空间立体几何建系练习题

合集下载

高中数学空间几何体练习题难题带答案

高中数学空间几何体练习题难题带答案

高中数学空间几何体练习题一.选择题(共25小题)1.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,若存在球与该“堑堵”表面所在的五个平面都相切,则图中边长a的所有可能取值组成的集合为()A.{2﹣2,2+2} B.{1,+1,﹣1}C.{2﹣2,2+2,2,4} D.{2,2+2,2﹣2} 2.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体外接球的表面积是()A.41πB.C.25πD.3.已知四边形ABCD是边长为5的菱形,对角线BD=8(如图1),现以AC为折痕将菱形折起,使点B达到点P的位置.棱AC,PD的中点分别为E,F,且四面体P ACD的外接球球心落在四面体内部(如图2),则线段EF长度的取值范围为()A.(,4)B.(1,)C.(,6)D.4.三棱锥P﹣ABC中.AB⊥BC,△P AC为等边三角形,二面角P﹣AC﹣B的余弦值为,当三棱锥的体积最大时,其外接球的表面积为8π.则三棱锥体积的最大值为()A.1B.2C.D.5.已知P,A,B,C是半径为3的球面上四点,其中P A过球心,,则三棱锥P﹣ABC的体积是()A.B.2C.D.6.在空间直角坐标系O﹣xyz中,四面体OABC各顶点坐标分别为:O(0,0,0),A(0,0,2),B(,0,0),C(0,,0).假设蚂蚁窝在O点,一只蚂蚁从O点出发,需要在AB,AC上分别任意选择一点留下信息,然后再返回O点.那么完成这个工作所需要走的最短路径长度是()A.2B.C.D.27.我国古代数学名著《九章算术•商功》中将底面是直角三角形的直三棱柱称之为“堑堵”,如图为一个堑堵ABC﹣DFE,AB⊥BC,AB=6,其体积为120,若将该“堑堵”放入一个球形容器中,则该球形容器表面积的最小值为()A.100πB.108πC.116πD.120π8.如图,在平面四边形ABCD中,满足AB=BC,CD=AD,且AB+AD=10,BD=8.沿着BD把ABD折起,使点A到达点P的位置,且使PC=2,则三棱锥P﹣BCD体积的最大值为()A.12B.12C.D.9.在棱长为2的正方体ABCD﹣A1B1C1D1中,点P是正方体棱上的一点,若满足|PB|+|PD1|=m的点P的个数大于6个,则m的取值范围是()A.B.C.D.10.已知长方体ABCD﹣A1B1C1D1中,AB=AA1=4,B1D与平面ABCD夹角的正弦值为,M为线段AA1的中点,点N在线段AD上,且AN=2,S∈平面A1B1C1D1.若V三棱锥S﹣BMN=V,记直线SC与CC1的夹角为θ.则tanθ的最小值为()A.B.C.D.11.已知三棱锥P﹣ABC的外接球O半径为2,球心O到△ABC所在平面的距离为1,则三棱锥P﹣ABC体积的最大值为()12.在三棱锥P﹣ABC中,△ABC是Rt△且AB⊥BC,∠CAB=30°,BC=2,点P在平面ABC的射影D点在△ABC 的外接圆上,四边形ABCD的对角线,AD>CD,若四棱锥P﹣ABCD的外接球半径为,则四棱锥P﹣ABCD的体积为()A.B.C.D.13.已知三棱锥P﹣ABC的底面是正三角形,,点A在侧面PBC内的射影H是△PBC的垂心,当三棱锥P﹣ABC体积最大值时,三棱锥P﹣ABC的外接球的体积为()A.B.C.6πD.14.在正四面体ABCD中,P,Q分别是棱AB,CD的中点,E,F分别是直线AB,CD上的动点,M是EF的中点,则能使点M的轨迹是圆的条件是()A.PE+QF=2B.PE•QF=2C.PE=2QF D.PE2+QF2=215.已知正方体的棱长为1,平面α过正方体的一个顶点,且与正方体每条棱所在直线所成的角相等,则该正方体在平面α内的正投影面积是()A.B.C.D.16.如图所示,正四面体ABCD中,E是棱AD的中点,P是棱AC上一动点,BP+PE的最小值为,则该正四面体的外接球表面积是()A.12πB.32πC.8πD.24π17.设P﹣ABCD是一个高为3,底面边长为2的正四棱锥,M为PC中点,过AM作平面AEMF与线段PB,PD分别交于点E,F(可以是线段端点),则四棱锥P﹣AEMF的体积的取值范围为()A.[,2]B.[,]C.[1,]D.[1,2]18.有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个对棱相等的三棱锥形的铁架,则此三棱锥体积的取值范围是()A.(0,]B.(0,]C.(0,]D.(0,]19.已知球O为三棱锥S﹣ABC的外接球,,则球O的表面积是()20.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,从外表上看,六根等长的正四棱柱分成三组,经90°榫卯起来,如图,若正四棱柱的高为8,底面正方形的边长为2,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为()(容器壁的厚度忽略不计)A.21πB.40πC.41πD.84π21.已知球O的半径为1,A,B是该球面上的两点,且线段AB=1,点P是该球面上的一个动点(不与A,B重合),则∠APB的最小值与最大值分别是()A.B.C.D.22.如图,A1B1C1D1是以ABCD为底面的长方体的一个斜截面,其中AB=4,BC=3,AA1=5,BB1=8,CC1=12,则该几何体的体积为()A.96B.102C.104D.14423.已知三棱锥P﹣ABC的四个顶点都在半径为3的球面上,AB⊥AC,则该三棱锥体积的最大值是()A.B.C.D.3224.已知三棱锥S﹣ABC的各顶点都在一个半径为r的球面上,且SA=SB=SC=1,AB=AC=,BC=,则球的表面积为()A.12πB.3πC.5πD.6π25.三棱柱ABC﹣A1B1C1的底面△ABC是正三角形,AA1⊥平面ABC,AB=2,AA1=,D为BC中点,则三棱锥A ﹣B1DC1的体积为()A.3B.C.1D.二.填空题(共5小题)26.若三棱锥S﹣ABC的三条侧棱两两垂直,且SA=2,SB=3,SC=4,则此三棱锥的外接球的表面积是.27.若三棱锥P﹣ABC的所有定点均在球O的表面上,且AB=4,∠ACB=60°,三棱锥P﹣ABC的体积的最大值为16,则球O的表面积为.28.已知一个半圆柱的高为4,其俯视图如图所示,侧视图的面积为8,则该半圆柱的底面半圆的半径为.29.已知正三棱锥的体积为,则其表面积的最小值为.30.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为.三.解答题(共10小题)31.正三棱锥的高为1,底面边长为2,内有一个球与它的四个面都相切,求:(1)棱锥的表面积;(2)内切球的半径.32.如图,已知三棱台ABC﹣A1B1C1,AB=2A1B1,M是A1B1的中点,N在线段B1C1上,且B1N=2NC1,过点A,M,N的平面把这个棱台分为两部分,求体积较小部分与体积较大部分的体积比值.33.如图,在三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O为AC 中点.(1)证明:A1O⊥平面ABC;(2)在BC1上是否存在一点E,使得OE∥平面A1AB?若存在,确定点E的位置;若不存在,说明理由.34.已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=18,BC=24,AC=30,求球的表面积和体积.35.在△ABC中,AB=3.