人教版八年级上数学期中测试卷
人教版八年级上册数学期中测试卷【及参考答案】

人教版八年级上册数学期中测试卷【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±416±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个5.下列方程中,是关于x 的一元二次方程的是( )A .ax 2+bx+c =0(a ,b ,c 为常数)B .x 2﹣x ﹣2=0C .211x x +﹣2=0D .x 2+2x =x 2﹣16.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.58.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 2.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为__________.3.若2|1|0a b -++=,则2020()a b +=_________.4.如图,正方形ABCD 中,点E 、F 分别是BC 、AB 边上的点,且AE ⊥DF ,垂足为点O ,△AOD 的面积为7,则图中阴影部分的面积为________.5.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=________度.6.如图,ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M .如果CDM 的周长为8,那么ABCD 的周长是_____.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知方程组713x y m x y m+=--⎧⎨-=+⎩的解满足x 为非正数, y 为负数. (1)求m 的取值范围;(2)化简:||32m m --+;(3)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E 、F 在AC 上,且AF=CE . 求证:BE=DF .6.某商场计划销售A ,B 两种型号的商品,经调查,用1500元采购A 型商品的件数是用600元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多30元.(1)求一件A ,B 型商品的进价分别为多少元?(2)若该商场购进A ,B 型商品共100件进行试销,其中A 型商品的件数不大于B 型的件数,已知A 型商品的售价为200元/件,B 型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、D5、B6、B7、C8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、5a <且3a ≠2、60133、145、30°6、16三、解答题(本大题共6小题,共72分)1、2x =2、11a -,1.3、(1)23m -<≤;(2)12m -;(3)1m =-4、(1)略;(2)4.5、略.6、(1) B 型商品的进价为120元, A 型商品的进价为150元;(2) 5500元.。
2022-2023学年人教版八年级数学上册期中测试卷(含答案)

人教版八年级数学上册期中测试卷一、单选题(本题共10小题,每小题5分,共50分)1.下列命题正确的是()A.三角形的三条中线必交于三角形内一点B.三角形的三条高均在三角形内部C.三角形的外角可能等于与它不相邻的内角D.四边形具有稳定性【答案】A【解析】【解答】解:A、三角形的三条中线必交于三角形内一点,符合题意;B、钝角三角形的三条高有两条在三角形外部,故不符合题意;C、三角形的外角等于与它不相邻的两个内角之和,故不符合题意;D、四边形具有不稳定性,故不符合题意,故答案为:A.2.若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于().A.10B.11C.13D.11或13【答案】D【解析】【解答】根据题意,需分两种情况讨论:当两腰为5,底边为3时,周长等于13;当两腰为3,底边为5时,周长等于11.且两种情况均符合三角形三边之间关系定理,所以周长为11或13,故答案为:D.3.如图,在△ABC中,AB=5,BC=8,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离为()A.2B.3C.4D.5【答案】B【解析】【解答】解:∵在△ABC中,AB=5,BC=8,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,∴A′B′=AB=5,∠A′B′C=∠B=60°∵将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴A′B′=A′C=5∴△A′B′C为等边三角形∴B′C=A′B′=A′C=5∴平移的距离BB′=BC−B′C=3故答案为:B.4.如图,直线l外有不重合的两点A,B.在直线l上求一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B'.②连接AB'交直线l于点C,则点C即为所求.在解决这个问题时,没有用到的知识点是()A.线段的垂直平分线性质B.两点之间线段最短C.三角形两边之和大于第三边D.角平分线的性质【答案】D【解析】【解答】解:∵点B和点B′关于直线l对称,且点C在l上,∴CB=CB′.∵AB′交l于C,且两条直线相交只有一个交点,∴CB′+CA=AB′,即CA+CB=AB′.任取直线l上一点C′,与点C不重合,则C′B′+C′A>AB′,即AB′是CA+CB的最小值. 本题在解答过程中利用了线段垂直平分线的性质定理:两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边. 没有用到的知识点是:角平分线的性质,故答案为:D.5.如图,CA=CB,AD=BD,M、N分别为CA、CB的中点,∠ADN=80°,∠BDN=30°,则∠CDN的度数为()A.40°B.15°C.25°D.30°【答案】C【解析】【解答】解:在∠CAD和∠CBD中,{CA=CB AD=BD CD=CD,∴∠CAD∠∠CBD(SSS),∴∠CDA=∠CDB,∠A=∠B,又∵AC=CB,M,N分别为CA,CB的中点,∴AM=BN,又AD=BD,∴∠ADM∠∠BDN(SAS),∴∠ADM=∠BDN=30°,∵∠ADN=80°,∴∠ADM+2∠CDN=80°,∴∠CDN=25°,故答案为:C.6.如图,在Rt∠ABC中,∠BAC=90°,AB=AC,AD∠BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF。
人教版数学八年级上学期《期中检测试卷》含答案解析

期中测 试 卷
学校________班级________姓名________成绩________
考试时间120分钟 满分120分
一、选择题:
1.下列图形中,属于轴对称图形的是( )
