运动目标检测方法总结报告
复杂条件下的运动目标检测方法研究综述

和理 解 的奠定 基础 。 目前 , 动 目标 检测 方法 主 运
收稿 日期 :0 8— 3—1 20 0 6 作者简介 : 张森悦 ( 99一 , , 宁沈 阳人 , 师 , 士研究 生 , 17 ) 女 辽 讲 硕 主要研究方向 : 图像处理 、 机器视觉 , E—ma :tr 7 6 . O 。 i xl @13 Cr l e2 n
指 出 了方 向 。
关键词 : 复杂条 件 ; 目标检测 ; 光照变化 ; 背景干扰
中图分类号 :P 9 T 31 文献标 识码 : A
运 动 目标 检 测 , 就是 检 测 视 频 序 列 图像 中是 否存 在相 对 于整 幅 场 景 图 象运 动 的物 体 , 目前 被
广泛 应用 于安 全 监控 、 视频 压缩 编码 、 通监 测 等 交
取 运动 目标 。这 种 方 法 是 最 简单 最 直 接 的方 法 ,
点 问题之 一 。 目前 常用 的运动 目标 检测 技术 主 要
有 三种 : 景 减 除 法 、 差 法 和 光 流 法 。T ym 背 帧 oa a
在文献[ ] 4 中列举 了一个复杂条件( 场景) 大体上 所涉 及 的 问题 , 括 : 包 背景 中 的物 体 发生 运 动 ; 由
小 的情况 。 光 流法 是 目前 研 究 比较 多 的方 法 , a o B r n在 r
1 目标 检 测 的 常用 方 法
运动 目标 检测 的 目的是 为 了找 到产生 运 动 的 区域 , 测 出来 的运 动 区 域将 为 后续 的行 为 分 析 检
运动目标检测与跟踪

背景差方法
背景差分法假定背景是静止不 变的,因此背景不随帧数而变。
相减
二值化
后处理
结果
背景估计法
• 背景估计法适用于背景静止情况下的视频分割,其主要基 于以下两个假设:
假设1:在背景静止的情况下,若外界光照条件不变,且在不考虑噪 声的情况下,视频序列图像中的背景保持不变。 假设2:在目标可视的情况下,目标与背景的灰度之间存在着一定的 对比度。 • 根据假设1,在静态场景的条件下视频序列图像中不包含目标的完整 背景在每一帧都相同,由于运动目标会遮挡住一部分背景,所以每一 帧中的背景并不等于完整背景,关键技术就是根据一定的准则从连续 k帧图像中估计出该视频序列图像的完整背景。
根据假设2,运动目标与背景之间的灰度存在着一定的对比度,因此 在不考虑噪声的情况下,在差分图像中属于背景区域的像素的灰度值 为零,从而检测出了运动目标。
运动目标检测方法存在的实际应 用上的困难
1
运动阴影的 干扰
2
动态背景的 影响
3
场景光照的 变化
运动阴影的干扰
• 原因:由于阴影和目标都与背景的差别很大,并 且二者常有着相同的运动,阴影常被错划为运动 目标。
Contents
1
现状和应用
2
目标检测的相关技术
3
目标跟踪的常用方法
4
结语
现状
• 运动目标检测与跟踪是在基于动态图像分析的基 础上结合图像模式识别和图像跟踪方法对图像序 列中的目标进行检测—识别—跟踪的过程,它是 图像处理与计算机视觉领域中的一个非常活跃的 分支,在最近二十几年间,随着计算机技术、 CLSI技术与高分辨率传感技术,图像处理技术的 迅速更新,它在国名经济和军事领域的许多方面 有着广泛的应用。
基于视频的运动目标检测概述

基于视频的运动目标检测概述视频的运动目标检测是计算机视觉领域中的重要问题之一,是计算机对连续帧图像中的运动目标进行自动检测和跟踪的过程。
它在许多应用中起着关键作用,如视频监控、自动驾驶、人机交互等。
本文将对视频的运动目标检测进行概述,重点介绍其基本原理、常用方法以及现有的挑战和发展方向。
首先,视频的运动目标检测可以分为两个主要步骤:目标检测和目标跟踪。
目标检测是指在每一帧中找到属于运动目标的像素或区域,而目标跟踪是指在连续帧之间跟踪目标的位置和形状。
这两个步骤通常是连续进行的,以实现对视频中目标的准确检测和跟踪。
在目标检测中,有许多经典的方法。
其中一种常见的方法是基于背景建模的方法,它假设背景是静态的,通过建模背景来提取前景目标。
背景建模方法包括基于帧差法、基于基于高斯混合模型(GMM)的方法等。
另一种常见的方法是基于特征的方法,它通过提取图像中的特征,如颜色、纹理和形状等,来区分目标和背景。
