化不大;在迎角较大时,出现了压差阻力的增量,分 离区扩及整个上翼面,阻力系数大增。 但应指出的是无论摩 擦阻力还是压差阻力都与粘性有关。
后缘分离的发展是
比较缓慢的,流谱
CL
的变化是连续的,
失速区的升力曲线
也变化缓慢,失速
特性好。
第38页/共99页
(2)前缘分离(前缘短泡分离) 中等厚度的翼型(厚度6%-9%),前缘半径较小。 气流绕前缘时负压很大,从而产生很大的逆压梯度,即使在 不大迎角下,前缘附近发生层流边界层分离,此后边界层转 捩成湍流,从外流中获取能量,然后再附到翼面上,由于翼 型具有中等厚度,再附点相对靠前而形成分离短气泡。这种 短气泡的存在对主流没有显著影响,压强分布与无气泡时基 本一样。
第16页/共99页
1967年美国NASA兰利研究中心的Whitcomb主要为了提高亚 声速运输机阻力发散Ma数而提出了超临界翼型的概念。
层流翼型
超临界翼型
第17页/共99页
5.2 翼型的气动参数
1、翼型的迎角与空气动力
在翼型平面上,来流V∞与翼弦线之间的夹角定义为翼型的几何迎角,简称迎 角。对弦线而言,来流上偏为正,下偏为负。
t
yt
(0.29690 0.2
x 0.12600 x 0.35160 x 2 0.28430 x 3 0.10150 x 4 )
89第五章机翼低速气动特性(2)PPT课件

e vi
0
Ve V
V
Δα i
19
下洗角
由于下洗速度远小于来流速度,故可得
i(z)tg1vV i( z)vV i( z)41 V
l 2
d dd
l 2
z
e vi
0
Ve V
V
Δα i
20
升力,诱导阻力
在求作用在机翼微段上的升力之前,我们先引
入“剖面流动”的假设,假设有限翼展的机翼
各剖面所受的气动力与以有效速度Ve流过形状
z
l/ 2
e
vi
Ve
V
V
Δα i
Δα i
z
dv i
d d d x
d
22
升力,诱导阻力
dR的方向垂直于有效速度Ve,它在垂直和平行 V∞方向上的分量分别为升力dL和阻力dDi
d Ldc Ro si(z)d RV (z)dz diD dsRi n i(z)dL i(z)
dX
e
vi
Ve
V
V
dY dR
Δα i
Δα i
23
升力,诱导阻力
沿整个翼展积分,得到整个机翼的升力和阻力为
l
L V
2 l
Γ (z)dz
2
l
Di
V
2 l
Γ (z) i(z)dz
2
dX
e
vi
Ve
V
V
dY dR
Δα i
Δα i
24
升力,诱导阻力
Di这个阻力在理想二维翼上是不存在的,它是由 于有限翼展机翼后面存在自由涡而产生的,或者 说,是因下洗角的出现使剖面有效迎角减小而在 来流方向形成的阻力,故称为诱导阻力。
第五章机翼低速气动特性(3)PPT课件

动图画。在不考虑粘性时,展向分速 V t 是
个常量,而法向分速 V n 不断地改变,所以
流线就会左右偏斜,其形状呈“S”形, 如 右图所示。
后掠翼的绕流图画
后掠翼的绕流图画
这是因为气流从远前方流向机翼前缘时,其 法向分速 V n 受到阻滞而越来越慢,致使气流的合 速越来越向左偏斜。
后掠翼的绕流图画
右图给出了后掠角对剖面升力
系数 CL z 沿展向分布的影响
的例子。
后掠翼的气动特性
后掠翼的升力特性,可用升力面理论来计算。
后掠翼的诱导阻力系数仍可按下式计算:
CDi
CL2 (1)
6 小展弦比机翼的低速气动特性
小展弦比机翼的低速气动特性
通常把<3的机翼称为小展弦比机翼。由 于超声速飞行时小展弦比机翼具有较低的 阻力,所以这种机翼常用于战术导弹和超 声速飞机。
大展弦比直机翼的失速特性
所以,对于椭圆形的机翼,
随着α的增大,整个展向各翼
剖面同时出现分离,同时达
到CLmax∞(翼型的最大升力系
数), 同时发生失速,失速
i