A. B.
C. D.
2.下列运算正确的是()
A. B. C. D.
3.在平面直角坐标系中,点 关于 轴对称 点 的坐标为()
故选:C.
【点睛】本题考查了等边三角形的性质,三角形全等的判定和性质,掌握三角形全等的判定和性质是解题的关键.
12.如图所示,在平面直角坐标系中 , , 是直角三角形,且 , , 到 轴距离为 ,把 绕点 顺时针旋转 ,得到 ;把 绕点 顺时针旋转 ,得到 .以此类推,则旋转第2017次后,得到的直角三角形的直角顶点 的坐标为()
【答案】C
【解析】
【分析】
根据轴对称图形 概念求解.
【详解】根据轴对称图形的概念求解,A不是轴对称图形,故本选项错误;B不是轴对称图形,故本选项错误;C是轴对称图形,故本选项正确;D不是轴对称图形,故本选项错误,故本题C为正确答案.
【点睛】本题考查了轴对称图形的概念,掌握一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这个图形叫做轴对称图形,这条直线叫做对称轴是解决本题的关键.
A. B. C. D.
10.如图,等腰 的底边 长为4,腰长为6, 垂直平分 ,点 为直线 上一动点,则 的最小值为()
A.10B.6C.4D.2
11.如图, 和 均为等边三角形,点 , , 在同一条直线上,连接 ,若 ,则 的度数是()
A. B. C. D.
12.如图所示,在平面直角坐标系中 , , 是直角三角形,且 , , 到 轴距离为 ,把 绕点 顺时针旋转 ,得到 ;把 绕点 顺时针旋转 ,得到 .以此类推,则旋转第2017次后,得到 直角三角形的直角顶点 的坐标为()
【人教版】数学八年级上学期《期中检测卷》含答案解析

A. 4.5cmB. 5.5cmC. 6.5cmD. 7cm
【答案】A
【解析】
试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=4cm,得出NQ=MN-MQ=4-2.5=1.5(cm),即可得出QR的长RN+NQ=3+1.5=4.5(cm).
【解析】
考点:线段垂直平分线的性质;等腰三角形的性质.
分析:根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.
求证:△AEC≌△CDB
(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB’,连接B’C,求△AB’C的面积
(3)拓展提升:如图3,等边△EBC中,EC=BC=3cm,点O在BC上且OC=2cm,动点P从点E沿射线EC以1cm/s速度运动,连接OP,将线段OP绕点O逆时针旋转120°得到线段OF,设点P运动 时间为t秒.
理由:∵∠ABC+∠CBE=180°,∠ABD+∠DBE=180°,∠CBE=∠DBE,
∴∠ABC=∠ABD,
在△ABC和△ABD中,
,
∴△ABC≌△ABD(ASA),
11.如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD的度数为_____°.
【答案】45°.