基于特征的方法包括基于像素级的方法、基于区域的方法和基于深度学习的方法等。
在目标跟踪中,也有许多经典的方法。
其中一种常见的方法是基于卡尔曼滤波器的方法,它通过估计目标的状态变量和噪声方差来预测和更新目标的位置。
另一种常见的方法是基于粒子滤波器的方法,它通过使用一组粒子(即候选目标的样本)来估计目标的位置和形状。
此外,还有一些基于外观模型的方法,它们以目标在每一帧中的外观为基础,进行目标跟踪。
然而,视频的运动目标检测仍然存在一些挑战。
首先,复杂的场景和背景变化可能导致目标检测的错误和漏检。
其次,目标的运动速度和尺度变化可能导致目标的丢失和跟踪的困难。
此外,视频中的遮挡、部分遮挡和目标变形等问题也会影响目标的检测和跟踪精度。
因此,如何提高运动目标的检测和跟踪的精度和鲁棒性仍然是一个挑战。
未来,视频的运动目标检测在几个方面有着巨大的发展潜力。
首先,深度学习技术已经在图像目标检测和跟踪中取得了巨大的成功,将其应用于视频的运动目标检测可以进一步提高准确性和鲁棒性。
《2024年基于光流法的运动目标检测与跟踪技术》范文

《基于光流法的运动目标检测与跟踪技术》篇一一、引言随着计算机视觉技术的不断发展,运动目标检测与跟踪技术在智能监控、自动驾驶、人机交互等领域得到了广泛应用。
其中,光流法作为一种重要的运动目标检测与跟踪技术,因其具有较高的准确性和实时性而备受关注。
本文将详细介绍基于光流法的运动目标检测与跟踪技术的原理、方法及其应用。
二、光流法的基本原理光流是指图像中像素点的运动矢量,描述了像素在时间域上的变化情况。
光流法利用图像序列中像素在时间上的变化以及其视点的运动来推断物体的运动状态。
基本原理是假设相邻帧之间像素的运动具有连续性和平滑性,从而估算出光流场。
光流场反映了图像中所有像素点的运动情况,因此可以用于运动目标的检测与跟踪。
三、运动目标检测方法基于光流法的运动目标检测方法主要包括以下步骤:1. 计算光流场:通过计算相邻帧之间的像素变化,得到光流场。
常用的光流场计算方法包括稀疏光流法和密集光流法。
2. 背景建模:根据已知的背景信息,建立背景模型。
在背景模型中,背景区域的像素点具有稳定的光流场,而运动目标的光流场则与背景模型存在差异。
3. 运动目标检测:通过比较实际光流场与背景模型的光流场,检测出运动目标。
通常采用阈值法或聚类法等方法进行检测。
四、运动目标跟踪方法基于光流法的运动目标跟踪方法主要利用光流场信息对运动目标进行连续跟踪。
具体步骤如下:1. 初始化:在第一帧图像中选取感兴趣的目标区域作为跟踪模板。
2. 光流估计:利用光流法估计目标在下一帧图像中的位置。
3. 模板更新:根据估计的位置更新跟踪模板,以适应目标的形状变化和背景干扰。
4. 跟踪结果输出:将跟踪结果输出到显示器或其他设备上。
五、技术应用及优势基于光流法的运动目标检测与跟踪技术在多个领域得到了广泛应用。
在智能监控领域,可以用于实现视频监控、人脸识别、行为分析等功能;在自动驾驶领域,可以用于实现车辆和行人的检测与跟踪,提高行车安全性;在人机交互领域,可以用于实现手势识别、动作捕捉等功能。
视频检测和运动目标跟踪方法总结

视频检测和运动目标跟踪方法总结目前常用的视频检测方法可分为如下几类:光流法,时域差分法,背景消减法,边缘检测法,运动矢量检测法[2]。
一、光流法光流法[1]是一种以灰度梯度基本不变或亮度恒定的约束假设为基础对运动目标进行检测的有效方法。
光流是指图像中灰度模式运动的速度,它是景物中可见的三维速度矢量在成像平面上的投影,表示了景物表面点在图像中位置的瞬时变化,一般情况下,可以认为光流和运动场没有太大区别,因此就可以根据图像运动来估计相对运动。
优点:光流不仅携带了运动目标的运动信息,而且还携带了有关景物三维结构的丰富信息,它能够检测独立运动的对象,不需要预先知道场景的任何信息,并且能够适用于静止背景和运动背景两种环境。
缺点:当目标与背景图像的对比度太小,或图像存在噪音时,单纯地从图像灰度强度出发来探测目标的光流场方法将会导致很高的虚警率。
且计算复杂耗时,需要特殊的硬件支持。
二、时域差分法时域差分法分为帧差法和改进的三帧双差分法。
1.帧差法帧差法[8]是在图像序列中的相邻帧采用基于像素点的时间差分, 然后阈值化来提取出运动区域。