(1)若∠B=45°,∠C=60°,将△ABC绕直线BC旋转一周得到一个几何体,求这个几何体的体积.(2)设D是BC的中点,AD=2,cos∠BAC=,求△ABC的面积.36.在平面直角坐标系xoy中,已知四点A(2,0),B(﹣2,0),C(0,﹣2),D(﹣2,﹣2),把坐标系平面沿y 轴折为直二面角.(1)求证:BC⊥AD;(2)求三棱锥C﹣AOD的体积.37.四面体ABCD中,AB和CD为对棱.设AB=a,CD=b,且异面直线AB与CD间的距离为d,夹角为θ.(Ⅰ)若θ=,且棱AB垂直于平面BCD,求四面体ABCD的体积;(Ⅱ)当θ=时,证明:四面体ABCD的体积为一定值;(Ⅲ)求四面体ABCD的体积.38.如图,已知⊙O的直径AB=3,点C为⊙O上异于A,B的一点,VC⊥平面ABC,且VC=2,点M为线段VB的中点.(1)求证:BC⊥平面VAC;(2)若直线AM与平面VAC所成角为,求三棱锥B﹣ACM的体积.39.如图所示,该几何体是一个由直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD⊥AF,AE=AD=2(1)证明:平面P AD⊥平面ABFE;(2)若正四棱锥P﹣ABCD的体积是三棱锥P﹣ABF体积的4倍,求正四棱锥P﹣ABCD的高.40.如图,在△ABC中,∠C为直角,AC=BC=4.沿△ABC的中位线DE,将平面ADE折起,使得∠ADC=90°,得到四棱锥A﹣BCDE.(Ⅰ)求证:BC⊥平面ACD;(Ⅱ)求三棱锥E﹣ABC的体积;(Ⅲ)M是棱CD的中点,过M作平面α与平面ABC平行,设平面α截四棱锥A﹣BCDE所得截面面积为S,试求S的值.参考答案与试题解析一.选择题(共25小题)1.【解答】解:由三视图可知直三棱柱的底面斜边的高为1,斜边长为2,直角三角形,棱柱的高为a,若存在球与该“堑堵”表面所在的五个平面都相切,则球半径R满足:①R==(此时球为棱柱的内切球),解得:a=2﹣2,②R=且R+1=R(此时球在棱柱外,正视图中球对称的圆在直角的夹角内),解得:a=2+2,③R=且R+tan22.5°R=(此时球在棱柱外,正视图中球对称的圆在45°角的夹角内),解得:a=2,故选:D.2.【解答】解:由三视图得到直观图,如图,该几何体为三棱锥D1﹣CC1E,正方体的棱长为4,E为BB1的中点,取出该几何体如图,三棱锥E﹣C1D1C,底面三角形C1D1C为等腰直角三角形,直角边长为4,侧面EC 1C⊥底面C1D1C,.则底面三角形的外心为CD1的中点G,设△EC1C的外心为H,分别过G与H作底面C1D1C与侧面EC1C的垂线相交于O,则O为三棱锥E﹣C1D1C的外接球的球心,在△EC1C中,求得CK=4,sin∠ECK=,则2EH=,即EH=,则HK=,,则.∴该几何体外接球的表面积是4.故选:A.3.【解答】解:如图,由题意可知△APC的外心O1在中线PE上,设过点O1的直线l1⊥平面APC,可知l1⊂平面PED,同理△ADC的外心O2在中线DE上,设过点O2的直线l2⊥平面ADC,则l2⊂平面PED,由对称性知直线l1,l2的交点O在直线EF上.根据外接球的性质,点O为四面体APCD的外接球的球心.由题意得EA=3,PE=4,而O1A2=O1E2+EA2,O1A+O1E=PE=4,∴O1E=.令∠PEF=θ,显然0<θ<,∴EF=PE cosθ=4cosθ<4.∵cosθ==,∴OE•EF=O1E•PE=,又OE<EF,∴EF2>,即EF>.综上所述,<EF<4.∴线段EF长度的取值范围为(,4).故选:A.4.【解答】解:如图所示,过点P作PE⊥面ABC,垂足为E,过点E作ED⊥AC交AC于点D,连接PD,则∠PDE为二面角P﹣AC﹣B的平面角的补角,即有cos∠PDE=,易知AC⊥面PDE,则AC⊥PD,而△P AC为等边三角形,∴D为AC中点,设AB=a,BC=b,AC==c,则PE=PD sin∠PDE=×c×=,故三棱锥P﹣ABC的体积为:V=×ab×=≤×=,当且仅当a=b=时,体积最大,此时B、D、E共线.设三棱锥P﹣ABC的外接球的球心为O,半径为R,由已知,4πR2=8π,得R=.过点O作OF⊥PE于F,则四边形ODEF为矩形,则OD=EF=,ED=OF=PD cos∠PDE=,PE=,在Rt△PFO中,()2=,解得c=2.∴三棱锥P﹣ABC的体积的最大值为:.故选:D.5.【解答】解:∵P,A,B,C是半径为3的球面上四点,其中P A过球心,,∴由余弦定理得cos B==﹣,∴B=120°,设△ABC外接圆的半径为r,则由正弦定理,得==2r,解得r=2.∴球心到平面ABC的距离d===.∴三棱锥P﹣ABC的体积:V===.故选:D.6.【解答】解:将四面体OABC沿着OA剪开,展开后如下图所示,最短路径就是△AOO'的边OO',∵O(0,0,0),A(0,0,2),B(,0,0),C(0,,0),∴AO=2,BO=,AB=AC=,BC=,由余弦定理知,在△OAB中,cos∠OAB===,∴∠OAB=30°=∠O'AC,在△ABC中,cos∠BAC===,∴sin∠BAC==,∴cos∠OAO'=cos(∠BAC+∠OAB+∠O'AC)=cos(∠BAC+60°)=cos∠BAC•cos60°﹣sin∠BAC•sin60°=×﹣×=.在△AOO'中,OO'2=AO2+AO'2﹣2AO•AO'cos∠OAO'=4+4﹣2×2×2×=5+,∴OO'=.故选:C.7.【解答】解:设BC=a,BF=b,则该“堑堵”的体积V=S△ABC•BF==120,整理,得ab=40,要使“堑堵”放入球形容器,则该球的半径不小于“堑堵”的外接球半径,设其外接球的半径为R,∵在堑堵ABC﹣DFE中,BA,BC,BF两两垂直,∴堑堵ABC﹣DFE外接球的一条直径是以BA,BC,BF为相邻三条棱的长方体的体对角线,即2R==,∵a2+b2≥2ab=80,(当且仅当a=b时,取等号),∴外接球的表面积S=4πR2≥116π,∴球形容器的表面积最小值为116π.故选:C.8.【解答】解:过点P作PE⊥BD于E,连结CE,由题意知△BPD≌△BCD,CE⊥BD,且PE=CE,∴BD⊥平面PCE,∴V P﹣BCD=V B﹣PCE+V D﹣PCE==,∴当S△PCE最大时,V P﹣BCD取得最大值,取PC的中点F,则EF⊥PC,∴S△PCE=•EF=,∵PB+PD=10,BD=8,∴点P到以BD为焦点的椭圆上,∴PE的最大值为对应短半轴长,∴PE最大值为=3,∴S△PCE最大值为2,∴三棱锥P﹣BCD体积的最大值为.故选:C.9.【解答】解:分类讨论:①∵正方体的棱长为2,∴BD1=2,∵点P是正方体棱上的一点(不包括棱的端点),满足|PB|+|PD1|=2,∴点P是以2c=2为焦距,以a=为长半轴,以为短半轴的椭圆,∵P在正方体的棱上,∴P应是椭圆与正方体与棱的交点,结合正方体的性质可知,满足条件的点应该在正方体的12条棱上各有一点满足条件.∴满足|PB|+|PD1|=2的点P的个数为12个.满足条件.②8个顶点中,除了B,D1两个以外的6个顶点满足|PB|+|PD1|=2+2,且是正方体棱上的所有点中的最大值,只有这6个顶点.因此除了以上6个顶点以外的点满足:|PB|+|PD1|<2+2,不难得出满足条件:2≤|PB|+|PD1|<2+2的点P都满足|PB|+|PD1|=m的点P的个数大于6个,由选择支可得只能选择D.故选:D.10.【解答】解:如图所示,设BC=x,则=,解得x=6.V三棱锥S﹣BMN=V,设点S到平面BMN的距离为d.则h•=×4×(4×6﹣﹣﹣),解得h=.记直线SC与CC1的夹角为θ.则tanθ=.可得最小值为设S(x,y,4).B(6,4,0).M(6,0,2).N(4,0,0).