人教版八年级上册数学《期中》测试卷及答案【一套】

人教版八年级上册数学《期中》测试卷及答案【一套】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<3.下列命题中,真命题是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形4.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°9.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm=,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17C.18 D.19二、填空题(本大题共6小题,每小题3分,共18分)1.已知a、b为两个连续的整数,且11a b<<,则a b+=__________.2.已知2x+3y-5=0,则9x•27y的值为__________.3.使x2-有意义的x的取值范围是________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程组:25342x y x y -=⎧⎨+=⎩2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知关于x ,y 的方程组325x y a x y a-=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.我市某中学有一块四边形的空地ABCD ,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m ,DA=4m ,BC=12m ,CD=13m .(1)求出空地ABCD 的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、D5、B6、A7、D8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、72、2433、x2≥4、135°5、50°6、32°三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=-⎩2、x+2;当1x=-时,原式=1.3、(1)a≥2;(2)-5<x<14、(1)36;(2)7200元.5、24°.6、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价25元时,商场日盈利可达到2000元.。
人教版八年级数学上册期中考试卷(附答案)

人教版八年级数学上册期中考试卷(附答案)学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列四个实数中,最小的是( )A. −√ 3B. −2C. 2D. 32.下列各数中,无理数是( )A. √ 9B. √−83C. π2D. 533.与数轴上的点一一对应的是( )A. 有理数B. 无理数C. 整数D. 实数4.估计√ 7+1的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.√ 16的算术平方根是( )A. 4B. 2C. ±4D. ±26.下列运算正确的是( )A. x 3÷x 2=xB. x 3⋅x 2=x 6C. x 3−x 2=xD. x 3+x 2=x 5 7.若(y +3)(y −2)=y 2+my +n ,则m 、n 的值分别为( )A. 5;6B. 5;−6C. 1;6D. 1;−68.已知a =255,b =344,c =433则a 、b 、c 的大小关系是( )A. b >c >aB. a >b >cC. c >a >bD. a <b <c第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)9.计算:−√ 36= ______ ,√−273= ______ ,√ 16= ______ .10.已知|a +2|+√ b −6=0,则a +b = ______ .11.√ 2−1的相反数是______ ,|√ 2−√ 3|= ______ ,√(−8)33= ______ .12.已知2n =a ,3n =b 则6n = ______ .13.已知x 2−y 2=8,且x +y =4,则x −y =______.14.已知x 2−(m −1)x +16是一个完全平方式,则m 的值等于______.三、解答题(本大题共10小题,共78.0分。
人教版八年级上册数学期中测试卷(含答案)

参考答案
1.B
2.D
3.A
4.A
5.D
6.C
7.C
8.A
9.D
10.B
11.100°
12.4cm、5cm、6cm
13. , , ,
14.4
15.
A.直角三角形B.锐角三角形C.等边三角形D.钝角三角形
6.(本题3分)如图,点 分别在 的边 、 上, ,若 垂直平分 ,则 ().
A. B. C. D.
7.(本题3分)下列图形:①角;②直角三角形;③等边三角形;④线段;⑤等腰三角形.其中一定是轴对称图形的有()
A.2个B.3个C.4个D.5个
8.(本题3分)如图,在△ABC中,∠B=50°,点D为边AB的中点,点E在边AC上,将△ADE沿DE折叠,使得点A恰好落在BC的延长线上的点F处,DF与AC交于点O,连结CD,则下列结论一定正确的是( )
A.6B.7C.8D.9
3.(本题3分)如图,点D,F,E,A在同一直线上,已知 ,那么添加下列条件不能判断 的是()
A. B. C. D.
4.(本题3分)已知点A(m-1,3)与点B(2,n)关于x轴对称,则m+n的值为( ).
