悬索桥构造及设计

合集下载

典型悬索桥构造与设计要点 (2)

典型悬索桥构造与设计要点 (2)

典型悬索桥构造与设计要点引言悬索桥是一种常见的桥梁形式,以悬挂在主跨上的主索为承重构件,采用悬索的方式进行跨越,具有独特的结构形式和美观的外观。

本文将对典型的悬索桥构造和设计要点进行详细介绍。

主要构造要素典型的悬索桥通常由以下主要构造要素组成:1.主塔:主塔是悬索桥的主要支撑结构,负责承受悬挂在主跨上的主索的重量,并将重力传递给桥墩或基础。

主塔通常采用混凝土或钢构建,形状可以是单塔或双塔。

2.张力调节系统:悬索桥在使用过程中会受到风、温度等外部因素的影响,悬索的张力可能会发生变化。

为了保持悬索的稳定性和桥梁的平衡,需要配备张力调节系统。

张力调节系统可以通过调整锚固点位置或添加张力调节装置来实现。

3.主索:主索是悬挂在主塔上的承重构件,其形状为弧线状,材料通常为钢缆。

主索通过锚固点固定在主塔上,并悬挂在辅助塔上。

4.辅助塔:辅助塔位于主跨两侧,用于支撑主索,并平衡主跨上的荷载。

辅助塔通常采用混凝土或钢构建,形状可以是单塔或双塔。

5.承重索:承重索是悬挂在主索下方的承载桥面荷载的构件,其形状通常为平直线状。

承重索通过悬挂索连接到主索上,将桥面荷载传递给主索。

6.桥面:桥面是承载行车和行人的部分,通常由钢梁或混凝土板构成。

桥面可以采用悬挂桥面或刚性桥面,具体选择取决于桥梁设计要求和实际情况。

设计要点在设计悬索桥时,需要考虑以下要点:1.荷载分析:悬索桥的设计要充分考虑到桥梁所承受的荷载,包括静态荷载和动态荷载。

静态荷载主要包括桥面荷载、人行荷载和防护栏荷载,动态荷载主要包括风荷载和地震荷载。

荷载分析对桥梁的设计方案和结构设计具有重要影响。

2.结构稳定性:悬索桥的结构稳定性是桥梁设计的基本要求。

在设计过程中,需要进行结构计算和抗震计算,确保主塔和辅助塔的稳定性,以及主索和承重索的牢固性。

3.张力调节:悬索桥在使用过程中,由于外界因素会导致主索的张力发生变化。

为了保持悬索桥的平衡和稳定,需要设计合适的张力调节系统,对张力进行调整和控制。

悬索桥桥塔结构设计分析

悬索桥桥塔结构设计分析

悬索桥桥塔结构设计分析悬索桥是一种具有悬挂在桥塔之间的主悬索和斜拉索的特殊结构。

它的设计目的是为了克服大跨度桥梁的自重、风荷载和车辆荷载等挑战,并且提供足够的刚度和稳定性,确保行车安全。

悬索桥的设计分为桥塔和悬索两个主要部分。

桥塔是悬索桥结构的垂直支撑点,负责承载悬索的张力,同时通过自身形态和刚度来平衡桥面上的荷载。

悬索是通过吊杆与桥塔连接起来的导向元素,承担横向荷载并将其传递给桥塔。

在桥塔的设计中,结构工程师需要考虑多种因素。

首先是桥塔的高度和形状,这直接影响着悬索桥的外观和空间感。

一般而言,桥塔的高度要足够高以便支撑起悬索桥的主悬索,并且在视觉上与周围环境和谐统一。

其次是桥塔的材料和施工方式。

桥塔通常由钢筋混凝土或钢制成,其中钢材可以提供更大的强度和刚度,但也需要更高的维护成本。