视频流的场景具有连续性,在环境亮度变化不大的情况下,图像中若没有物体运动,帧差值会很小;反之若有物体运动则会引起显著的差值。
优点:时域相邻帧差法算法简单,易于实现,对背景或者光线的缓慢变化不太敏感,具有较强的适应性,能够快速有效地从背景中检测出运动目标。
缺点:它不能完全提取运动目标所有相关像素点,在运动实体内部不容易产生空洞现象。
而且在运动方向上被拉伸,包含了当前帧中由于运动引起的背景显露部分,这样提取的目标信息并不准确。
2.三帧双差分法三帧双差分法与相邻帧差法基本思想类似,但检测运动目标的判决条件上有所不同。
三帧双差分较两帧差分提取的运动目标位置更为准确。
三、背景消减法背景消减法[4]是将当前帧与背景帧相减,用阈值T判断得到当前时刻图像中偏离背景模型值较大的点,若差值大于T则认为是前景点(目标);反之,认为是背景点,从而完整的分割出目标物体。
2024年体格锻炼计划反思总结报告

在2024年的体格锻炼计划中,我始终坚持以增强体质、提高健康水平为核心目标,通过科学合理的锻炼计划和持之以恒的训练,取得了显著的成效。
以下是我的反思总结报告:一、锻炼计划的制定与执行在计划制定阶段,我充分考虑了个人的身体状况、时间安排以及运动偏好,量身定制了一套包括有氧运动、力量训练和柔韧性练习在内的综合锻炼方案。
每周的训练计划都确保了不同类型运动的有效结合,以实现全面的身体锻炼。
在执行过程中,我严格遵守计划安排,每周至少进行三次有氧运动,如慢跑、游泳或骑自行车,以提高心肺功能和燃烧脂肪。
同时,我也坚持进行两次力量训练,重点锻炼上半身、下半身和核心肌群,以增强肌肉力量和身体稳定性。
此外,每周我还安排了两次柔韧性练习,如瑜伽或拉伸运动,以保持身体的灵活性和减少运动损伤的风险。
二、饮食与营养管理健康的饮食是身体锻炼的基础。
在计划执行期间,我注重均衡营养,增加了蔬菜、水果和粗粮的摄入,减少了高脂肪、高糖食物的消费。
同时,我也确保每天摄入足够的蛋白质,以支持肌肉的生长和修复。
通过合理的饮食控制,我不仅保持了健康的体重,还为身体提供了充足的能量和营养。
三、休息与恢复适当的休息对于身体的恢复和适应性训练至关重要。
在计划中,我合理安排了休息日,确保身体有足够的时间来恢复和适应训练压力。
此外,我还采用了冷热水交替浴、按摩和冥想等恢复手段,以促进血液循环和肌肉放松。
这些措施有效减少了运动后的酸痛和疲劳,提高了训练效果。
四、监测与调整在整个锻炼计划中,我定期监测自己的身体状况,包括体重、体脂率、肌肉量等指标,并通过心率监测和运动表现来评估训练效果。
根据监测结果,我适时调整训练强度和内容,以保持身体持续进步和适应新的挑战。
五、面临的挑战与解决方案在计划的执行过程中,我也遇到了一些挑战,比如工作压力大导致训练时间不足,或是因伤病而需要调整训练计划。
面对这些困难,我采取了灵活应对的策略,比如利用午休时间进行简短的锻炼,或是寻求专业医生的建议来处理伤病问题。
运动目标跟踪

运动目标跟踪运动目标跟踪是一种利用计算机视觉技术来自动识别和追踪视频中的运动目标的方法。
它在实际应用中具有广泛的用途,例如视频监控、交通监控、自动驾驶等。
运动目标跟踪的目标是识别和跟踪视频中的感兴趣目标,并在目标移动、形状变化、遮挡等复杂场景下保持准确的跟踪。
跟踪的过程一般包括目标检测、目标定位和目标跟踪三个步骤。
首先,目标检测是从视频中检测出所有可能的目标区域。
常用的目标检测算法包括基于深度学习的目标检测算法,如Faster R-CNN、YOLO等。
这些算法可以快速准确地检测出目标区域,并生成候选框。
然后,目标定位是确定目标在当前帧中的准确位置。
目标定位一般采用基于特征的方法,通过计算目标候选框与目标模板之间的相似度来确定目标的位置。
常用的目标定位算法包括颜色直方图、HOG特征等。
这些算法可以通过算法模型进行目标定位,并快速准确地输出目标的位置。
最后,目标跟踪是在视频序列中持续追踪目标,并在目标发生变化或遮挡时进行目标重新定位和跟踪。
常用的目标跟踪算法包括基于粒子滤波器的跟踪算法、卡尔曼滤波器跟踪算法等。
这些算法可以利用目标模型和观测模型进行目标跟踪,并实时更新目标的位置和状态。
运动目标跟踪的关键技术包括目标检测和定位、目标跟踪和状态估计、特征提取和匹配等。
当前,随着深度学习技术的发展,基于深度学习的运动目标跟踪方法已经取得了很大的突破。