=(2,0,2).=(2,4,0).设平面BMN的法向量为=(a,b,c),则•=•=0.可得2a+2c=0,2a+4b=0,取=(2,﹣1,﹣2).=(x﹣4,y,4).∴=,化为:2x﹣y=0,或:2x﹣y=32(舍去),由2x﹣y=0,G(2,4,0),可得点S的轨迹为线段D1G.过点C1作C1S⊥D1G,此时SC1的最小值===,tanθ=.故选:A.11.【解答】解:∵三棱锥P﹣ABC的外接球O半径为R=2,球心O到△ABC所在平面的距离为d=1,∴△ABC的外接圆的半径r==.∴△ABC是等边三角形时,△ABC的面积最大,设等边△ABC的边长为a,则=,解得a=3,∴S△ABC==,∵球心O到△ABC所在平面的距离为1,∴点P到平面ABC的距离的最大值为h=R+d=2+1=3,∴三棱锥P﹣ABC体积的最大值为:==.故选:A.12.【解答】解∵在三棱锥P﹣ABC中,△ABC是Rt△且AB⊥BC,∠CAB=30°,BC=2,∴PC=2BC=4,BP==2,取BC中点E,则PE=BE=DE=2,∵点P在平面ABC的射影D点在△ABC的外接圆上,四边形ABCD的对角线,AD>CD,∴cos∠BED=cos∠BEB==﹣,∴∠BED=∠BEP=∠PED=120°,∴PD=PB=BD=2,∴BC=CD=2,设球心为O,则OE⊥平面BPDC,∵OD=2,四棱锥P﹣ABCD的外接球半径为,∴OE==1,∴四棱锥P﹣ABCD的高PD=2OE=2,∴四棱锥P﹣ABCD的体积为:V====.故选:B.13.【解答】解::延长PH交BC于D,连接AD,∵H是△PBC的垂心,∴BC⊥PD,∵AH⊥平面PBC,BC⊂平面PBC,∴AH⊥BC,又AH⊂平面APD,PD⊂平面P AD,AH∩PD=H,∴BC⊥平面APD,又AD⊂平面APD,∴BC⊥AD,连接BH并延长交PC于E,连接AE,由AH⊥平面PBC可得AH⊥PC,又BE⊥PC,AH∩BE=H,∴PC⊥平面ABE,∴AB⊥PC.设P在平面ABC上的射影为O,延长CO交AB于F,连接PF.∵PO⊥AB,PC∩PO=P,∴AB⊥平面PCF.∴PF⊥AB,CF⊥AB.∴O是△ABC的中心,F是AB的中点,∴PB=P A==PC,当P A,PB,PC两两垂直时,三棱锥P﹣ABC体积取得最大值时,三棱锥P﹣ABC的外接球的半径R满足:(2R)2=,解得R=.体积==.故选:D.14.【解答】解:如图所示,正四面体ABCD中,取BC、BD、AD、AC的中点G、H、K、L,因为P、Q分别是棱AB,CD的中点,所以PQ的中点O也为定点;由对称性知,PQ和EF的中点都在中截面GHKL上;由=++=++,所以=(+);又在正四面体中,对棱垂直,所以•=0;所以4=+,即4OM2=PE2+QF2;若点M的轨迹是以O为圆心的圆,则PE2+QF2为定值.故选:D.15.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正三角形所在平面或其平行平面为平面α时,满足平面α与正方体每条棱所成的角均相等,并且如图所示的正三角形,为平面α截正方体所形成的三角形截面中,截面面积最大者.因为正三角形的边长为,正方体ABCD﹣A1B1C1D1的三个面在平面α内的正投影是三个全等的菱形(如图所示),可以看成两个边长为的等边三角形,所以正方体在平面α内的正投影面积是S=2×=.故选:B.16.【解答】解:将三角形ABC与三角形ACD展成平面,BP+PE的最小值,即为BE两点之间连线的距离,则BE=设AB=2a,则∠BAD=120°,由余弦定理,解得,则正四面体棱长为,因为正四面体的外接球半径是棱长的倍,所以,设外接球半径为R,则,则表面积S=4πR2=4π•3=12π.故选:A.17.【解答】解:为了建立四棱锥P﹣AEMF的体积与原三棱锥的体积的关系,我们先引用下面的事实,(如图)设A1,B1,C1分别在三棱锥S﹣ABC的侧棱SA,SB,SC上,又S﹣A1B1C1与S﹣ABC的体积分别为V1和V,则事实上,设C,C1在平面SAB的射影分别为H,H1,则又所以下面回到原题:设,∵P﹣ABCD的体积V0=,于是由上面的事实有:+,得:==xy+xy=,于是,而由0<≤1,x≤1,得,则V=x+y=x+(),又得,所以,当时,V'<0,V为减函数,当时,V’>0,V为增函数所以得:,又,得V max=,故答案为[],故选:B.18.【解答】解:如图,AB=CD=a,AC=AD=BC=BD=2.过A作AE⊥CD于E,连结BE,则AE==BE,又AB=a,∴=,∴=,令,则f′(a)=16a3﹣3a5=0,解得当a2=时,(V A﹣BCD)max=.∴此三棱锥体积的取值范围是(0,].故选:B.19.【解答】解:取SC中点M,连接AM、MB,因为△SAC是等边三角形,且SB=BC,∴AM⊥SC,MB⊥SC,∴SC⊥平面AMB,∴平面SAC⊥平面AMB,由三余弦定理,可知,cos∠SAM•cos∠MAB=cos∠SAB,由边长条件可知,∠SAM=30°,∠SAB=90°,代入上式解得cos∠MAB=0,∴∠MAB=90°,因为SC⊥平面AMB,∴球心O在平面AMB上,作OO1⊥平面SAC,易得,,取AB中点N,连接ON,∴ON⊥AB,∴OO1AN四点共圆,AO为这四点共圆的直径,也是三棱锥S﹣ABC的半径,连接O1N,∵∠MAB=90°,由勾股定理,得,∴O1N为三棱锥S﹣ABC的半径R,∴.故选:A.20.【解答】解:由球的对称性可知,当三个正四棱柱都处于正中间契合的时候,其外接球半径最小,所以,此时该球为底面边长为4、2,高为8的长方体的外接球时,设球的半径为R,所以,所以,所以球的最小表面积为.故选:D.21.【解答】解:依题意,点P是该球面上的一个动点(不与A,B重合),即P点与A,B不共线,故三点确定一个平面,设该平面与球的截面为圆O,设∠APB所对的弧的长度与圆O的周长之比为t,所以当t最小时,∠APB最小,当t最大时,∠APB最大.根据球的性质得,①当圆O为球的大圆且弧∠APB所对的弧是该大圆的劣弧时,此时弧APB长度最小,圆的周长最大,t1最小,如图P1,此时AB=OA=OB=1,所以∠AOB=,∴∠AP1B==,②若圆O为球的大圆所对的优弧,则t2=1﹣t1最大,如图中的P2.此时∠AP2B=π﹣∠AP1B=(圆的内接四边形对角互补).故选:A.22.【解答】解:过A1作A1E⊥BB1,垂足为E,∵平面ABB1A1∥平面DCC1D1,∴A1B1∥D1C1.过D1作D1H⊥CC1,垂足为H,∵DG=AA1=5,∴EB1=8﹣5=3.∵平面ABB1A1∥平面DCC1D1,A1B1和D1C1是它们分别与截面的交线,∴A1B1∥D1C1.过D1作D1H⊥CC1,垂足为H,则EB1=FH=3,∴DD1=12﹣3=9.作A1G⊥DD1,垂足为G,作GF⊥CC1,垂足为F,连接EF,EH,则几何体被分割成一个长方体ABCD﹣A1EFG,一个斜三棱柱A1B1E﹣D1C1H,一个直三棱柱A1D1G﹣EHF.从而几何体的体积为:V=3×4×5+×3×4×3+×3×4×4=102.故选:B.23.【解答】解:设AB=m,AC=n,则S△ABC=△ABC的外接圆直径BC=取BC的中点M,则当PM⊥平面ABC时,三棱锥的体积最大此时球心O在PM上,V max=×mn×(+3)≤××(+3)令t=,则f(t)=t()f′(t)=由f′(t)=0,解得t=0(舍),t=8,f(t)在(0,8)递增,在(8,9)递减故f(8)最大,为所以三棱锥P﹣ABC的最大体积为故选:B.24.