特性良好,如右图所示。
大展弦比直机翼的失速特性
矩形机翼(=1)的诱
导下洗速度从翼根向翼尖增
大,翼根翼剖面的有效迎角
将比翼尖大,剖面升力系数
大迎角下的CLmax也小,但 翼根区先分离不会引起副翼
特性的恶化,并可给驾驶员
i
一个快要失速的警告,一般
还是可以接受的。
大展弦比直机翼的失速特性
梯形机翼由于中小迎角下 的升阻特性接近椭圆翼,结构 重量也较轻,使用甚为广泛。 但是,分离首先发生在翼尖附 近,使翼尖先失速,所以就失 i 速特性来说,上述三种机翼中, 梯形直机翼最差。
个常量,而法向分速 V n 不断地改变,所以
流线就会左右偏斜,其形状呈“S”形, 如 右图所示。
后掠翼的绕流图画
后掠翼的绕流图画
这是因为气流从远前方流向机翼前缘时,其 法向分速 V n 受到阻滞而越来越慢,致使气流的合 速越来越向左偏斜。
后掠翼的绕流图画
右图给出了后掠角对剖面升力
系数 CL z 沿展向分布的影响
的例子。
后掠翼的气动特性
后掠翼的升力特性,可用升力面理论来计算。
后掠翼的诱导阻力系数仍可按下式计算:
CDi
CL2 (1)
6 小展弦比机翼的低速气动特性
小展弦比机翼的低速气动特性
通常把<3的机翼称为小展弦比机翼。由 于超声速飞行时小展弦比机翼具有较低的 阻力,所以这种机翼常用于战术导弹和超 声速飞机。
大展弦比直机翼的失速特性
所以,对于椭圆形的机翼,
随着α的增大,整个展向各翼
剖面同时出现分离,同时达
到CLmax∞(翼型的最大升力系
数), 同时发生失速,失速
i
特性良好,如右图所示。
大展弦比直机翼的失速特性
矩形机翼(=1)的诱
导下洗速度从翼根向翼尖增
大,翼根翼剖面的有效迎角
将比翼尖大,剖面升力系数
大迎角下的CLmax也小,但 翼根区先分离不会引起副翼
特性的恶化,并可给驾驶员
i
一个快要失速的警告,一般
还是可以接受的。
大展弦比直机翼的失速特性
梯形机翼由于中小迎角下 的升阻特性接近椭圆翼,结构 重量也较轻,使用甚为广泛。 但是,分离首先发生在翼尖附 近,使翼尖先失速,所以就失 i 速特性来说,上述三种机翼中, 梯形直机翼最差。
机翼的几何外形和气动力和气动力矩PPT课件

1. 机翼翼型的几何参数 厚度 中弧线
前缘
后缘
弯度
ቤተ መጻሕፍቲ ባይዱ弦线
后缘角
弦长 连接翼型前缘(翼型最弦长前c面的点)和后缘(翼型最后面 的点)的直线段称为翼弦(也称为弦线),其长度称为弦长, 用c表示。
相对厚度 翼型的厚度是垂直于翼弦的翼型上下表面之间的 直线段长度。翼型最大厚度tmax与弦长c之比,称为翼型的 相对厚度t/c或,并常用百分数表示,即
2. 下翼面出现超音速区,且后移较上翼 面快,下翼面产生较大附加吸力,CL减 小;当激波增强到一定程度,阻力系数急剧
增大,升力系数迅速减小,这种现象称为激波 失速
3. 下翼面扩大到后缘,而上翼面超音速 区还能后缘,上下翼面的附加压力差增 大,CL增加。
临界M数, 机翼上表面 达到音速
②坐标表示法
从右图可以看出,机翼升力的产 生主要是靠机翼上表面吸力的作用, 尤其是上表面的前段,而不是主要 靠下表面正压的作用。
2.4不同迎角对应的压力分布
压力中心 随迎角增大 会向前移动
2.5翼型的跨音速升力特性
I. 升力系数随飞行M数的变化
1. 考虑空气压缩性,上表面密度下降更 多,产生附加吸力,升力系数CL增加, 且由于出现超音速区,压力更小,附加 吸力更大;
1.3 翼型的几何参数及其发展
通常飞机设计要求,机翼和尾翼的尽可能升力大、阻力 小。
对于不同的飞行速度,机翼的翼型形状是不同的。如 对于低亚声速飞机,为了提高升力系数,翼型形状为圆头 尖尾形;而对于高亚声速飞机,为了提高阻力发散Ma数, 采用超临界翼型,其特点是前缘丰满、上翼面平坦、后缘 向下凹;对于超声速飞机,为了减小激波阻力,采用尖头 、尖尾形翼型。