最后,桥塔的稳定性和抗风性能也是设计中必须考虑的因素。

由于桥塔在工作中承受着各种外部风载,因此其形态和截面应足够稳定,以保证桥梁整体的安全性和可靠性。

悬索是悬索桥设计中的关键部件。

悬索的主要作用是将荷载传递到桥塔,同时保证桥梁的稳定性和刚度。

一般而言,悬索由多根几何相似的悬索体组成,可以根据需要的荷载和跨度进行合理的排布和尺寸确定。

在悬索的设计中,考虑的主要因素有悬索的材料、悬索的受力分析以及悬索与桥塔的连接方式等。

悬索通常采用高强度钢丝绳或钢缆,以提供足够的强度和柔性。

悬索的受力分析是悬索桥设计中最为重要的一环,结构工程师需要通过一系列的计算和数值模拟来确定悬索的受力状态,以满足强度和稳定性的要求。

悬索与桥塔的连接方式通常采用球形铰接,以允许悬索在水平和垂直方向上的运动,并通过适当的轴向刚度限制悬索的形变。

悬索桥的设计与建造是一个复杂而艰巨的任务,需要结构工程师们充分考虑各种因素,并寻求最佳的解决方案。

在设计过程中,结构工程师们需要进行大量的结构分析、受力计算和模拟仿真,以确保悬索桥的结构安全、经济、美观和可持续。

第九章 悬索桥

第九章 悬索桥

§ 9.1 悬索桥的受力特点与结构体系
第三代悬索桥,形成了美式悬索桥体系,主缆采用纺丝法, 加劲梁采用桁架梁,桥塔以钢塔为主。
§ 9.1 悬索桥的受力特点与结构体系
第四代悬索桥,以流线形扁平钢箱为主要特征的英式悬 索桥。
§ 9.1 悬索桥的受力特点与结构体系
9.1.1 悬索桥的受力特点
主缆是结构体系中的主要承重构件,受拉为主; 桥塔是悬索桥抵抗竖向荷载的主要承重构件,受压为主; 加劲梁是悬索桥保证车辆行驶、提供结构刚度的二次结构, 主要承受弯曲内力; 吊索是将加劲梁自重、外荷载传递到主缆的传力构件,是 联系加劲梁和主缆的纽带,受拉。 锚碇是锚固主缆的结构,它将主缆中的拉力传递给地基。
地锚式悬索桥
斜单杆 主缆与主梁固结
主缆
自锚式悬索桥
§ 9.2 悬索桥的结构组成
9.2.1 锚碇
用来锚固主缆的重要结构,将主缆的拉力传递给地基。 重力式锚碇依靠巨大的自重来抵抗主缆的垂直分力,水 平力由锚碇与地基间的摩擦力或嵌固阻力来承担。 隧道式锚碇将主缆的拉力直接传递给周围的岩石。
重力式锚碇
9.3.1 总体布臵
4、加劲梁的尺寸 加劲梁的尺寸主要是确定加劲梁的高度和宽度。 桁架式 加劲梁
梁高
h=8~14m
高跨比
h:L= 1/70~1/180
箱形 加劲梁
梁高
高宽比
高跨比
h=2.5~4.5m h:B= 1/7~1/11 h:L= 1/300~1/400
抗风稳定性需要
§ 9.4 悬索桥的计算
§ 9.1 悬索桥的受力特点与结构体系
9.1.1 悬索桥的受力特点 静力特性
(3)改变主缆的垂跨比将影响结构的内力,结构体系的刚 度也将随之改变。 减小垂跨比,主缆的拉力将增大,从而起到减小挠度 的作用,即增大体系的刚度。 (4)随着跨径的增大,加劲梁的高跨比应越来越小。 加劲梁的挠度是随着主缆的变形产生的,加劲梁本身 刚度的作用已影响不大,这与其他桥型的主要构件截面积 总是随着桥梁跨径的增加而显著增加不同。