【解答】解:如图:∵SA=SB=SC=1,AB=AC=,BC=,∴SC⊥SA,SA⊥SB,∠CSB=120°,取CA,AB的中点O1,O2,则O1,O2是球的两个截面圆的圆心,设O为球心,则OO1⊥平面SAC,OO2⊥平面BSA,取SA的中点E,连O1E,O2E,则O1E∥SC,O2E⊥SC,∴∠O1EO2=120°,∠O1OO2=60°,又OO1=OO2,∴△OO1O2是正三角形,∴OO1=O1O2=BC=,在直角三角形AO1O中,|OA|===,所以球的半径R为.则球的表面积为4πR2=4π×()2=5π.故选:C.25.【解答】解:∵三棱柱ABC﹣A1B1C1的底面△ABC是正三角形,AA1⊥平面ABC,AB=2,AA1=,D为BC中点,∴AD⊥B1C1,AD⊥BB1,∵B1C1∩BB1=B1,∴AD⊥平面DB1C1,∴三棱锥A﹣B1DC1的体积为:===1.故选:C.二.填空题(共5小题)26.【解答】解:由题意可得将该三棱锥放在长方体中,且长方体的长宽高分别为SA=2,SB=3,SC=4,设外接球的半径为R,再由长方体的对角线等于其外接球的直径可得(2R)2=22+32+42=29,所以4R2=29,所以外接球的表面积S=4πR2=29π,故答案为:29π.27.【解答】解:设球O的半径为R,△ABC的外接圆的圆心O1,半径为r,在△ABC中,由余弦定理可得(4)2=a2+b2﹣2ab cos60°,即a2+b2=ab+48≥2ab,即ab≤48,所以V P﹣ABC=ab sin60°(R+OO1)≤×48×(R+OO1)×=4(R+OO1),由题意可得4(R+OO1)=16,所以R+OO1=4①,在△ABC中,2r==,所以r=4,而R2=r2+OO12,所以R2=16,所以球的表面积S=4πR2=64π,故答案为:64π.28.【解答】解:半圆柱的立体图如图所示,其侧视图是矩形ABCD,所以AB•AD=8,即4×AD=8,所以AD=2,所以半圆柱的底面半圆的半径为2.故答案为:2.29.【解答】解:设正三棱锥的底面边长为a,高为h,如图,过顶点S作底面ABC的垂线,垂足为O,过O作OD 垂直AB于D,连接SD,∴AB=a,SO=h.∴SO⊥底面ABC,AB⊂底面ABC,∴AB⊥SO,SO⊥OD,又∵AB⊥OD,SO∩OD=O,∴AB⊥平面SOD,又∵SD⊂平面SOD,∴AB⊥SD,即SD为侧面SAB的斜高,三棱锥体积=,得a2h=12,又O为底面中心,∴OD==,SD==,三棱锥的表面积S=+3××=,将代入得:S==.∴S′=,令S′=0,得=0,令,(t>0),上式可化为t2﹣2t﹣3=0,解得t=3,或t=﹣1(舍),∴=3,得h=2,当0<h<2时,S′<0,当h>2时,S′>0,故S在(0,2)上单调递减,在(2,+∞)上S单调递增,故当h=2时,表面积最小,此时S=3=6,故填:6.30.【解答】解:根据几何意义得出:边长为8的正方形,球的截面圆为正方形的内切圆,∴圆的半径为:4,∵球面恰好接触水面时测得水深为6cm,∴d=8﹣6=2,∴球的半径为:R=,R=5∴球的体积为π×(5)3=cm3故答案为.三.解答题(共10小题)31.【解答】解:(1)如图,过点P作PD⊥平面ABC于D,连结并延长AD交BC于E,连结PE,∵△ABC是正三角形,∴AE是BC边上的高和中线,D为△ABC的中心.∵AB=2,∴S△ABC=×2××sin60°=6,又DE=×AE=×2×sin60°=,∴PE===;S△P AB=S△PBC=S△PCA=×2×=3;∴三棱锥的表面积为S表面积=3×3+6=9+6;(2)设内切球的半径为r,以球心O为顶点,棱锥的四个面为底面把正三棱锥分割为四个小棱锥,∵PD=1,∴V三棱锥P﹣ABC=S△ABC h=•6•1=2;又三棱锥P﹣ABC的体积为V=S表面积•r=×(9+6)r=(3+2)r,由等体积可得r==﹣2,∴内切球的半径为﹣2.32.【解答】解:三棱台ABC﹣A1B1C1,AB=2A1B1,M是A1B1的中点,N在线段B1C1上,且B1N=2NC1,不妨设平面ACC1A1⊥平面ABC,设△ABC是边长为6的等边三角形,则△A1B1C1是边长为3的等边三角形,设棱台的高为3,取AC中点O,A1C1中点G,以O为原点,OB为x轴,OC为y轴,OG为z轴,建立空间直角坐标系,=9,==,三棱台ABC﹣A1B1C1的体积V==.==﹣=,∴==,A(0,﹣3,0),M(,﹣,3),N(,1,3),C1(0,,3),=(,,3),=(,4,3),=(0,,3),设平面AMN的法向量=(x,y,z),,取x=14,得=(14,2,﹣5),∴点C1到平面AMN的距离d==,cos<>===.sin<>==,∴S△AMN===,∴==,设平面AMN与CC1交于点H,则点H到直线AN的距离是点M到AN的距离的,∴=,∴==,∴过点A,M,N的平面把这个棱台分为两部分,体积较小部分的体积为:++=+=,体积较大部分的体积为:V﹣(++)==,∴体积较小部分与体积较大部分的体积比值为=.33.【解答】解:(1)证明:∵AA1=A1C=AC=2,且O为AC中点,∴A1O⊥AC.又侧面AA1C1C⊥底面ABC,交线为AC,A1O⊂平面A1AC,∴A1O⊥平面ABC.(6分)(2)存在点E,且E为线段BC1的中点.理由:取B1C的中点M,从而O M是△CAB1的一条中位线,OM∥AB1,又AB1⊂平面A1AB,OM⊄平面A1AB,∴OM∥平面A1AB,故BC1的中点M即为所求的E点.(12分)34.【解答】解:设球心为O,△ABC外接圆的圆心为O′,设球的半径为2r,则OO′=r,如图所示;又AB=18,BC=24,AC=30,∴AB2+BC2=AC2,∴△ABC是直角三角形;∴O′A=AC=15;在Rt△OO′A中,(2r)2=152+r2,解得r=5,∴球的半径为R=2r=10;∴球的表面积为S=4π•=1200π,体积为V==4000π.35.【解答】解:(Ⅰ)过A作AH⊥BC,垂足为H,在Rt△ABH中,B=45°,所以AH=BH=3,在Rt△ACH中,C =60°,所以CH=,将△ABC绕直线BC旋转一周得到一个几何体,是以AH为底面半径,以BH,CH为高的两个圆锥,所以体积为==(9+3)π;(Ⅱ)设BD=DC=x.AC=y,在△ABD和ACD中,由余弦定理得到,化简得到2x2=y2+2,①,在△ABC中,4x2=18+y2﹣2×,即4x2=y2﹣5y+18.②由①②得到y=2或者(y=﹣7舍去);因为cos∠BAC=,所以sin∠BAC=,所以S=AB•AC•sin∠BAC=.36.【解答】解:(1)【法一】∵BOCD为正方形,∴BC⊥OD,∠AOB为二面角B﹣CO﹣A的平面角∴AO⊥BO,∵AO⊥CO,且BO∩CO=O∴AO⊥平面BCO,又BC⊆平面BCO∴AO⊥BC,且DO∩AO=O∴BC⊥平面ADO,且AD⊆平面ADO,∴BC⊥AD.【法二】分别以OA,OC,OB为x轴,y轴,z轴的正方向,建立空间直角坐标系,则设O(0,0,0),A(2,0,0),B(0,0,2),C(0,2,0),D(0,2,2);有=(﹣2,2,2),=(﹣2,2,0),∴•=0,∴⊥,即BC⊥AD.(2)三棱锥C﹣AOD的体积为:V C﹣AOD=V A﹣COD=•S△COD•OA=××2×2×2=.37.【解答】证明:(1)如图5﹣2,由于棱AB⊥平面BCD,过B作CD边上的高BE,则AB⊥BE,CD⊥BE,故BE是异面直线AB与CD的距离,即d=BE.所以V A﹣BCD=AB•S△BCD=a=abd.(2)如图5﹣3,过A作底面BCD的垂线,垂足为O,连结BO与CD相交于E.连结AE,再过E作AB的垂线,垂足为F.因为AB⊥CD,所以BO⊥CD(三垂线定理的逆定理),所以CD⊥平面ABE,因为EF⊂平面ABE,所以CD⊥EF,又EF⊥AB.