这些方法可以通过大规模的数据训练模型,实现更加准确和鲁棒的目标跟踪效果。
总之,运动目标跟踪是一种利用计算机视觉技术来自动识别和追踪视频中的运动目标的方法。
它在实际应用中具有广泛的用途,并且随着深度学习技术的发展,其性能和效果正在不断提高。
将来,运动目标跟踪技术有望在各个领域得到更广泛的应用。
人体运动实验报告总结

人体运动实验报告总结引言人体运动是许多领域中的重要研究课题,如运动生理学、运动医学、运动心理学等。
通过不同的实验手段和方法来研究人体运动,可以更好地理解人体的生理变化和运动机理,对个体健康和运动训练具有重要意义。
实验目的本次实验的目的是探究人体在运动过程中的生理反应和心理变化。
通过检测不同运动强度下的心率、血压、体温等指标,以及观察运动前后的心理状态变化,为进一步研究身体运动提供基础数据。
实验方法1. 实验对象选择:选择20名年龄在20-30岁的健康成年人作为实验对象,性别分布均衡。
2. 实验仪器准备:准备心率监测仪、血压计、体温计、心理测试问卷等实验器材。
3. 实验流程安排:将实验对象分为两组,一组进行有氧运动,如跑步、跳绳等,另一组进行无氧运动,如举重、腿蹬等。
每组实验持续时间为30分钟。
4. 实验数据记录:在不同运动阶段,记录实验对象的心率、血压、体温等指标。
运动前后进行心理测试,以评估实验对象的心理状态变化。
5. 实验数据分析:将实验数据进行统计分析,计算不同运动强度下的指标平均值、标准差等,通过t检验比较不同实验组之间的差异。
实验结果通过对实验数据统计和分析,我们得到了如下结果:1. 心率:在有氧运动组中,实验对象的平均心率为156次/分钟,标准差为8次/分钟。
而在无氧运动组中,平均心率为170次/分钟,标准差为10次/分钟。
两组之间的差异达到了统计学意义水平(P < 0.05)。
2. 血压:在有氧运动组中,实验对象的平均血压为120/80 mmHg,标准差为5/3 mmHg。
而在无氧运动组中,平均血压为130/90 mmHg,标准差为7/4 mmHg。
两组之间的差异也达到了统计学意义水平(P < 0.05)。
3. 体温:在有氧运动组中,实验对象的平均体温为37C,标准差为0.3C。
而在无氧运动组中,平均体温为37.2C,标准差为0.4C。
两组之间的差异未达到统计学意义水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要由于计算机技术的迅猛发展,使得基于内容的视频信息的存取、操作和检索不仅成为一种可能,更成为一种需要。
同时,基于内容的视频编码标准MPEG-4和基于内容的视频描述标准MPEG-7正在发展和完善。
因此提取和视频中具有语义的运动目标是一个急需解决的问题。
运动目标提取和检测作为视频和图像处理领域的重要研究领域,有很强的研究和应用价值。
运动检测就是将运动目标从含有背景的图像中分离出来,如果仅仅依靠一种检测算法,难以从复杂的自然图像序列中完整地检测出运动的目标。
较高的检测精度和效率十分重要,因此融合多种检测方法的研究越来越受到重视。
本文介绍了几种国内外文献中的经典的视频运动目标的检测和提取算法,并对各种方法进行了评价和总结。
首先介绍了基本的运动目标检测的基本知识和理论,然后介绍了基本的几种目标检测方法及其各种改进方法。
对今后的运动目标检测提取的相关研究提供一定的参考。
关键词:运动目标检测光流法帧差法背景建模方法ABSTRACTBecause of the rapid development of computer technology, it is possible to access, operate and retrieve the video information based on the content of the video. At the same time, based on the content of the video coding standard MPEG-4 and content-based video description standard MPEG-7 is developing and improving. Therefore, it is an urgent problem to be solved in the extraction