缆索承重桥梁之悬索桥构造及设计计算

缆索承重桥梁之悬索桥构造及设计计算

缆索承重桥梁之悬索桥构造及设计计算悬索桥是一种常见的缆索承重桥梁,由主悬索、次悬索、桥面和塔构成。

其特点是悬挑距离长、塔高、桥塔之间跨度大,能够满足交通需要,同时其结构也相对稳定。

悬索桥的设计计算主要包括塔的高度、主悬索和次悬索的设计、桥面荷载的计算等。

首先,塔的高度需要满足一定的要求,一般要高于悬索桥的主悬索距离。

塔的高度设计不仅需要考虑桥面的拱度,还需要考虑塔之间的跨度,以保证结构稳定性和桥梁的安全性。

主悬索和次悬索的设计是悬索桥中最重要的部分,它们负责承受桥面的荷载。

悬索桥的主悬索是从塔顶到桥面中央的一条曲线,而次悬索则是从塔顶到桥面两侧的曲线。

主悬索和次悬索一般采用钢缆或预应力混凝土。

设计时需要考虑主悬索和次悬索的自重、荷载以及悬索桥的自重等因素,进行应力和变形的计算,以确保结构的稳定和安全。

在设计过程中,还需要考虑悬索桥的动态响应,防止因为振动而对桥梁产生不良影响。

另外,桥面荷载的计算也是悬索桥设计的重要一环。

桥面荷载一般包括活载荷载和恒载荷载两部分。

活载荷载是指交通载荷,包括车辆和行人的荷载。

恒载荷载是指悬索桥本身的自重和设备荷载等。

在计算过程中,需要考虑桥梁的应力分布、变形和挠度,以确保桥梁的安全和稳定。

最后,设计时还需要考虑材料的选取、施工方案等因素。

悬索桥的设计需要结合实际情况,综合考虑各种因素,以确保悬索桥的安全性、稳定性和经济性。

总之,悬索桥的构造和设计计算是一项复杂且系统的工程,需要考虑各种因素和条件,以保证悬索桥的安全和稳定。

设计师需要结合实际情况,采用科学的方法进行设计和计算,以实现悬索桥的目标。

悬索桥手册

悬索桥手册

悬索桥是一种以悬挂在主缆上的悬挂索为主要构件的桥梁,其独特的结构和设计使得其具有更高的跨度和承载能力。

以下是一份悬索桥手册,包括悬索桥的基本概念、结构特点、施工流程和维护保养等方面。

1. 基本概念悬索桥是一种以悬挂在主缆上的悬挂索为主要构件的桥梁,悬挂索负责承受桥面荷载,并将荷载传递给主缆,再由主缆传递到桥墩或锚墩上,从而实现桥梁的支撑和承载。

2. 结构特点悬索桥具有以下结构特点:-悬挂索:悬挂索是悬索桥最重要的构件,其长度约为桥面长度的一半或三分之二。

悬挂索通过加劲肋与桥面连接,负责承受桥面荷载,并将荷载传递给主缆。

-主缆:主缆是悬索桥的主要支撑结构,由多根钢缆或钢索组成。

主缆通过锚固在两端的桥墩或锚墩上,将荷载传递到地基。

-锚固系统:锚固系统是将主缆牢固地连接到桥墩或锚墩上的结构体系。

锚固系统需要具备足够的强度和可靠性,以保证主缆在荷载作用下不会发生滑移或断裂。

-桥面:悬索桥的桥面一般为钢结构或混凝土结构,负责承受行车荷载并平稳地传递给悬挂索。

-塔柱:塔柱是悬索桥中起支撑和衔接作用的重要构件,通常由钢筋混凝土或钢结构建成。

3. 施工流程悬索桥的施工流程一般包括以下步骤:-前期准备:包括选址、勘测、设计、审批等工作。

-基础施工:主要包括桥墩或锚墩的施工,包括桩基开挖、模板安装、混凝土浇筑等。

-主缆构造:主缆是悬索桥的核心结构之一,其施工需要精密的计算和组织。

主缆一般采用预应力混凝土或钢缆构造,施工过程中需要注意材料的选择、钢缆的张拉、预应力控制等问题。

-悬挂索构造:悬挂索是悬索桥的主要承载结构,其构造需要根据设计要求和实际情况进行精密计算和组织。

悬挂索一般由钢缆或钢索构成,需要进行精密的张拉和定位。

-桥面施工:桥面的施工一般采用钢结构或混凝土结构,包括桥面板、加劲肋以及道路铺装等。

4. 维护保养悬索桥的维护保养需要注意以下几个方面:-定期检查:定期对悬挂索、主缆、桥墩等结构进行检查,及时发现并处理可能存在的问题。

悬索桥下部结构设计

悬索桥下部结构设计

悬索桥下部结构设计1、桥塔设计桥塔类型按材料可分为混凝土塔和钢塔两类,钢塔具有施工速度快、结构自重轻、抗震性能好等优点,(混凝土塔)则在经济性方面优势明显。

山区大跨度桥梁,钢结构加工运输较为困难,因此本桥采用经济性较为明显的混凝土桥塔。

索塔采用门形框架结构,包括上塔柱、下塔柱、上横梁和下横梁以及附属设施。

塔柱为钢筋混凝土结构,横梁为预应力混凝土结构。

索塔整体造型以及各部分的断面形式考虑了受力、风阻系数以及景观方面的要求,同时尽可能便于施工。

索塔总高度为264m(不含主索鞍室),其中上塔柱高153m(下横梁顶面以上),下塔柱高112m(下横梁顶面以下)。

塔柱均采用D 形薄壁空心断面:顺桥向尺寸,由塔顶的8.5m 直线变化到塔底的16.5m,横桥向尺寸,由塔顶的6.5m 直线变化到塔底的11.5m;上塔柱在顺桥向和横桥向的壁厚均为1.0m,下塔柱在顺桥向和横桥向的壁厚均为1.2m。

