双棒模型知识讲解(1)

合集下载

2024高考双杆模型

2024高考双杆模型

2.常见双杆情景及解题思路常见情景(以水平光滑导轨为例) 过程分析三大观点的应用双杆切割式杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相同的速度匀速运动,对系统动量守恒,对其中某杆适用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量不等距导轨杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,两杆以不同的速度做匀速运动,所围的面积不变,v1L1=v2L2动力学观点:求加速度能量观点:求焦耳热动量观点:动量不守恒,可分别用动量定理联立末速度关系求末速度双杆切割式a PQ减小,a MN增大,当a PQ=a MN时二者一起匀加速运动,存在稳定的速度差动力学观点:分别隔离两导体棒, F-B2L2△vR总=m PQ a,B2L2△vR总=m MN a,求加速度1.如图所示,宽为L的两固定足够长光滑金属导轨水平放置,空间存在竖直向上的匀强磁场,磁感应强度大小为B。

质量均为m、电阻值均为r的两导体棒ab和cd静止置于导轨上,其间距也为L,现给cd一向右的初速度v0,对它们之后的整个运动过程说法正确的是( )A.ab的加速度越来越大,cd的加速度越来越小B.cd克服安培力所做的总功为14mv2C.通过ab的电荷量为mv02BLD.两导体棒间的距离最终变为L+mv0rB2L22.竖直放置的平行光滑导轨,其电阻不计,磁场方向如图所示,磁感应强度B=0.5T,导体杆ab和cd的长均为0.2m,电阻均为0.1Ω,所受重力均为0.1N,现在用力向上推导体杆ab,使之匀速上升(与导轨接触始终良好),此时cd恰好静止不动,ab上升时下列说法正确的是( )A.ab受到的推力大小为2NB.ab向上的速度为2m/sC.在2s内,推力做功转化的电能是0.4JD.在2s内,推力做功为0.6J3.如图所示,相距为L 的两条足够长的平行金属导轨右端连接有一定值电阻R ,整个装置被固定在水平地面上,整个空间存在垂直于导轨平面向下的匀强磁场,磁感应强度大小为B ,两根质量均为m ,电阻都为R ,与导轨间的动摩擦因数都为μ的相同金属棒MN 、EF 垂直放在导轨上。

完整版电磁感应中的单双杆模型

完整版电磁感应中的单双杆模型

电磁感应中的单双杆问题-、单杆问题(一) 与动力学相结合的问题1、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN,电阻为R,左端连接-电动势为E,内阻为r的电源,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度?2、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN ,电阻为R,左端连接一电阻为R,MN在恒力F的作用下从静止开始运动,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度?3、金属导轨左端接电容器,电容为 整个装置处于垂直纸面磁感应强度为 速度v ,试求金属棒的最大速度?C ,轨道上静止一长度为 L 的金属棒cd , B 的匀强磁场当中,现在给金属棒一初_P< X X ~p< X X1 (k 乂(二)与能量相结合的题型 1、倾斜轨道与水平面夹角为,整个装置处于与轨道相垂直的匀强磁场当中,导轨顶端连有一电阻R ,金属杆的电阻也为 R 其他电阻可忽略,让金属杆由静止释放,经过一段时 求: 间后达到最大速度V m ,且在此过程中电阻上生成的热量为 (1 )金属杆达到最大速度时安培力的大小(2)磁感应强度B 为多少(3 )求从静止开始到达到最大速度杆下落的高度2. ( 20 分)如图所示,竖直平面内有一半径为r 、内阻为R i 、粗细均匀的光滑半圆形金属环,在 M 、N 处与相距为2r 、电阻不计的平行光滑 金属轨道ME 、NF 相接,EF 之间接有电阻 R 2,已知R i = 12R , R 2MNATCDB[xR■ ■ ■ ■ *=4R 。

在MN 上方及CD 下方有水平方向的匀强磁场 I 和II ,磁感应强度大小均为 B 。

现有质量为m 、电阻不计的导体棒 ab ,从半圆环的最高点 A 处由静止下落,在下落过程中导体 棒始终保持水平,与半圆形金属环及轨道接触良好,两平行轨道中够长。

已知导体棒 ab 下落r/2时的速度大小为 W ,下落到MN 处的速度大小为 V 2。

高物选修3-2模型梳理:磁场中双杆模型问题的分类总结

高物选修3-2模型梳理:磁场中双杆模型问题的分类总结

电磁感应问题的思维模式电磁感应中动力学问题的分析方法:一.从等效电路的角度判断电流、焦耳热二.通过受力分析,判断导体的受力情况,进而分析其运动情况三.从功和能量的角度分析各阶段各力的做功情况和能量变化情况1.宽度相同无动力双杆(杆与轨道间无摩擦) (1)电路特点: 杆2相当于电源;杆1受安培力而加速起动, 运动后产生反电动势.电流:随着杆2的减速、杆1的加速,两杆的相对速度v 2-v 1变小, 回路中电流也变小。