A.0B.-6C.-1D.6
5.(本题3分)若一个三角形三个内角度数的比为11︰7︰3,那么这个三角形是()
人教版八年级上册数学期中测试卷
(满分120分时间100分钟)
题号
一
二
三
总分
得分
一、单选题(共30分)
1.(本题3分)已知等腰三角形的两边长分别为3cm和7cm,则这个三角形的周长为()
人教版八年级数学上册期中测试题-带参考答案

人教版八年级数学上册期中测试题-带参考答案(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列交通标志图案是轴对称图形的是()A B C D2.(2022年金华)已知三角形的两边长分别为5 cm和8 cm,则第三边的长可以是()A. 2 cmB. 3 cmC. 6 cmD. 13 cm3. 如图1,已知△ABC≌△DEC,点E在AB边上,∠B=70°,则∠BCE的度数为()A. 30°B. 40°C. 45°D. 50°图14.若一个正多边形的各个内角都是140°,则这个正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形5. 根据图2中给定的条件,全等的三角形是()A.①和②B.②和③C.①和④D.②和④①②③④图26.若点A(a-2,3)和点B(-1,b+5)关于y轴对称,则点C(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限7. 如图3,在△ABC中,AB=AC,以点B为圆心,BC的长为半径画弧交AC于点C,E,再分别以点C,E为圆心,大于12CE的长为半径画弧,两弧交于点F,连接BF交AC于点D.若∠A=50°,则∠CBD的度数是()A. 25°B. 40°C. 50°D. 65°图3 图4 图5 图68.(2022年海南)如图4,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是()A. 80°B. 100°C. 120°D. 140°9. 如图5,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点的三角形共有()A. 3个B. 4个C. 5个D. 6个10.如图6,在△ABC中,P,Q分别是BC,AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R,S.若AQ=PQ,PR=PS,有下列结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确的是()A.仅①②B.仅①②③C.仅①②④D.①②③④二、填空题(本大题共6小题,每小题4分,共24分)11. 如图7是某一水塘边的警示牌,牌面是五边形,这个五边形的内角和是.图7 图8 图912. 如图8,已知BE=DC,请添加一个条件:,使得△ABE≌△ACD.13.如图9,AD是△ABC的中线,G是AD上的一点,且AG=2GD,连接BG.若S△ABC=6,则图中阴影部分的面积是.14. 如图10,把长方形纸片ABCD沿对角线折叠,若∠BDE =25°,那么∠BED =__________.图10 图11 图1215. 如图11,OP平分∠AOB,PM⊥OA于点M,点D在OB上,DH⊥OP于点H.若OD=4,OP=7,PM=3,则DH的长为.16. 如图12,点E在等边三角形ABC的边BC上,BE=12,DC⊥BC于点C,P是射线CD上一动点,F 是线段AB上一动点,当EP+PF的值最小时,BF=14,则AC的长为__________.三、解答题(本大题共7小题,共66分)17.(6分)如图13,在平面直角坐标系中,形如英文字母“V”的图形三个端点的坐标分别是A(2,3),B(1,0),C(0,3).(1)画出字母“V”的图形关于x轴对称的图形;(2)所得图形与原图形结合起来,你能从中看出什么英文字母?图1318.(6分)如图14,在四边形ABCD中,∠A=100°,∠D=140°,∠BCD的平分线CE交AB于点E.(1)若∠B=∠BCD,则∠B= °;(2)若CE∥AD,求∠B的度数.图1419.(8分)如图15,点B,E,C,F在同一条直线上,AB=DE,AB∥DE.老师说:再添加一个条件就可以使△ABC≌△DEF.下面是课堂上三个同学的发言,甲说:添加AC=DF;乙说:添加AC∥DF;丙说:添加BE=CF.(1)甲、乙、丙三个同学说法正确的是 .(2)请你从正确的说法中选择一种,并给出证明.图1520.(10分)如图16,在△ABC中,∠A=90°,BC的垂直平分线DE交BC于点E,交AC于点D.