上横梁处塔柱壁厚为1.6m,下横梁处塔柱壁厚为2m。

由于塔柱受力较为复杂,塔柱在上横梁底板和下横梁顶、底板交汇处等受力较大的区段设置加厚段,塔底设置3m 实心段。

索塔在上塔柱顶设置了上横梁,采用箱形断面,为预应力混凝土结构,上横梁宽度8m,高度为8m。

上横梁顶、底、腹板壁厚1m。

下横梁设置在主梁下方采用箱形断面,为预应力混凝土结构,下横梁宽度10m,高度为10m。

顶、底和腹板壁厚均为1.2m。

桥塔基础采用分离式承台接群桩基础,桥塔基础采用直径 2.5m,每个承台布设20根本项目桥塔较高,横梁刚度对桥塔稳定影响较为明显。

下阶段应结合桥塔景观设计做深入比较。

2、锚碇设计(1)锚碇选型隧道式锚碇根植于基岩,可充分发挥岩石岩性,以其开挖量小、造价低、利于环境保护等优点,成为山区悬索桥锚碇的首选形式。

四川岸塔位处山势陡峭,但坡面后退方向存在2级极为平整的阶地,覆盖层约3m,宜采用重力锚;云南地形较平坦,可以采用重力锚;根据地质勘测资料,两岸锚碇区持力层地质均为软岩,四川主要为泥岩,云南为较为破碎的砾岩。

悬索桥的总体设计

筑龙网 W W W .Z H U L O N G .C O M 悬索桥的总体设计悬索桥适用于大跨度的桥梁结构。

桥面是由钢缆和吊索来承受,作为桥面主要结构物的加劲梁的跨度相当于吊索的间距.成为一个小跨度的弹性支承连续梁,所以主跨的大小与加劲梁刚度没有很直接的关系。

而作为承受桥面的关键构件的铜缆是由塔支承着并由强大的锚碇锚固着,只有塔和锚碇的稳定才能使钢缆来承受桥面上的各种荷载。

因此,悬索桥在适合的地形、水文和地质条件下都可以建造,只是造价比较高。

往往适用于其他桥型难以适用的特大跨径桥梁。

以目前来说,当主跨超过700m 的桥,几乎都是悬索桥(已建成的其他桥型只有斜拉桥,主跨为890m 的多多罗桥和856m 的诺曼底桥)。

而小于700mm 的跨径中,悬索桥和斜拉桥还是有很大的竞争力,有好的地质条件,锚往比较容易建造,如汕头海湾桥和鹅公岩长江大桥;有时有特殊要求,如厦门海沧桥和日本东京湾的彩虹桥.航空的限高和航运要求的通航净空,迫使他们选用悬索桥,因为悬索桥的塔高是斜拉桥的1/2;在施工过程中,悬索桥始终在一个静定稳定结构状态下,容易控制,风险小,也使一些人偏爱悬索桥的原因。

桥梁总体设计是一个很复杂的问题,首先要适应地形、水文、地质等自然条件的限制,也要符合桥面交通和通航的使用要求。

本文主要以50年代以后建的悬索桥进行分析,因为它们充分吸取Tacoma 大桥被风吹毁的教训,以下讨论的参数仅仅是一般情况的参考值,对于有特殊条件和特殊要求不必苛求。

一、跨度比跨度比是指边孔跨度与主孔跨度的比值。

其中对单跨悬索桥而言边孔跨度可视为主塔至锚碇散索鞍处的距离.跨度比受具体桥位处的地形与地质条件制约,每座桥都不同。

如三跨悬索桥的跨度比就比单跨悬索桥的大一些,这是为了减少边孔的水中墩并减少主孔跨径。

三跨悬索桥跨度比一般在0.25~0.4之间,但世界上最大的悬索桥--明石海峡大桥在0.51。

单跨悬索桥跨度比一般在0.2~0.3之间。

钢悬索桥的构造特点和结构设计特点[详细]