1.3 翼型的几何参数及其发展
机翼的几何外形和气动力和气动力矩(精品资料)PPT

1.3 翼型的几何参数及其开展
对翼型的研究最早可追溯到19世纪后期 ,那时的人们已经知道带有一定安装角的平 板能够产生升力,有人研究了鸟类的飞行之 后提出,弯曲的更接近于鸟翼的形状能够产 鸟翼具有弯度和大展弦比的特征 生更大的升力和效率。
平板翼型效率较低,失速迎角很小
将头部弄弯以后的平板翼型, 失速迎角有所增加
1.3 翼型的几何参数及其开展
1884年,H.F.菲利普使用早期的风洞测试了一系列翼型, 后来他为这些翼型申请了专利。
早期的风洞
1.3 翼型的几何参数及其开展
与此同时,德国人奥托·利林塔尔设计并测试了许多曲 线翼的滑翔机,他仔细测量了鸟翼的外形,认为试飞成功的 关键是机翼的曲率或者说是弯度,他还试验了不同的翼尖半 径和厚度分布。
t t/ctmax10% 0 c
1.翼型的几何参数及其开展
1、弦长
前后缘点的连线称为翼型的几何弦。但对某些下外表 大局部为直线的翼型,也将此直线定义为几何弦。翼型前、 后缘点之间的距离,称为翼型的弦长,用c表示,或者前、 后缘在弦线上投影之间的距离。
1.1 翼型的几何参数及其开展
2、翼型外表的无量纲坐标
1.5 低速翼型的低速气动特性概述
当迎角大过一定的值之后,就开始弯曲,再大一些,就到达
了它的最大值,此值记为最大升力系数,这是翼型用增大迎
角的方法所能获得的最大升力系数,相对应的迎角称为临界
迎角
。过此再增大迎角,升力系数反而开始下降,这一
cr
现象称为翼型的失速。这个临界迎角也称为失速迎角。
1.5 低速翼型的低速气动特性概述
2.3 翼型的压力分布 ① 矢量表示法
当机翼外表压强低于大气压,称为吸力。
当机翼外表压强高于大气压,称为压力。 用矢量来表示压力或吸力,矢量线段长度为力的大小,方向为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22
.
23
(1)在升力系数随迎角的变化曲线中,在迎角较小时是一
条直线,这条直线的斜率称为升力线斜率,记为
C
l
dCl
d
这个斜率,薄翼的理论值等于2/弧度
如果迎角较大,流动出现分离。迎角大到一定程度,翼 型上表面出现大面积分离。
由于流动分离,使得升力系数开始下降的迎角称为最大 升力迎角 。对应的升力系数称为最大升力系数Clmax
.
8
对翼型的研究最早可追溯到19世纪后期 带有一定安装角的平板能够产生升力
在实践中发现弯板比平板好,能用于 较大的迎角范围
平板翼型效率较低,失速迎角很小 .
将头部弄弯以后的平板翼型,9 失速迎角有所增加
鸟类的飞行研究:
弯曲的平板更接近于鸟翼的形状
能够产生更大的升力和效率。
鸟翼具有弯度和大展弦比的特征
.
10
德国人奥托·利林塔尔设计并测试了许多曲线翼的滑翔机,他 仔细测量了鸟翼的外形,认为试飞成功的关键是机翼的曲率 或者说是弯度,他还试验了不同的翼尖半径和厚度分布。
.
11
莱特兄弟所使用的翼 型与利林塔尔的非常 相似,薄而且弯度很 大。这可能是因为早 期的翼型试验都在极 低的雷诺数下进行, 薄翼型的表现要比厚 翼型好。
升力下降,意味着飞机可能下掉,失去飞行的正常升力突然
下降的现象称为失速。
.
24
(2)对于有弯度的翼型升力系数曲线是不通过原点的,
通常把升力系数为零的迎角定义为零升迎角0,而过后缘 点与几何弦线成0的直线称为零升力线。对有弯度翼型0 是一个小负数,一般弯度越大, 0的绝对值越大。
.
12
随后的十多年里,在反复试验的基础上研制出了大量翼型, 如RAF-6, Gottingen 387,Clark Y。这些翼型成为NACA 翼型家族的鼻祖。
.