(1)若∠C=35°,求∠DBA的度数;(2)若△ABD的周长为30,AC=18,求AB的长.图1621.(10分)如图17,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE.求证:(1)△ADB≌△AEC;(2)DB⊥EC.图1722.(12分)如图18,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.(1)AD与CE相等吗?为什么;(2)若∠BCD=75°,求∠ACE的度数;(3)若∠BCE=α,∠ACE=β,则α,β之间满足一定的数量关系,试说明这个结论.图1823.(14分)如图19,在△ABC中,AB=AC=10 cm,BC=8 cm,D为AB的中点,点P在线段BC上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向A点运动,并且点Q的运动速度与点P的运动速度不相等,设点Q的运动时间是t s.(1)用含有t的式子表示PC=cm;(2)当△BPD与△CQP全等时,求点Q的运动速度;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求:经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?图19参考答案一、1. A 2. C 3. B 4. D 5. C 6. D 7. A 8. B 9. C 10. C二、11. 540°12.∠B=∠C或∠AEB=∠ADC13.2 14. 130°15. 12 716. 20 解析:如图1,作点E关于直线CD的对称点G,过G作GF⊥AB于点F,交CD 于点P,此时EP+PF的值最小.因为△ABC是等边三角形,所以AC=BC,∠B=60°.又∠BFG=90°,所以∠G=30°.所以BG=2BF=28.因为BE=12,所以CE=12EG=12×(28-12)=8.所以AC=BC=BE+EC=12+8=20.三、17. 解:(1)如图所示.(2)字母x.18.解:(1)60(2)因为CE∥AD,所以∠DCE+∠D=180°.所以∠DCE=180°-∠D=180°-140°=40°.因为CE平分∠BCD,所以∠BCD=2∠DCE=80°.所以∠B=360°-(100°+140°+80°)=40°.19. 解:(1)乙、丙(2)选择乙(答案不唯一).证明如下:因为AB∥DE,AC∥DF,所以∠B=∠DEC,∠F=∠ACB.在△ABC和△DEF中,∠ACB=∠F,∠B=∠DEF,AB=DE所以△ABC≌△DEF(AAS).20.解:(1)因为DE是BC的垂直平分线,所以CD=BD.所以∠CBD=∠C=35°.因为∠A=90°,所以∠C+∠CBD+∠DBA=90°.所以∠DBA=90°-35°-35°=20°.(2)因为△ABD 的周长为30,所以AB+AD+BD=AB+AD+CD=AB+AC=30.因为AC=18,所以AB=30-18=12.21.证明:(1)因为AB⊥AC,AD⊥AE,所以∠BAC=∠DAE=90°.所以∠BAC+∠BAE=∠DAE+∠BAE,即∠BAD=∠CAE.在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,所以△ADB≌△AEC(SAS).(2)设BD和CE交于点F.图1因为△ADB≌△AEC,所以∠ACE=∠ABD.所以∠BFC=∠BAC=90°.所以DB⊥EC.22.(1)证明:AD=CE.理由如下:因为BD为△ABC的角平分线,所以∠ABD=∠CBE.在△ABD和△EBC中,BA=BE,∠ABD=∠CBE,BD=BC,所以△ABD≌△EBC(SAS).所以AD=CE.(2)解:因为BD=BC,所以∠BDC=∠BCD=75°.所以∠ADB=180°-75°=105°.由(1)知∠BCE=∠ADB=105°.所以∠ACE=105°-75°=30°.(3)解:同(2)可得∠BDC=∠BCD=α-β.因为△ABD≌△EBC,所以∠BAD=∠BEC.所以∠EBC=∠ABD=∠ACE=β.因为∠DBC+∠BDC+∠BCD=180°,所以β+(α-β)+(α-β)=180°.所以2α-β=180°.23.解:(1)(8-3t)(2)因为D为AB的中点,所以BD=12AB=5.因为点Q的运动速度与点P的运动速度不相等,所以BP≠CQ.又∠B=∠C,所以△BPD≌△CPQ.所以BP=PC=4 cm,CQ=BD=5 cm.所以3t=4,解得t=4 3 .所以点Q的运动速度为5÷43=154cm/s.(3)设经过x秒后点P与点Q第一次相遇.根据题意,得154x=3x+2×10.解得x=803.所以点P共运动了803×3=80 cm.△ABC周长为10+10+8=28 cm.因为80=28×2+8+10+6,所以点P,Q在AB边上相遇.所以经过803s点P与点Q第一次在AB边上相遇.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010-2011学年第一学期八年级期中数学考试试题