❖ 布置形式:竖直;倾斜(提高整体振动时的结构阻尼值)。 ❖ 材料:刚性吊杆(少量小跨:圆钢或钢管);柔性吊索:钢丝绳或
者平行钢丝索(多采用)。 ❖ 钢丝绳索
绳心式:以一股钢丝绳为中央形心,外围用钢丝束股围绕扭绞 而成。
股心式:7股钢丝束股扭绞而成,中央一股为股心。 注意:钢丝束股的扭绞方向与其间钢丝的扭转方向相反。
❖ 8.3 悬索桥的构造特点
主缆
❖ 编制方法——AS法 通过牵引索作来回走动的编丝轮,每次将两根钢丝从一端拉到另一 端,待钢丝达到一定数量后(可达400~500根)编扎成一根索股。 钢束股数较少,便于集中锚固,起吊设备轻便;架设主缆时抗风 较弱所需劳动力也较多。
❖ 编制方法——PS法 避免了钢丝编成钢丝束股的作业从而加快主缆的施工进度,但要求 大吨位的起重运输设备和拽拉设备来搬运钢丝束股。目前多采用 61、91、127Φ5左右钢丝,最重可达40吨。
梁高 用钢量 桥面系
制造
制造
施工 养护
架设 养护维修
桥面
钢桁梁 最不易发生
大 大
高 最大 一般与主梁分离 杆件多,节点结构复 杂,标准化大量生产 困难 单根杆件平面构件立 体节段多样化 油漆养护难 菲结合型损伤时易
加劲梁形式 钢箱梁 易发生 可能性大 小 小 小 低 低
一般与主梁结合为整体
箱梁由板构件组成,标 准化大量生产容易
改良措施:
❖ 以S 形截面的缠绕钢丝代替圆端面钢丝,使主缆表面光滑、丝丝相 扣,油漆不易开裂、水不能渗入。
❖ 开空气导入法:将除湿机产生的干燥空气用管道输送,通过入口 索夹输入主缆,经出口索夹排出主缆(出入口索夹间距140米左 右),一般可维持相对湿度在40%以下。
❖ 8.3 悬索桥的构造特点

吊桥(悬索桥)施工组织设计

吊桥(悬索桥)施工组织设计【第一篇】吊桥(悬索桥)施工组织设计正文:1. 项目概述本文档旨在为吊桥(悬索桥)施工组织设计提供详细的指导。

本项目是一个吊桥(悬索桥)的建设工程,包括桥梁主体结构的施工、主要设备和材料的采购、安全管理等相关内容。

2. 施工准备阶段2.1 前期调查与设计在吊桥(悬索桥)施工之前,必须进行充分的前期调查与设计工作。

包括场地勘察、地质勘察、水文气象调查、结构设计等,确保施工的可行性和安全性。

2.2 施工材料准备根据设计规范和施工要求,进行吊桥(悬索桥)所需的各类材料的采购准备工作。

确保材料的质量符合相关标准,同时合理安排材料的进场和储存。

2.3 设备准备根据施工计划,确定各类设备的类型、数量和规格,进行设备的采购或租赁准备工作。

同时,检查设备的运行状况,并对其进行维护和保养。

3. 施工组织安排3.1 组织架构设立吊桥(悬索桥)施工项目组,明确各个职责和权限。

相关部门和人员要有明确的分工和配合,确保施工工作的有序进行。

3.2 安全管理建立健全的施工安全管理体系,包括制定安全生产责任制度、安全教育培训计划、安全隐患排查和整改等措施,确保施工过程中的安全。

3.3 进度管理编制合理的施工计划和施工进度表,根据各个施工的紧密连系,制定合理的施工顺序,确保施工进度的严格执行。

4. 施工流程4.1 基础施工进行吊桥(悬索桥)基础施工工作,如桥墩的建设、桥面板的安装等。

根据地质勘察结果和设计要求,确保基础施工的稳定性和耐久性。

4.2 主梁施工吊桥(悬索桥)的主梁施工包括吊装和安装,需要合理选择起重设备和施工方法,确保主梁的安装质量。

4.3 索塔和悬索线施工吊桥(悬索桥)的索塔和悬索线是关键部件,需要进行精确的施工工作。

合理选择施工方法和设备,确保索塔和悬索线的安装牢固和稳定。

4.4 完工验收在吊桥(悬索桥)的竣工阶段,进行完工验收工作。

相关部门和专业人员对吊桥(悬索桥)进行检查和测试,确保其符合相关规范和标准。

吊桥(悬索桥)施工组织设计

第一章、工程基本情况一、工程概述本工程为核桃基地景观桥工程,位于核桃基地景观带,计划在现有优质1200核桃基地、采摘园的基础上,在山上建设一处长150米,宽2米的景观桥,一桥两亭,融桥于景,营造和谐、怡人的气氛,满足人们精神文化生活的需求。

二、工程内容本项目为景观人行桥,位于规划景观带内,主体结构主索为高强平行钢丝,桥面系为木质桥面,桥面结构为热轧H型刚组合焊接而成,桥面两侧防护栏为钢丝绳护栏。

桥梁为单跨悬索桥,跨径组合为152,主索矢高为1m;垂跨比为1/152,两侧通过引桥与河堤相连。

桥面宽度为2.4m,吊杆间距为2.4m。

两侧采用岩石地基锚碇。

全桥结构轻盈,简洁美观.计划工期: 2017年8月4日——2017年10月4日.质量标准:达到国家验收合格标准.第二章、编制依据我们编制的原则是:在确保工程质量合格的前提下,安全、快速、低造价、操作性强”,同时保证施工现场周边有良好环境。