and video. Moving object extraction and detection is a very important field of video and image processing, and has a strong research and application value. Motion detection is to separate moving objects from the image containing background, if only rely on a detection algorithm, it is difficult to from a complex natural image sequences to detect moving target. Higher detection accuracy and efficiency are very important, so the study of the fusion of multiple detection methods is becoming more and more important. In this paper, the detection and extraction algorithms of the classical video moving objects in the domestic and foreign literatures are introduced, and the methods are evaluated and summarized. Firstly, the basic knowledge and theory of basic moving target detection is introduced, and then the basic method of target detection is introduced. To provide a reference for the research on the extraction of moving target detection in the future.Keywords: Visual tracking Optical flow method Frame Difference Background modeling method目录摘要 (1)ABSTRACT (2)第一章绪论 (3)研究背景及意义 (4)研究现状 (4)第二章经典的运动目标检测算法 (5)光流法 (5)帧差法 (5)背景差分法 (7)第三章改进的运动目标检测算法 (9)改进的三帧差分法 (9)帧间差分法与光流法结合 (10)改进的背景建模算法 (11)第四章总结 (13)参考文献: (17)第一章绪论研究背景及意义近几十年来,在科学技术飞速发展的条件下,视频与图像处理技术不断提高,各种各样的视频监控产品已经走入了人们的视野,并且在给我们的生活带了很多方便。
视频监控系统的研究技术涉及到视频图像处理、计算机视觉、模式识别以及人工智能等科学领域。
视频监控系统多数要求监控人员长期盯着监控屏幕,进行人为的分析判断,这样容易因为监控人员的疏忽造成重要信息的遗漏。
为此,人们开始将计算机领域的相关技术引入到视频监控系统中,形成智能监控系统[1,2,3,4]。
智能监控系统可以在没有人为干预的条件下,利用计算机视觉的相关技术来对视频序列图像进行智能的分析,实现对运动目标的检测、跟踪、分类和识别等。
现在,运动目标检测技术不仅应用在发电站、商场、银行、民宅、广场和火车站等公共场所的智能监控系统中,而且在其他的领域也有十分广泛的应用。
研究现状目前,基于视频的运动目标检测算法主要有三种:光流法、帧差法和背景差分法,这三种算法都有各自的优缺点。
1981 年,Horn 和 Schunck 通过将二维速度场与图像灰度相联系,从而引入了光流约束方程,得到一个计算光流的基本方法[5]。
Meyer 等人[6]在对光流法进行了深入研究的基础上,提出在光流场中采用基于轮廓的跟踪方法,该方法在摄像机运动的情况下能够有效的对运动目标进行检测和跟踪。
Barron 等人[7]通过使用简单而有效的门限,先分割图像,再计算光流,通过消除杂乱的背景光流来得到较好的目标光流。