所以EF即为异面直线AB,CD的公垂线.所以EF=d.注意到CD⊥平面ABE.所以V A﹣BCD=CD•S△ABE=•AB•EF•CD=abd为定值.(3)如图5﹣4:将四面体ABCD补成一个平行六面体ABB'D'﹣A'CC'D.由于AB,CD所成角为θ,所以∠DCA'=θ,又异面直线AB与CD间的距离即上、下两底面AB',A'C'的距离,所以V ABB'D'﹣A'CC'D=ab sinθ×2d=abd sinθ.显然V A﹣BCD=V ABB'D'﹣A'CC'D=abd sinθ.38.【解答】(1)证明:因为VC⊥平面ABC,BC⊂平面ABC,所以VC⊥BC,又因为点C为圆O上一点,且AB为直径,所以AC⊥BC,又因为VC,AC⊂平面VAC,VC∩AC=C,所以BC⊥平面VAC.…(4分)(2)如图,取VC的中点N,连接MN,AN,则MN∥BC,由(I)得BC⊥平面VAC,所以MN⊥平面VAC,则∠MAN为直线AM与平面VAC所成的角.即∠MAN=,所以MN=AN;…(6分)令AC=a,则BC=,MN=;因为VC=2,M为VC中点,所以AN=,所以,=,解得a=1…(10分)因为MN∥BC,所以…(12分)39.【解答】证明:(1)直三棱柱ADE﹣BCF中,∵AB⊥平面ADE,∴AB⊥AD,又AD⊥AF,∴AD⊥平面ABFE,AD⊂平面P AD,∴平面P AD⊥平面ABFE….(6分)解:(2)连结BD与AC交于点O,连结PO,∵正四棱锥P﹣ABCD,∴PO⊥平面ABCD,又∵直三棱柱ADE﹣BCF,∴AB⊥AE,且有AD⊥平面ABEF,∴AD⊥AE,∴AE⊥平面ABCD,则PO∥AE,∵AE⊂平面ABEF,∴PO∥平面ABEF,则P到平面ABEF的距离等于O到平面ABEF的距离,又∵O为BD中点,∴O到平面ABEF的距离为=1,∴P到平面ABF的距离为d=1,∴=,设正四棱锥P﹣ABCD的高为h,∵正四棱锥P﹣ABCD的体积是三棱锥P﹣ABF体积的4倍,∴=4V P﹣ABF=,解得h=2,∴正四棱锥P﹣ABCD的高为2.40.【解答】(Ⅰ)证明:∵DE∥BC,∠C=90°,∴DE⊥AD,同时DE⊥DC,又AD∩DC=D,∴DE⊥平面ACD.又∵DE∥BC,∴BC⊥平面ACD;(Ⅱ)解:由(Ⅰ)可知,BC⊥平面ACD,又AD⊂平面ADC,∴AD⊥BC.又∵∠ADC=90°,∴AD⊥DC.又∵BC∩DC=C,∴AD⊥平面BCDE.∴=;(Ⅲ)解:分别取AD,EA,AB的中点N,P,Q,并连接MN,NP,PQ,QM,∵平面α∥平面ACD,∴平面α与平面ACD的交线平行于AC,∵M是中点,∴平面α与平面ACD的交线是△ACD的中位线MN,同理可证,四边形MNPQ是平面α截四棱锥A﹣BCDE的截面,即S=S MNPQ.由(Ⅰ)可知,BC⊥平面ACD,∴BC⊥AC,又∵QM∥AC,MN∥BC,∴QM⊥MN.∴四边形MNPQ是直角梯形.在Rt△ADC中,AD=CD=2,∴AC=.MN=AC=2,NP=,MQ=.∴S=(1+3)×.。

空间几何体练习题及答案

空间几何体练习题及答案

1.1.1 柱、锥、台、球的结构特征1.下列命题中正确的是( )A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台都有两个底面D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径2.长方体AC 1的长、宽、高分别为3、2、1,从A 到C 1沿长方体的表面的最短距离为( ) A.31+ B.102+ C.23 D.323.下面几何体中,过轴的截面一定是圆面的是( )A.圆柱B.圆锥C.球D.圆台4.一个无盖的正方体盒子展开后的平面图,如图14所示,A 、B 、C 是展开图上的三点,则在正方体盒子中∠ABC=____________.图145.有一粒正方体的骰子每一个面有一个英文字母,如图16所示.从3种不同角度看同一粒骰子的情况,请问H 反面的字母是___________.图166.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.1.1.2 简单组合体的结构特征1 如图3所示,一个圆环绕着同一个平面内过圆心的直线l 旋转180°,想象并说出它形成的几何体的结构特征.图3.2 已知如图5所示,梯形ABCD 中,AD∥BC,且AD <BC ,当梯形ABCD 绕BC 所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.3.若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是( ).66 C1.2.3 空间几何体的直观图1. 关于“斜二测画法”,下列说法不正确的是( )A.原图形中平行于x 轴的线段,其对应线段平行于x′轴,长度不变B.原图形中平行于y 轴的线段,其对应线段平行于y′轴,长度变为原来的21 C.在画与直角坐标系xOy 对应的x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同2.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是( ) .64 C 或64 D.都不对3.一个三角形用斜二测画法画出来的直观图是边长为2的正三角形,则原三角形的面积是( ) A.62 B.64 C.3 D.都不对4.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( ) A.2221+ B.221+ C.21+ D.22+ 1.1.1 柱、锥、台、球的结构特征1.下列几个命题中,①两个面平行且相似,其余各面都是梯形的多面体是棱台;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③各侧面都是正方形的四棱柱一定是正方体;④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱. 其中正确的有__________个.( ).2 C分析:①中两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,所以①是错误的;②中两个底面互相平行,其余四个面都是等腰梯形,也有可能两底面根本就不相似,所以②不正确;③中底面不一定是正方形,所以③不正确;很明显④是正确的.答案:A1.下列命题中正确的是( )A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台都有两个底面D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径分析:以直角梯形垂直于底的腰为轴,旋转所得的旋转体才是圆台,所以B 不正确;圆锥仅有一个底面,所以C 不正确;圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长,所以D 不正确.很明显A 正确.答案:A2 (2007宁夏模拟,理6)长方体AC 1的长、宽、高分别为3、2、1,从A 到C 1沿长方体的表面的最短距离为( ) A.31+ B.102+ C.23 D.32答案:C3.下面几何体中,过轴的截面一定是圆面的是( )A.圆柱B.圆锥C.球D.圆台分析:圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形,球的轴截面是圆面,所以A 、B 、D 均不正确.答案:C4.