1、核桃基地景观桥工程施工图设计文件;2、设计交底文件;3、施工现场踏勘情况;4、投标文件和招标文件5、国家现行的相关技术规范1、本工程各项专项施工方案是严格按照本工程的施工组织设计要求进行策划后编制的,在人员、机械、材料供应、平衡调配、施工方案、质量要求、进度安排、资金计划等方面统一进行部署下完成。

本着对建设单位负责和资金的合理使用、对工程质量的高度责任感,并针对本工程设计特点和功能要求,我公司高度重视本工程专项施工方案的编制工作,特邀请曾经从事过类似工程的技术专家、有关负责人攻克本工程的重点、难点及特殊部位的施工技术,力求各专项方案重点突出,具有针对性和可操作性。

第三章、施工准备情况一、准备工作内容1、项目管理机构的组建;2、施工技术及设备准备;3、施工机具设备准备;4、班组人员准备;5、临时设施准备1、项目管理机构的组建我公司高度重视本工程的建设,已把本工程列为重点工程,根据本工程的规模和特点,选派思想好、业务精、能力强、能融洽、合作好的具有丰富实践经验的年富力强、颇具开拓精神的管理人员进入项目管理班子.对外适应业主管理的要求,充分发挥公司的经济技术优势和精诚合作的诚意,对内建立健全项目经理、执行经理、技术负责人、各专业工长、内业技术员、材料主管、质检和安全主管等岗位责任制,确保预定目标的最终实现.项目管理机构由两个层次组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢箱梁内部构造
悬索桥各部分构造——加劲梁
钢箱梁的横截面:
扁平棱形钢箱梁 增设抗风分流板的扁平棱形钢箱梁 流线型钢箱梁 增设抗风分流板的流线型钢箱梁
1500米以上的悬索桥尽可能采用开槽分离箱,及 其它导流稳定措施才能满足要求。
Messina海峡大桥 (3300米方案)钢箱加劲梁横截面
加劲梁宽达60.4m,由3个纵向的钢箱、钢箱梁之间的钢桥面板和钢横梁 等三部分组成。钢横梁的立面作成倒梯形,中间部分高约5m。横梁间距 30m,纵向箱梁净跨径26m。主跨的宽跨比为1/54.6。能够经受高于216 Km/h的大风;公路平台能够承受大于140,000辆/天的交通量;双线铁路 允许通过列车200辆/天。
双层公路桥面钢桁架梁 公铁两用的双层桥面钢桁架梁 单层桥面钢桁架梁 流线型闭合式桁架箱梁——香港青马大桥
钢桁架加劲梁的特点:
通透梁体,抗风稳定性好;空间桁架结构,抗扭刚度 较大;不易产生颤振、抖振和涡激共振。
一般桁架加劲梁横截面
香港青马大桥
闭合式 钢桁梁横截面
在两片主桁架的外围,沿着桥梁纵向每隔4.5米加设一道包 括上下桥面系横梁、两侧尖端形导风角与中间两根立柱等构件 组成的六边形横向主框架,在导风角部分用1.5毫米后的不锈 钢板围封。这样连同上下横梁部分的正交异性钢桥面板,组成 一个类似与钢箱梁的封闭性截面。上层桥面的中央3.5米宽度 部分和下层桥面的铁道桥面系部分均以交叉的斜杆代替正交异 性板,整个截面中央部分形成一条纵向的上下通风道,对抗风 极为有利。
箱梁由板构件组成,标 准化大量生产容易
节段法架设或与现浇节 段并用 油漆养护方便 与主梁结合损伤难维修
砼ቤተ መጻሕፍቲ ባይዱ梁
不易发生 可能性小
小 小 大 低 最低
为主梁的一部分
工厂预制节段,标 准化生产容易
预制节段法
一般无需养护 损伤时易维修
悬索桥各部分构造——加劲梁
钢板梁的横截面
悬索桥各部分构造——加劲梁
钢桁架的横截面:
❖ 双链式悬索桥(小跨度悬索桥)
双链式悬索桥的恒载及均布活载由上下链平均负担,非均布活载以及 半跨活载时结构的受力及变形特性较好,分散构件受力可减小构 件截面尺寸和单件重量;缺点:构件增多分散,安装及养护维修 不利。