Roland 等人[8]利用相邻帧差,通过局部阈值的迭代松弛技术实现图像边缘的光滑滤波。
甘明刚等人[9]提出一种三帧差分和边缘信息相结合的运动目标检测算法,该算法有效地改善了一些情况下帧间差分法会出现“双影现象”的问题。
郝豪刚和陈佳琪等人[10]提出五帧差分法和景差分法相结合的运动目标检测算法,该算法利用背景差分法和帧间差分法性能上的互补来得较好的检测结果。
背景差分法有均值法、中值法、核密度估计法、Surendra 背景更新、单高斯模型和混合高斯模型等,从 20 世纪以来,相继出现了一批批成熟的背景差分法,Wren 等人[11]提出了单高斯模型,该方法在单一背景下能够获得较好的检测结果,但是不适合复杂背景。
Stauffer 等人[12]在单高斯模型的基础上提出了混合高斯模型,混合高斯模型在外界环境比较复杂的条件下仍然可以得到很好的检测效果。
左军毅等人[13]提出时间平均模型和混合高斯模型双模式切换式的运动目标检测算法。
除了以上三种的算法外,还有一些学者尝试采用其他的算法进行运动目标检测,例如,郝志成和吴川等人[14]提出的基于稳定矩阵的动态图像运动目标检测算法,该算法通过在短时间内自动的感知背景变来快速的建立背景模型。
近年来,越来越多的研究机构和学者都参与到基于视频的运动目标检测的研究之中,并提出很多有效的、新颖的方法。
但是仍存在一些问题善待提高,所以找到一种检测精度高、鲁棒性好的运动目标检测算法依然是我们为之努力的方向。
第二章经典的运动目标检测算法光流法空间中物体的运动可以用运动场来描述,同样可以通过序列图像中不同图像的灰度分布差异体现图像平面变化,对比空间中的运动场,体现在图像上表现为光流场。
在运动的某一个时刻,为图像中的各个像素点赋一个速度的矢量,这样就成为了一个图像的运动场。
由于空间物体上的点与图像上的点通过投影关系可以一一对应,则根据各个像素点的速度矢量的变化特征可以对图像进行动态分析[16]。
当图像中没有目标运动时,在整个图像区域中光流矢量的变化是连续的;而当图像中有运动目标时,图像的背景和目标就会有相对的运动,那么目标运动所形成的速度矢量必然和邻域背景速度矢量不同,由此能够检测出运动目标的位置。
光流法利用图像的灰度信息的变化从序列图像中计算出速度场,然后加上一些约束条件,从而推出运动目标的运动参数和物体结构[17]。
光流法事先不需要知道场景的任何信息,就可以准确的计算出运动物体的速度。
它不仅能应用于静态背景下的运动目标检测,而且可以用于摄像机运动的情况,实现动态背景下的运动目标检测。
它的缺点是:光流法的特点是要进行迭代运算,精度越高需要的计算量就越大,因此,光流法的计算量大,运算时间长,是一种比较耗时的算法,很难满足工程上对实时性的要求;光流法的抗噪性能差,例如,当光照发生变化时,即使没有运动发生,光流仍然存在,会被误检测为有目标运动,同时,如果缺少足够的灰度级变化,目标运动物体很难被检测到;当三维物体的运动投影到二维的图像时,亮度会有变化,从而导致通过光流约束是计算不出平面某点的图像速度流;使用光流法对运动目标进行检测,需要特定的硬件设备的支持。
已经有一些学者针对光流法所存在的缺点进行了改进,相信未来光流法能够得到更好的实际应用。
帧差法帧差法[18]又叫时间差分法,它通过将视频序列图像中的当前帧与相邻帧所对应的像素点的灰度值进行比较,然后找到差异,进而检测出运动目标[19]。
在视频序列图像中,相邻的图像之间具有连续性,当视频图像中有运动目标时,由于运动目标的运动,相邻图像间的像素点灰度值差别就会较大,相反,当视频图像中没有运动目标时,相邻图像间的像素点素灰度值差别就会较小,帧差法就是利用视频图像的这一特性进行检测的,它是运动目标检测的最简单方法。
帧差法是先用相邻两帧做差分运算,然后做二值化处理,从而检测出运动目标。
帧差法的基本运算原理框图如下:图帧差法基本原理在二值化的差分图像中,取值为 0 的像素点代表变化较小或是无变化的区域,表示为背景区域;取值为 255 的像素点代表变化的区域,表示为运动目标。
至此,大多数的运动目标的基本形状已经凸显出来了。
为了能够精确的提取出运动目标,通常还需要经过形态学处理,例如,膨胀、腐蚀、开运算、闭运算等,将断点进行连接或者将多余的部分去掉等,从而获得更加准确的检测结果。