v 01 2 21211212Blv Blv Bl(v v )I R R R R --==++1.宽度相同无动力双棒(杆与轨道间无摩擦) (2)两杆的运动情况: 安培力大小:v 012222112B B l (v v )F BIl R R -==+v 0tOv1.宽度相同无动力双杆(杆与轨道间无摩擦) (3)能量转化规律:系统机械能的减小量等于内能的增加量.两杆产生焦耳热之比:v 012v 0tOv21222011m v (m m )v Q22=+共+1122Q R Q R =例1.如图所示,两根间距为L的光滑金属导轨(不计电阻),由一段圆弧部分与一段无限长的水平段部分组成.其水平段加有竖直向下方向的匀强磁场,其磁感应强度为B,导轨水平段上静止放置一金属棒cd,质量为2m,电阻为2r.另一质量为m,电阻为r的金属棒ab,从圆弧段M处由静止释放下滑至N 处进入水平段,圆弧段MN半径为R,所对圆心角为60°,从ab棒静止释放到cd棒达到的最大速度过程中,ab棒产生的焦耳热为Q,求:(1)ab棒在N处进入磁场区速度多大?此时棒中电流是多少?(2) cd棒能达到的最大速度是多大?答案:(1)(2)gRv=rgRBLI3=QmgRv231-=常见双杆模型2.宽度相同有动力杆(杆与轨道间无摩擦) (1)电路特点:杆2相当于电源;杆1受安培力而起动.某时刻回路中电流:F1 21221Blv Blv I R R -=+2.宽度相同有动力杆(杆与轨道间无摩擦)(2)两杆的运动情况:F 1 22.宽度相同有动力杆(杆与轨道间无摩擦)最终状态(3)能量转化规律:外力F做功转化为两导轨动能和系统电能F1 2v2O t vv1典型例题例2.(2016广州一模)如图,两平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨垂直构成闭合回路,且两棒都可沿导轨无摩擦滑动。

单棒双棒问题课堂讲义(1)

单棒双棒问题课堂讲义(1)
O
(3)四个重要结论: ①导体棒做 ②回路中的电流 ③导体棒受安培力 ④导体棒克服安培力做的功等于电容器储存的电能:
(6)启动过程中的两个关系: 安培力对导体棒的冲量: 安培力对导体棒做的功:
tt
(4)最终特征:
(5)最终速度:
电容器

最终导体棒的
O 等于
对杆应用

tt :
3. 有外力充电式
R
C
r
F
u=0
(1)电路特点:
(2)三个基本关系
导体棒受到的安培力为:
导体棒加速度可表示为:
回路中的电流可表示为:
v
v
t t
(2)能量关系: (3)瞬时加速度:
2. 无外力充电式
c
v0
u≠0
(1)电路特点:
(2)电流特点:
(3)运动特点: v
v
四.无外力含容式单棒
E,r
c
R
u=0
1. 电容放电式
(1)电路特点:
(2)电流特点:
(3)运动特点: v
v
O (4)最终特征:
(5)最大速度:
电容器

放电结束时

电容器

对杆应用

(2)能量关系: (3)瞬时加速度:
t t
三.电动式单棒
1.电路特点:导体棒 ,
R
Er
R0
u=0
2.安培力的特点: 3.加速度特点: 4.运动特点 V
, v
R
u=0
1.电路特点:导体棒相当于电源
2.安培力的特点:

O 5. 最终状态: 6.两个极值 (1) 最大加速度:
tt

物理双棒模型总结归纳

物理双棒模型总结归纳

物理双棒模型总结归纳物理双棒模型(Double Pendulum Model)是物理学中的一个重要概念,用于描述双摆系统或双杆振动的运动规律。

它由两根相互连接的杆组成,每根杆都有一个质点,并且能够在一个平面内自由运动。

双棒模型是一个复杂的系统,其运动表现出极为丰富和混沌的特性。

本文将对物理双棒模型进行总结归纳,旨在帮助读者更好地理解这一模型及其相关理论。

一、物理双棒模型的基本结构和运动规律物理双棒模型由两根杆组成,每根杆的一端通过铰链连接,并且可以绕着铰链点旋转。

质点分布在每根杆的另一端,可沿着它们的长度方向运动。

在不考虑外界影响和摩擦的情况下,物理双棒模型满足欧拉-拉格朗日方程,描述其运动状态和力学能量的变化。

二、物理双棒模型的动力学特性物理双棒模型的动力学特性十分丰富。

通过对其运动方程和参数的分析,可以得出以下几个关键特性:1. 混沌性:物理双棒模型的运动规律非常敏感,极其微小的初始条件变化也可能导致截然不同的运动轨迹。

这使得双棒模型具有混沌性质,即其行为难以预测和重现。

2. 非线性:物理双棒模型的运动方程呈现非线性的特点,即运动状态与外力、初始条件之间存在复杂的非线性关系。

这一特性引发了对非线性动力学的深入研究。

3. 稳定性和不稳定性:物理双棒模型的某些运动状态是稳定的,如垂直下垂状态。

然而,当双棒处于某些不稳定平衡位置时,极小的扰动就可能引发系统的大幅度运动,体现了其非线性和混沌性。

三、双棒模型在实际应用中的意义物理双棒模型虽然在理论研究中起到了重要的作用,但它也在一些实际应用中发挥了重要的作用。

下面列举了一些与双棒模型相关的实际应用领域:1. 振动工程:双棒模型的运动规律与实际工程中的振动问题具有一定的联系。

通过研究双棒模型的特性,可以预测结构在振动时的稳定性、共振频率等,并为振动工程的设计与优化提供理论依据。

2. 决策科学:双棒模型的混沌性质使其在决策科学领域得到应用。

通过运用混沌理论和非线性动力学的相关方法,可以分析金融市场、经济波动等复杂系统的行为,提供决策支持。

第8讲 双棒模型

第8讲 双棒模型

第8讲双棒模型双棒常考模型1. 光滑等距无外力2. 光滑不等距无外力3. 光滑等距有外力4. 光滑不等距有外力5. 不光滑等距有外力题型典例1.【多选】如图所示,方向竖直向下的匀强磁场中,有两根位于同一水平面内的足够长的平行金属导轨,两根相同的光滑导体棒ab 、cd ,质量均为m ,静止在导轨上。

0t 时,棒cd 受到一瞬时冲量作用而以初速度v 0向右滑动。

运动过程中,ab 、cd 始终与导轨垂直并接触良好,两者速度分别用1v 、2v 表示,回路中的电流用I 表示。

下列说法中正确的是( )A .两棒最终的状态是cd 静止,ab 以速度0v 向右滑动B .两棒最终的状态是ab 、cd 均以012v 的速度向右匀速滑动 C .ab 棒的速度由零开始匀加速增加到最终的稳定速度D .回路中的电流I 从某一个值0I 逐渐减小到零2.【多选】如图所示,足够长的平行光滑金属导轨固定在水平绝缘平台上,导轨电阻忽略不计,两根具有一定电阻的导体棒A 、C 置于金属导轨上,系统处于竖直向下的匀强磁场中,A 、C 与金属导轨保持良好接触且与导轨垂直。

某时刻导体棒A 有如图所示的速度,而C 的速度为零,从此时开始的足够长时间内( )A .若导体棒A 、C 发生碰撞,损失的机械能等于A 、C 棒产生的焦耳热B .若导体棒A 、C 不发生碰撞,导体棒A 先做减速运动,再反向做加速运动C .无论导体棒A 、C 是否发生碰撞,系统动量守恒,机械能不守恒D .无论导体棒A 、C 是否发生碰撞,两者最终都以相同的的速度做匀速运动3.【多选】水平面上有足够长且电阻不计的两平行导电轨道,轨道之间有竖直向下的匀强磁场(未画出),两根质量相同,电阻相同的导体棒ab 和cd 垂直于轨道静止放置,如图所示。

导体棒与轨道之间的动摩擦因数处处相等,现对导体棒施加一外力F ,使cd 棒向右匀速运动,则ab 棒从静止开始向右运动,则关于两导体棒的运动及受力下列说法正确的是( )A .导体棒ab 先向右加速运动,并最终以和cd 棒相同的速度匀速运动B .导体棒ab 先向右加速运动,并最终以比cd 棒小的速度匀速运动C .对cd 棒施加的外力F 大小始终不变D .对cd 棒施加的外力F 逐渐减小,当ab 棒匀速运动时,F 大小不再改变4.【多选】如图所示,在水平面内固定有两根相互平行的无限长光滑金属导轨,其间距为L,电阻不计。

高中物理双棒+磁场模型汇总

高中物理双棒+磁场模型汇总

二·双棒+磁场模型所需知识:动量定理、动量守恒、安培电磁感应定理、电流定义式、欧姆定理等。

①(有初速度)一质量为m 、电阻为r 、长度为L 且质量分布均匀的金属棒AB 静置于金属导轨上面,与金属棒AB 完全相同的金属棒CD 也置于金属导轨上面并以大小为v 的初速度沿导轨水平向右运动,开始时两金属棒保持一定距离。