悬索桥的形式(续)
❖ 地锚式悬索桥的孔跨布置形式(力学体系) 单跨:适于边跨建筑高度小、曲线边跨。由于边跨主缆的垂
桥塔纵向结构形式: 摇柱塔(摆动式):单柱塔下设铰、塔顶索鞍固定于塔,适
于小跨。 柔性塔:一般为下端固定式,塔顶水平变位量相对较大,适
于大跨。 刚性塔:塔顶水平变位量相对较小,单柱或者A形,多用于
多跨悬索桥的中间塔柱,纵向刚度较大,塔顶位移小从而减 小加劲梁内的应力。
悬索桥各部分构造——塔
桥塔横向结构形式: 刚构式(框架式):单层或者多层门架,明快简洁。 桁架式:若干组交叉的斜杆与水平横梁组成桁架,施工
单面主缆;空间主缆;
复式主缆(双链吊桥: 朝阳大桥)。
• 截面形状(六角形)
尖顶形:将钢丝索故在竖向排列,列间插放隔片有助于通风和保持真圆 度较高的截面形状,截面温度均匀。主缆施工之初的钢丝定位较难。
平顶形:下层的钢丝索股会受到较大的挤压力,截面水平直径较竖向直 径大。
方阵式:竖横双向均利于插放隔片,钢丝束股数目较为灵活,紧缆机操 作时也较容易形成圆形截面。
重力式锚碇(采用较多)
隧道式锚碇
• 重力式锚碇用于持力层位于地表以下20~50米较合理;过深可以采用 深基础:沉箱、沉井、桩、管柱等。 • 隧道式锚碇用于基岩外露处,主缆各索股集中在一个岩洞内锚固。 • 挪威研究的新型锚碇,例如“瑞典高海岸大桥”,构造简单而经济。
重力式锚碇外观图
• 图a)为现代预应力锚固系统(前锚式) • 图b)为一般后锚式锚固系统
悬索桥各部分的作用
❖ 主缆是结构体系中的主要承重构件;通过塔顶索鞍悬挂 在主塔上并锚固于两端锚固体中的柔性承重构件。
❖ 主塔是悬索桥抵抗竖向荷载的主要承重构件;支承主缆 的重要构件。
❖ 加劲梁是悬索桥承受风荷载和其它横向水平力的主要构 件,提供桥面和防止桥面发生过大的挠曲变形和扭曲变 形,主要承受弯曲内力。
度较小对荷载变形有利,架设主缆时索鞍预偏量较大; 梁端用吊杆或者摆柱作支撑的悬浮体系,纵向位移不受 限制。1385米江阴大桥。 三跨:最常见。 两跨:(单边跨)一岸建筑高度小和曲线边跨时。1377米青 马大桥。 多跨:因中间桥塔和两边桥塔的塔高不同导致主缆垂度偏大, 悬索桥整体刚度降低,非均布活载下塔顶变位及加劲梁 挠曲变形和弯矩较大;固有振动频率降低。故中塔必须 加大刚度(4柱立体桥塔)或者减小主缆垂跨比。
锚碇(用于地锚式悬索桥)
基本组成:主缆的锚碇架及固定装置、锚块、锚块基础。 基本分类:重力式锚碇、隧道式锚碇、岩锚。
重力式锚碇: 依靠锚块自重来抵抗主缆的竖直分力,水平分力则由锚碇与 地基之间的摩阻力(包括侧壁的)或者嵌固阻力来抵抗。
• 前锚式:主缆采用PS法施工时的缆索锚固方式,支承(定 位)钢构架与传力钢构架的结合。 • 后锚式:主缆采用AS法施工时的缆索锚固方式,铸钢索靴 与眼杆的结合。 • 现代预应力锚拉工艺:近期已经陆续取代前两者。
平行钢丝索(PWS):多根Φ5~7镀锌钢丝外加PE套管。
悬索桥各部分构造——索夹
索夹
作用:刚性索夹与柔而松的主缆索体间的连接为不稳定连接。依靠摩擦 力来保证主缆在受拉产生收缩变形时也不致滑动。
构造:
六边形(中小跨):少用; 圆形:一对铸钢半圆构件以高强螺栓相连接,依靠高强
螺栓拧紧后的拉力来提供足够索夹固定位置的摩擦阻力, 两半圆构件之间留有一定空隙,以保证螺栓拉力,空隙 内填防腐料;索夹半圆内表面加工后不能磨光。 骑跨式:索夹上半部有4各凸肋形成两条凹槽; 销铰式:下侧半索夹下带有耳式吊板供销铰连接用。
方阵式主缆断面
施工中的主缆断面
悬索桥的构造——主缆
主缆编制方法 AS法:通过牵引索作来回走动的编丝轮,每次将两根