(时间:100分钟;满分120分)
一、选择题(每题3分,共30分)
1.下列图案是轴对称图形有()
A、1个
B、2个
C、3个
D、4个
2
)
A、 3 B
C
D、±3
3.下列说法正确的是()
A、0.25是0.5 的一个平方根
B、正数有两个平方根,且这两个平方根之和等于0
C、7 2的平方根是7
D、负数有一个平方根
4.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到
玻璃店去配一块完全一样的玻璃,那么最省事的办法是()
A、带①去
B、带②去
C、带③去
D、带①和②去
5.如图所示,△ABC≌△EFD,那么()
A、AB=DE,AC=EF,BC=DF
B、AB=DF,AC=DE,BC=EF
C、AB=EF,AC=DE,BC=DF
D、AB=EF,AC=DF,BC=DE
6.如图所示△ABC≌△CDA,并且AB=CD,那么下列结论错误的是()
A、∠ACB=∠CAD
B、CA=AC
C、∠D=∠B
D、AC=BC
7.点P(2,—3)关于y轴的对称点的坐标是()
A、(2,3 )
B、(-2,—3)
C、(—2,3)
D、(—3,2)
8.如图所示,已知AB=A′B′,∠A=∠A′,若△ABC≌△A′B′C′,还可以补充①
②③④中的那些条件()
①、∠B=∠B′②、∠C=∠C′
③、AC= A′C′④BC=''
B C
A、①②③④
B、②③④
C、①②③
D、①②
9.如图,∠C=90°,AM平分∠CAB,CM=20cm,
那么M到AB的距离是()
A、10cm
B、15cm
C、20cm
D、25cm
10.如下图,△ABC中,AB的垂直平分线交AC于D,
如果AC=5 cm,BC=4cm,那么△DBC的周长是()
A.6 cm B.7 cm
C.8 cm D.9 cm
二、填空题(8小题,每小题3分,共24分)
11.等边三角形是图形,它共有条对称轴;
12.
有意义,则x的取值范围是。
13.已知点M(x,3)与点N(-2,y)关于x轴对称,则3x+2y=
14.如图所示,AD平分∠BAC,点P在AD上,
B
若PE ⊥AB ,PF ⊥AC ,则PE PF(填“﹥”“﹦”“﹤”);
15. .在△ABC 中,AB=AC CAD= 16. 等腰三角形的一个角等于40°,则另两个角为 ; 17.若一个数的平方根等于它的立方根,这个数是
18.如图 , AC ⊥BC 于 C , DE ⊥AC 于 E , AD ⊥AB 于 A , BC=AE .若AB=5 , 则AD=___________。
三、解答题(共66分)
19画出△ABC 关于x 轴对称的图形△A 1B 1C 1,并指出△A 1B 1C 1的顶点坐标.6分)
20.如图所示,已知AD=BC ,AB=CD ,试判断∠A 与∠B 的关系,下面是小颖同学的推导过程,你能说明小颖的每一步的理由吗?(共7分) 解:连结BD
在△ABD 与△CDB 中
AD=BC( ) AB=CD( ) BD=DB( ) ∴△ABD ≌△CDB( )
∴∠ADB=∠CBD( ) ∴AD ∥BC( )
∴∠A+∠ABC=180°( )。
21.求x 的值:
(1)4x ²=25(5分) (2) (x-0.7)³=0.027 (6分)
(3)计算: (- 2 (- )6分)
22、如图所示,∠1=∠2,∠3=∠4,求证:AC=AD (共7分)
23、如图所示,CD=CA ,∠1=∠2,EC=BC ,求证:△ABC ≌
1
2
△DEC (共7分)
24已知,如图,BC ⊥AC ,DE ⊥AC ,D 为 AB 的中点,∠A=30°,AB=8 求BC ,DE 的长(共6分)
25、如图所示,∠ABC 和∠ACB 的平分线相交于F ,过F 作DE//BC ,交AB 于D ,交AC 于E ,(共10分)
求证:(1)△BDF 是等腰三角形
(2)BD+EC=DE
26、如图所示,107国道OA 和320国道OB 在某巿相交于O 点,在∠AOB 的内部有工厂C 和D ,现要建一个货站P ,使P 到OA 和OB 的距离相等,且使PC=PD ,用尺规作出P 点的位置,(不写作法,保留作图痕迹,写出结论)(共6分)。