(2007山东菏泽二模,文13)一个无盖的正方体盒子展开后的平面图,如图14所示,A 、B 、C 是展开图上的三点,则在正方体盒子中∠ABC=____________.图14分析:如图15所示,折成正方体,很明显点A 、B 、C 是上底面正方形的三个顶点,则∠ABC=90°.图15答案:90°5.(2007山东东营三模,文13)有一粒正方体的骰子每一个面有一个英文字母,如图16所示.从3种不同角度看同一粒骰子的情况,请问H 反面的字母是___________.图16分析:正方体的骰子共有6个面,每个面都有一个字母,从每一个图中都看到有公共顶点的三个面,与标有S 的面相邻的面共有四个,由这三个图,知这四个面分别标有字母H 、E 、O 、p 、d ,因此只能是标有“p”与“d”的面是同一个面,p 与d 是一个字母;翻转图②,使S 面调整到正前面,使p 转成d ,则O 为正下面,所以H 的反面是O.答案:O6.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.分析:这类题目应该选取轴截面研究几何关系.解:圆台的轴截面如图17,图17设圆台上、下底面半径分别为x cm 和3x cm ,延长AA 1交OO 1的延长线于S.在Rt△SOA 中,∠ASO=45°,则∠SAO=45°.所以SO=AO=3x.所以OO 1=2x. 又21(6x+2x )·2x=392,解得x=7, 所以圆台的高OO 1=14 cm ,母线长l=2OO 1=214cm ,而底面半径分别为7 cm 和21 cm,即圆台的高14 cm ,母线长214cm ,底面半径分别为7 cm 和21 cm.1.1.2 简单组合体的结构特征1 如图3所示,一个圆环绕着同一个平面内过圆心的直线l 旋转180°,想象并说出它形成的几何体的结构特征.图3答案:一个大球内部挖去一个同球心且半径较小的球.2 已知如图5所示,梯形ABCD 中,AD∥BC,且AD <BC ,当梯形ABCD 绕BC 所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图5 图6解:如图6所示,旋转所得的几何体是两个圆锥和一个圆柱拼接成的组合体.3.(2005湖南数学竞赛,9)若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是( ).66 C分析:由2、3、5的最小公倍数为30,由2、3、5组成的棱长为30的正方体的一条对角线穿过的长方体为整数个,所以由2、3、5组成棱长为90的正方体的一条对角线穿过的小长方体的个数应为3的倍数. 答案:B1.2.3 空间几何体的直观图1.画水平放置的等边三角形的直观图.2.如图7所示,梯形ABCD 中,AB∥CD,AB=4 cm ,CD=2 cm ,∠DAB=30°,AD=3 cm ,试画出它的直观图.图7解:步骤是:(1)如图8所示,在梯形ABCD 中,以边AB 所在的直线为x 轴,点A 为原点,建立平面直角坐标系xOy.如图9所示,画出对应的x′轴,y′轴,使∠x′A′y′=45°.(2)如图8所示,过D 点作DE⊥x 轴,垂足为E.在x′轴上取A′B′=AB=4 cm,A′E′=AE=323cm ≈2.598 cm ;过E′作E′D′∥y′轴,使E′D′=ED 21,再过点D′作D′C′∥x′轴,且使D′C′=CD=2 cm.图8 图9 图10(3)连接A′D′、B′C′、C′D′,并擦去x′轴与y′轴及其他一些辅助线,如图10所示,则四边形A′B′C′D′就是所求作的直观图.3.关于“斜二测画法”,下列说法不正确的是( )A.原图形中平行于x 轴的线段,其对应线段平行于x′轴,长度不变B.原图形中平行于y 轴的线段,其对应线段平行于y′轴,长度变为原来的21 C.在画与直角坐标系xOy 对应的x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同分析:在画与直角坐标系xOy 对应的x′O′y′时,∠x′O′y′也可以是135°,所以C 不正确. 答案:C4.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是( ) .64 C 或64 D.都不对分析:根据直观图的画法,平行于x 轴的线段长度不变,平行于y 轴的线段变为原来的一半,于是长为4的边如果平行于x 轴,则正方形边长为4,面积为16,边长为4的边如果平行于y 轴,则正方形边长为8,面积是64.答案:C5.一个三角形用斜二测画法画出来的直观图是边长为2的正三角形,则原三角形的面积是( ) A.62 B.64 C.3 D.都不对分析:根据斜二测画法的规则,正三角形的边长是原三角形的底边长,原三角形的高是正三角形高的22倍,而正三角形的高是3,所以原三角形的高为62,于是其面积为21×2×62=62. 答案:A6.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( ) A.2221+ B.221+ C.21+ D.22+ 分析:平面图形是上底长为1,下底长为21+,高为2的直角梯形.计算得面积为22+.答案:D。

立体几何专题专练100题(含详解)

立体几何专题专练100题(含详解)

1.(本题满分15分)如图,在三棱锥D -ABC 中,DA =DB =DC ,D 在底面ABC 上的射影为E ,AB ⊥BC ,DF ⊥AB 于F .(Ⅰ)求证:平面ABD ⊥平面DEF ;(Ⅱ)若AD ⊥DC ,AC =4,∠BAC =60°,求直线BE 与平面DAB 所成的角的正弦值.答案及解析:1.(Ⅰ)如图,由题意知⊥DE 平面ABC所以DE AB ⊥,又DFAB ⊥所以⊥AB 平面DEF ,………………3分又⊂AB 平面ABD 所以平面⊥ABD 平面DEF…………………6分(Ⅱ)解法一:由DC DB DA ==知ECEB EA ==所以E 是ABC ∆的外心又BC AB ⊥所以E 为AC 的中点…………………………………9分过E 作DF EH ⊥于H ,则由(Ⅰ)知⊥EH 平面DAB所以EBH ∠即为BE 与平面DAB 所成的角…………………………………12分由4=AC , 60=∠BAC 得2=DE ,3=EF 所以7=DF ,732=EH 所以721sin ==∠BE EH EBH …………………………………15分解法二:如图建系,则)0,2,0(-A ,)2,0,0(D ,)0,1,3(-B 所以)2,2,0(--=DA ,)2,1,3(--=DB ……………………………………9分设平面DAB 的法向量为),,(z y x n =由⎪⎩⎪⎨⎧=⋅=⋅00DB n DA n 得⎩⎨⎧=--=--023022z y x z y ,取)1,1,33(-=n ………………12分设EB 与n 的夹角为θ所以7213722||||cos ==⋅=n EB nEB θ所以BE 与平面DAB 所成的角的正弦值为721………………………………15分2.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AA 1=AC=2AB=2,且BC 1⊥A 1C .(1)求证:平面ABC 1⊥平面A 1ACC 1;(2)设D是线段BB1的中点,求三棱锥D﹣ABC1的体积.答案及解析:2.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【专题】综合题;转化思想;综合法;立体几何.【分析】(1)证明A1C⊥面ABC1,即可证明:平面ABC1⊥平面A1ACC1;(2)证明AC⊥面ABB1A1,利用等体积转换,即可求三棱锥D﹣ABC1的体积.