钢丝从一端拉到另一端,待钢丝达到一定数量后(可 达400~500根)编扎成一根索股。钢束股数较少,便 于集中锚固,起吊设备轻便;架设主缆时抗风较弱所 需劳动力也较多。 PS法:避免了钢丝编成钢丝束股的作业从而加快主缆 的施工进度,但要求大吨位的起重运输设备和拽拉设 备来搬运钢丝束股。目前多采用61、91、127Φ5左右 钢丝,最重可达40吨。
汲水门大桥(斜拉桥)
悬索桥各部分构造——加劲梁
钢箱梁的特点
采用正交异性钢桥面板和带加劲肋的薄钢板组成,能充 分发挥薄钢板比厚钢板力学性能好的优点,利于焊接, 同时,正交异性板具有很高的承载力,截面设计更为经 济合理。
为提高梁体抗失稳能力,纵向每隔一定间距设置框架横 联或横向联结系,相邻两横联之间可加设横向加劲肋, 支座处横联更应加强;为保证翼缘板及腹板屈曲稳定, 受压区架设纵向加劲肋(多为闭口纵肋:抗扭刚度大; 屈曲稳定好;外侧贴角焊缝长度减少一半),连续贯通 的纵肋可作为翼缘板截面的一部分予以计算。
悬索桥各部分构造——索夹
吊索与索夹的联结方式(钢丝绳) 4股骑跨式:两根两端带锚头的钢丝绳索绕跨在索夹顶部的
嵌索槽中,锚头与加劲梁连接。不宜用平行钢丝索,索夹 分左右两半。
双股销铰式:两根下端带锚头、上端带销铰的钢丝绳索或 平行钢丝索,上端利用销铰与索夹下的耳板(吊板)连接, 下端用锚头或者同样用销铰与加劲梁连接。索夹分上下两 半。
时稍显困难。 混合式:仅在桥面以下设置交叉斜杆以改善受力和经济
性能。 塔柱横向可竖直或者稍带倾斜(斜柱式)或转折点
(折柱式),后两者稳定性能好且较为经济。 现代认为钢筋砼刚构式桥塔是悬索桥的桥塔最佳选择。
虎门大桥主塔
乔 治 华 盛 顿 桥
Panay-Guimaras
悬索桥各部分构造——锚碇
AS法 示意图
主缆断面
AS法示意图
悬索桥的构造——主缆
主缆的防护(不可更换的主要受力构件,必须防腐)
锈蚀原因:架设期间水份进入;防护完成后因主缆线形变化、 温度变化引起伸缩而导致粗糙表面的油漆开裂和索夹上受损 的密封部位开裂,水的渗入导致主缆湿度高而锈蚀。
防护方法:施工期间镀锌钢丝外涂底漆或者树脂类,然后手 工满刮腻子,再缠绕钢丝(退火镀锌Φ4钢丝),最后作外 涂装。
青马大桥锚碇 索靴
悬索桥各部分构造——锚碇
特殊锚碇
多跨悬索桥的共用锚墩 三角形空腹构架式重力锚 平板式重力锚 软土层中的深基础重力锚
三角形空腹构架式重力锚
丹麦大海带桥
悬索桥各部分构造——加劲梁
结构形式:
钢板梁 钢桁梁 钢箱梁 砼箱(板)梁
比较项目
涡流激振
抗 自激振动
风 性
布置形式:竖直;倾斜(提高整体振动时的结构阻尼值)。 材料:刚性吊杆(少量小跨:圆钢或钢管);
柔性吊索:钢丝绳或者平行钢丝索(多采用)。 钢丝绳索 绳心式:以一股钢丝绳为中央形心,外围用钢丝束股围绕扭
绞而成。 股心式:7股钢丝束股扭绞而成,中央一股为股心。
注意:钢丝束股的扭绞方向与其间钢丝的扭转方向相反。
平行丝股主缆:采用空中绕线法——AS法或者预制丝股法——PS 法), 适于400米以上,是现代悬索桥主缆的主流结构类型。
大跨多采用耐疲劳的高强钢丝,因为钢绞线虽然施工方便,但弹 模较低使结构变形增大,截面形状不易按照设计形状压紧,防腐较难, 适于中小跨度。
悬索桥的构造——主缆
• 结构形式
双面平行主缆(绝大多数);
❖ 吊索是将加劲梁自重、外荷载传递到主缆的传力构件, 是连系加劲梁和主缆的纽带。
❖ 锚碇是锚固主缆的结构,它将主缆中的拉力传递给地基。
二、悬索桥的形式
❖ 地锚式与自锚式悬索桥
地锚式:主缆拉力依靠锚固体传递给地基。 自锚式:主缆拉力水平分力直接传递给加劲梁(轴向压力)承受;竖
相关文档
最新文档