13
在上世纪三十年代初期,美国国家航空咨询委员会 ( National Advisory Committee for Aeronautics,NACA, National Aeronautics and Space Administration, NASA )对 低速翼型进行了系统的实验研究。
将当时的几种优秀翼型的厚度折算成相同厚度时,厚度分布 规律几乎完全一样。在当时认为是最佳的翼型厚度分布作为 NACA翼型族的厚度分布。厚度分布函数为:
y t 0 t .2 ( 0 .29 x 6 0 .1 9 2 x 0 0 6 .30 5 x 2 0 1 0 .26 8 x 3 0 4 0 .13 0 x 4 ) 0 1
常理解为二维机翼,即剖面形状不变的无限翼展机翼。
.
3
翼型按速度分类有
低速翼型
亚声速翼型
超声速翼型
.
4
翼型按形状分类有
圆头尖尾形
尖头尖尾形
. 圆头钝尾形
5
5.1.1 翼型的几何参数
几何弦长、前缘半径、后缘角; 翼面坐标、弯度分布、厚度分布
前缘
厚度
中弧线
弯度
弦线 弦.长c
后缘
后缘角
6
5.1.1 翼型的几何参数
厚度
y tx y 上 x y 下 x
tmy a 上 - xy下
t t c
弯度
1 yf (x)2(y上y下)
f
f c
[yf
(x)]max
xf
xf c
.
7
5.1.2 NACA翼型
1. 翼型的发展
通常飞机设计要求,机翼和尾翼的升力尽可能大、阻力小。 对于不同的飞行速度,机翼的翼型形状是不同的 低亚声速飞机:圆头尖尾形 提高升力系数 高亚声速飞机:超临界翼型 提高阻力发散Ma数,前缘丰 满、上翼面平坦、下翼面后缘向内凹; 超声速飞机:尖头、尖尾形 减小激波阻力
.
21
•升力和阻力的比值l/d 称为升阻比 •其值随迎角的变化而变化,此值愈大愈好,低速和亚声速飞 机可达17~18,跨声速飞机可达10~12,马赫数为2的超声 速飞机约为4~8。 •把升力和阻力分别除以来流动压头与弦长,就得到升力系数 cl和阻力系数cd
l
cl
1 2
v
2
c
cd
1 2
d
v
2
c
.
层流翼型
超临界翼型
.
18
5.2 翼型的气动参数
1、翼型的迎角与空气动力
在翼型平面上,来流V∞与翼弦线之间的夹角定义 为翼型的几何迎角,简称迎角。对弦线而言,来 流上偏为正,下偏为负。
翼型绕流视为平面流动,翼型上的空气动力简称气 动力可视为无限翼展机翼在展向取单位展长所受的 气动力。
.
19
.
20
当气流绕过翼型时,在翼型表面上每点都作用有压强p(垂直 于翼面)和摩擦切应力(与翼面相切),它们将产生一个合 力R,合力的作用点称为压力中心,合力在来流方向的分量为 阻力D,在垂直于来流方向的分量为升力L。
最大厚度为 x 30%
.
14
中弧线取两段抛物线,在中弧线最高点二者相切。
yf pf2(2pxx2)
yf
f (1p)2
(12p)2pxx2
0xp xp
f为中弧线最高点的纵坐标,p 为最大弯度位置。
1932年,确定了NACA四位数翼型族。
NACA ②
④①②
f 2% x f 40% t 12%
.
15
1935年,NACA又确定了五位数翼型族。
五位数翼族的厚度分布与四位数翼型相同。不同的是中弧线。 它的中弧线前段是三次代数式,后段是一次代数式。
例: NACA 2 3 0 1 2
20 3 C L设 2
C L设
2
3 20
0.3
2 x f 30 % x f 15 %
中弧线 0:简单型 1:有拐点
t 12%
CL设:来流与前缘中弧线平行时的理论升力系数
.
16
1939年,发展了NACA1系列层流翼型族。其后又相继发展 了NACA2系列,3系列直到6系列,7系列的层流翼型族。
层流翼型是为了减小湍流摩擦阻力而设计的,尽量使上翼面
的顺压梯度区增大,减小逆压梯度区,减小湍流范围。
.
17
1967年美国NASA兰利研究中心的Whitcomb主要为了提高亚 声速运输机阻力发散Ma数而提出了超临界翼型的概念。
第5章 低速翼型的气动特性 (Airfoil of low speed)
.
1
5.1 翼型的几何参数及表示方法
5.1.1 翼型的几何参数 5.1.2 NACA翼型 5.1.3 NACA五位数 5.1.4 层流翼型 5.1.5 超临界机翼
.
2
5.1.1 翼型的几何参数
翼的横剖面形状,又称为翼剖面。在空气动力学中,翼型通