【解答】(1)证明:在直三棱锥ABC﹣A1B1C1中,有A1A⊥面ABC,而AB⊂面ABC,∴A1A⊥AB,∵A1A=AC,∴A1C⊥AC1,又BC1⊥A1C,BC1⊂面ABC1,AC1⊂面ABC1,BC1∩AC1=C1∴A1C⊥面ABC1,而A1C⊂面A1ACC1,则面ABC1⊥面A1ACC1…(2)解:由(1)知A1A⊥AB,A1C⊥面ABC1,A1C⊥AB,故AB⊥面A1ACC1,∴AB⊥AC,则有AC⊥面ABB1A1,∵D是线段BB1的中点,∴.…【点评】本题考查线面垂直、平面与平面垂直的判定,考查三棱锥D﹣ABC1的体积,考查学生分析解决问题的能力,正确运用定理是关键.3.如图所示,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点.(1)求证:CD⊥PD;(2)求证:EF∥平面PAD.答案及解析:3.【考点】空间中直线与直线之间的位置关系;直线与平面平行的判定.【分析】本题是高考的重要内容,几乎年年考,次次有:(1)的关键是找出直角三角形,也就是找出图中的线线垂直.(2)的关键是找出平面PAD中可能与EF平行的直线.【解答】解:(1)证明:∵PA⊥平面ABCD,而CD⊂平面ABCD,∴PA⊥CD,又CD⊥AD,AD∩PA=A,∴CD⊥平面PAD,∴CD⊥PD、(2)取CD的中点G,连接EG、FG.∵E、F分别是AB、PC的中点,∴EG∥AD,FG∥PD,∴平面EFG∥平面PAD,又∵EF⊂平面EFG,∴EF∥平面PAD.【点评】线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a∥α,b⊂α,a∥b⇒a∥α);③利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).4.如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.答案及解析:4.【考点】直线与平面垂直的性质;直线与平面平行的判定.【专题】综合题;空间位置关系与距离.【分析】(1)利用勾股定理的逆定理可得AC⊥BC.利用线面垂直的性质定理可得CC1⊥AC,再利用线面垂直的判定定理即可证明结论;(2)利用直三棱柱的性质、正方形的性质、三角形的中位线定理即可得出ED∥AC1,再利用线面平行的判定定理即可证明结论【解答】证明:(1)因为三棱柱ABC﹣A1B1C1为直三棱柱,所以C1C⊥平面ABC,所以C1C⊥AC.又因为AC=3,BC=4,AB=5,所以AC2+BC2=AB2,所以AC⊥BC.又C1C∩BC=C,所以AC⊥平面CC1B1B,所以AC⊥BC1.(2)连结C1B交CB1于E,再连结DE,由已知可得E为C1B的中点,又∵D为AB的中点,∴DE为△BAC1的中位线.∴AC1∥DE又∵DE⊂平面CDB1,AC1⊄平面CDB1∴AC1∥平面CDB1.【点评】熟练掌握勾股定理的逆定理、线面垂直的判定和性质定理、直三棱柱的性质、正方形的性质、三角形的中位线定理、线面平行的判定定理是解题的关键.5.已知在三棱锥S﹣ABC中,∠ACB=90°,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.答案及解析:5.【考点】直线与平面垂直的判定.【专题】证明题.【分析】要证明AD⊥平面SBC,只要证明AD⊥SC(已知),AD⊥BC,而结合已知∠ACB=90°,又SA⊥平面ABC,及线面垂直的判定定理及性质即可证明【解答】证明:∵SA⊥面ABC,∴BC⊥SA;∵∠ACB=90°,即AC⊥BC,且AC、SA是面SAC内的两相交线,∴BC⊥面SAC;又AD⊂面SAC,∴BC⊥AD,又∵SC⊥AD,且BC、SC是面SBC内两相交线,∴AD⊥面SBC.【点评】本题主要考查了直线与平面垂直,平面与平面垂直的相互转化,线面垂直的判定定理的应用,属于基础试题6.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥底面ABCD,AP=AB=,点E 是棱PB的中点.(Ⅰ)证明:AE⊥平面PBC;(Ⅱ)若AD=1,求二面角B﹣EC﹣D的平面角的余弦值.答案及解析:6.【考点】二面角的平面角及求法;直线与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)由PA⊥底面ABCD,得PA⊥AB.又PA=AB,从而AE⊥PB.由三垂线定理得BC⊥PB,从而BC⊥平面PAB,由此能证明AE⊥平面PBC.(Ⅱ)由BC⊥平面PAB,AD⊥AE.取CE的中点F,连结DF,连结BF,则∠BFD为所求的二面角的平面角,由此能求出二面角B﹣EC﹣D的平面角的余弦值.【解答】(Ⅰ)证明:如图1,由PA⊥底面ABCD,得PA⊥AB.又PA=AB,故△PAB为等腰直角三角形,而点E是棱PB的中点,所以AE⊥PB.由题意知BC⊥AB,又AB是PB在面ABCD内的射影,由三垂线定理得BC⊥PB,从而BC⊥平面PAB,故BC⊥AE.因为AE⊥PB,AE⊥BC,所以AE⊥平面PBC.(Ⅱ)解:由(Ⅰ)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB,故AD⊥AE.在Rt△PAB中,PA=AB=,AE=PB==1.从而在Rt△DAE中,DE==.在Rt△CBE中,CE==,又CD=,所以△CED为等边三角形,取CE的中点F,连结DF,则DF⊥CE,∵BE=BC=1,且BC⊥BE,则△EBC为等腰直角三角形,连结BF,则BF⊥CE,所以∠BFD为所求的二面角的平面角,连结BD,在△BFD中,DF=CD=,BF=,BD==,所以cos∠BFD==﹣,∴二面角B﹣EC﹣D的平面角的余弦值为﹣.【点评】本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.7.如图所示,四棱锥P ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点,二面角PADB为60°.(1)证明:平面PBC⊥平面ABCD;(2)求直线EF与平面PBC所成角的正弦值.答案及解析:7.证明:(1)连接PE,BE,∵PA=PD,BA=BD,而E为AD中点,∴PE⊥AD,BE⊥AD,∴∠PEB为二面角P﹣AD﹣B的平面角.在△PAD中,由PA=PD=,AD=2,解得PE=2.在△ABD中,由BA=BD=,AD=2,解得BE=1.在△PEB中,PE=2,BE=1,∠PEB=60˚,由余弦定理,解得PB==,∴∠PBE=90˚,即BE⊥PB.又BC∥AD,BE⊥AD,∴BE⊥BC,∴BE⊥平面PBC.又BE⊂平面ABCD,∴平面PBC⊥平面ABCD.解:(2)连接BF,由(1)知,BE⊥平面PBC,∴∠EFB为直线EF与平面PBC所成的角.∵PB=,∠ABP为直角,MB=PB=,∴AM=,∴EF=.又BE=1,∴在直角三角形EBF中,sin∠EFB==.∴直线EF与平面PBC所成角的正弦值为.考点:直线与平面所成的角;平面与平面垂直的判定.专题:证明题;转化思想;综合法;空间位置关系与距离;空间角.分析:(1)连接PE,BE,由已知推导出∠PEB为二面角P﹣AD﹣B的平面角,推导出BE⊥PB,BE⊥BC,由此能证明平面PBC⊥平面ABCD.(2)连接BF,由BE⊥平面PBC,得∠EFB为直线EF与平面PBC所成的角,由此能求出直线EF与平面PBC所成角的正弦值.解答:证明:(1)连接PE,BE,∵PA=PD,BA=BD,而E为AD中点,∴PE⊥AD,BE⊥AD,∴∠PEB为二面角P﹣AD﹣B的平面角.