整个装置位于磁感应强度大小为B 、方向竖直向上的匀强磁场中。

金属导轨电阻不计,不计一切摩擦力。

基本问题:1、两者最终的状态。

金属棒CD 运动产生电动势与电流,金属棒AB 有电流通过并在安培力的作用下向右运动(可看作楞次定律)。

金属棒AB 运动也产生电动势与电流,产生的电动势与金属棒CD 产生的电动势、电流相抵消。

最终两者速度相同,产生的电动势完全抵消。

回路中无电流,两金属棒不受安培力,保持匀速运动。

v v mv mv 212==最终最终由动量守恒得: 2、最终流过金属棒CD/金属棒AB 的电荷量为。

同结果。

使用动量定理可得出相对使用动量定理得:对AB BLmv q mv BLq mv t BLI mv mv t F CD 2212121===∆-=∆- 3、最终两金属棒相对位移。

同结果。

使用动量定理可得出相对为总电动势注意此处得使用动量定理得:对注意这道题十分易错相对相对AB L B mvr x mv rtv L B E mv r E t BL mv t BLI mv mv t F CD 22222122122121==∆=∆=∆-=∆- 提醒:若两金属棒均有一定初速度或者两金属棒所处导轨宽度不同只需要抓住稳定时回路电流为零处理即可②(有外力)一长度为L 且质量分布均匀的金属棒AB 静置于金属导轨上面,与金属棒AB 完全相同的金属棒CD 也置于金属导轨上面并在大小为F 水平向右得外力作用下向右运动,开始时两金属棒保持一定距离。

整个装置位于磁感应强度大小为B 、方向竖直向上的匀强磁场中。

电磁感应现象中的双杆模型归类与剖析

电磁感应现象中的双杆模型归类与剖析

电磁感应现象中的双杆模型归类与剖析
双杆模型是电磁感应现象中最常用的模型之一。

它描述了一个电流源和一个磁场源之间的相互作用。

当电流源改变时,它会产生磁场,而磁场源也会影响电流源。

双杆模型由两个磁杆组成,分别代表电流源和磁场源。

电流源可以是电流或电压,而磁场源可以是磁场或磁通量。

两个磁杆之间的相互作用由磁力线来描述,磁力线是由磁场源产生的路径,它们与电流源的电流方向相反。

双杆模型可以用来描述电磁感应现象,包括磁感应、电磁感应和电磁耦合等。

它可以用来解释电磁感应的基本原理,也可以用来分析电磁感应现象的物理机制。

此外,双杆模型还可以用来设计电磁感应器件,例如变压器、发电机和电机等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双棒模型知识讲解
无外力等距式
1.电路特点棒2相当于电源;棒1受安培力而加速起动,运动后
产生反电动势.
2.电流特点随着棒2的减速、棒1的加速,两棒的相对速度v2-v1
变小,回路中电流也变小。

3.两棒的运动情况
安培力大小:
两棒的相对速度变小,感
应电流变小,安培力变小.
棒1做加速度变小的加速运动棒2做加速度变小的减速
运动
最终两棒具有共同速度
4.能量转化规律系统机械能的减小量等于内能的增加量.
两棒产生焦耳热之比:
5.几种变化:
(1)初速度的提供方式不同(2)磁场方向与导轨不垂直(3)无外力不等距式
(4)两棒都有初速度(5)两棒位于不同磁场中
有外力等距式
1.电路特点棒2相当于电源;棒1受安培力而起动.
2.运动分析:某时刻回路中电流:
最初阶段,a2>a1,
3.稳定时的速度差
4.变化
(1)两棒都受外力作用(2)外力提供
方式变化
5、有外力不等距式
无外力不等距式
1.电路特点棒2相当于电源;棒1受安培力而加速起动,运动后产生反
电动势.
2.电流特点随着棒2的减速、棒1的加速,最终当Bl1v1= Bl2v2时,电流
为零,两棒都做匀速运动
3.两棒的运动情况
安培力大小:
两棒的相对速度变小,感应电流变
小,安培力变小.
棒1做加速度变小的加速运动棒2做加速度变小的减速运动
4、能量转化规律系统动能电能内能
两棒产生焦耳热之比:
5、两棒都有初速度
有外力不等距式
杆1做a渐小的加速运动a1≠a2a1、a2恒定
杆2做a渐大的加速运动I 恒定
v2
某时刻两棒速度分别为v1

加速度分别为a1、a2
经极短时间t后其速度分别为:
此时回路中电流为:。

相关文档
最新文档