在△PAD中,由PA=PD=,AD=2,解得PE=2.在△ABD中,由BA=BD=,AD=2,解得BE=1.在△PEB中,PE=2,BE=1,∠PEB=60˚,由余弦定理,解得PB==,∴∠PBE=90˚,即BE⊥PB.又BC∥AD,BE⊥AD,∴BE⊥BC,∴BE⊥平面PBC.又BE⊂平面ABCD,∴平面PBC⊥平面ABCD.解:(2)连接BF,由(1)知,BE⊥平面PBC,∴∠EFB为直线EF与平面PBC所成的角.∵PB=,∠ABP为直角,MB=PB=,∴AM=,∴EF=.又BE=1,∴在直角三角形EBF中,sin∠EFB==.∴直线EF与平面PBC所成角的正弦值为.点评:本题考查面面垂直的证明,考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养8.(15分)(2010秋•杭州校级期末)如图,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=CD=1,分别为AC、AD的中点.(1)求证:平面BEF⊥平面ABC;(2)求直线AD与平面BEF所成角的正弦值.答案及解析:8.【考点】平面与平面垂直的判定;直线与平面所成的角.【专题】计算题;证明题.【分析】(1)通过证明CD⊥平面ABC,CD∥EF,说明EF⊂平面BEF,即可证明平面BEF⊥平面ABC;(2)过A作AH⊥BE于H,连接HF,可得AH⊥平面BEF,推出∠AFH为直线AD与平面BEF所成角.在Rt△AFH中,求直线AD与平面BEF所成角的正弦值.【解答】解:(1)证明:∵AB⊥平面BCD,∴AB⊥CD.又∵CD⊥BC,∴CD⊥平面ABC.∵E、F分别为AC、AD的中点,∴EF∥CD.∴EF⊥平面ABC,∵EF⊂平面BEF,∴平面BEF⊥平面ABC.(2)过A作AH⊥BE于H,连接HF,由(1)可得AH⊥平面BEF,∴∠AFH为直线AD与平面BEF所成角.在Rt△ABC中,为AC中点,∴∠ABE=30°,∴.在Rt△BCD中,BC=CD=1,∴.∴在Rt△ABD中,∴.∴在Rt△AFH中,,∴AD与平面BEF所成角的正弦值为.【点评】证明两个平面垂直,关键在一个面内找到一条直线和另一个平面垂直;利用三垂线定理找出二面角的平面角,解三角形求出此角,是常用方法.9.答案及解析:9.10.(12分)(2015秋•拉萨校级期末)如图,边长为2的正方形ABCD中,(1)点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.求证:A′D⊥EF(2)当BE=BF=BC时,求三棱锥A′﹣EFD的体积.答案及解析:10.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积.【专题】空间位置关系与距离.【分析】(1)由正方形ABCD知∠DCF=∠DAE=90°,得A'D⊥A'F且A'D⊥A'E,所以A'D⊥平面A'EF.结合EF⊂平面A'EF,得A'D⊥EF;(2)由勾股定理的逆定理,得△A'EF是以EF为斜边的直角三角形,而A'D是三棱锥D﹣A'EF的高线,可以算出三棱锥D﹣A'EF的体积,即为三棱锥A'﹣DEF的体积.【解答】解:(1)由正方形ABCD知,∠DCF=∠DAE=90°,∴A'D⊥A'F,A'D⊥A'E,∵A'E∩A'F=A',A'E、A'F⊆平面A'EF.∴A'D⊥平面A'EF.又∵EF⊂平面A'EF,∴A'D⊥EF.(2)由四边形ABCD为边长为2的正方形故折叠后A′D=2,A′E=A′F=,EF=则cos∠EA′F==则sin∠EA′F==•A′E•A′F•sin∠EA′F=故△EA′F的面积S△EA′F由(1)中A′D⊥平面A′EF可得三棱锥A'﹣EFD的体积V=××2=.【点评】本题以正方形的翻折为载体,证明两直线异面垂直并且求三棱锥的体积,着重考查空间垂直关系的证明和锥体体积公式等知识,属于中档题.11.(12分)(2015秋•沧州月考)如图,在△ABC中,AO⊥BC于O,OB=2OA=2OC=4,点D,E,F分别为OA,OB,OC的中点,BD与AE相交于H,CD与AF相交于G,将△ABO 沿OA折起,使二面角B﹣OA﹣C为直二面角.(Ⅰ)在底面△BOC的边BC上是否存在一点P,使得OP⊥GH,若存在,请计算BP的长度;若不存在,请说明理由;(Ⅱ)求二面角A﹣GH﹣D的余弦值.答案及解析:11.【考点】用空间向量求平面间的夹角;直线与平面垂直的性质;二面角的平面角及求法.【专题】数形结合;向量法;空间位置关系与距离;空间角;空间向量及应用.【分析】(Ⅰ)根据条件便知H,G分别为△AOB,△AOC的重心,从而有GH∥EF∥BC,并可说明∠BOC为直角,过O作OP⊥BC,从而有OP⊥GH,而根据摄影定理便有,这样即可求出BP的长度;(Ⅱ)根据上面知OB,OC,OA三直线两两垂直,分别以这三直线为x,y,z轴,建立空间直角坐标系,从而可以根据条件求出图形上一些点的坐标,从而可以得到向量的坐标,可设平面AGH的法向量为,而根据即可求出,同样的方法可以求出平面DGH的一个法向量,根据cos=即可得出二面角A﹣GH﹣D的余弦值.【解答】解:(Ⅰ)H,G分别为△AOB和△AOC的重心;∴;连接EF,则GH∥EF;由已知,EF∥BC,∴GH∥BC;∵OA⊥OB,OA⊥OC,二面角B﹣OA﹣C为直二面角;∴∠BOC为直角;∴在Rt△BOC中,过O作BC的垂线,垂足为P,OP⊥BC,又BC∥GH;∴OP⊥GH,则由摄影定理得:OB2=BP•BC;∴;(Ⅱ)分别以OB,OC,OA为x,y,z轴,建立如图所示空间直角坐标系,则:O(0,0,0),A(0,0,2),D(0,0,1),B(4,0,0),C(0,2,0),H(),;∴,;设为平面AGH的法向量,则:;取x1=1,则y1=2,z1=1,∴;设为平面DGH的法向量,则:;取x2=1,则;∴;∴由图可知二面角A﹣GH﹣D为锐角,∴该二面角的余弦值为.【点评】考查三角形重心的概念及其性质,平行线分线段成比例,三角形中位线的性质,以及二面角的平面角的定义,直角三角形的摄影定理的内容,建立空间直角坐标系,利用空间向量解决二面角问题的方法,平面的法向量的概念及求法,能求空间点的坐标,根据点的坐标求向量的坐标,向量垂直的充要条件,以及向量夹角的余弦公式,清楚两平面所成二面角的大小和两平面的法向量夹角的关系.12.(12分)(2014•芜湖模拟)如图,E是以AB为直径的半圆上异于A、B的点,矩形ABCD 所在的平面垂直于该半圆所在的平面,且AB=2AD=2.(1)求证:EA⊥EC;(2)设平面ECD与半圆弧的另一个交点为F.①试证:EF∥AB;②若EF=1,求三棱锥E﹣ADF的体积.答案及解析:12.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积;直线与平面平行的性质.【专题】空间位置关系与距离.【分析】(1)利用面面垂直的性质,可得BC⊥平面ABE,再利用线面垂直的判定证明AE⊥面BCE,即可证得结论;(2)①先证明AB∥面CED,再利用线面平行的性质,即可证得结论;②取AB中点O,EF的中点O′,证明AD⊥平面ABE,利用等体积,即可得到结论.【解答】(1)证明:∵平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,BC⊥AB,BC⊂平面ABCD∴BC⊥平面ABE∵AE⊂平面ABE,∴BC⊥AE∵E在以AB为直径的半圆上,∴AE⊥BE∵BE∩BC=B,BC,BE⊂面BCE∴AE⊥面BCE∵CE⊂面BCE,∴EA⊥EC;(2)①证明:设面ABE∩面CED=EF∵AB∥CD,AB⊄面CED,CD⊂面CED,∴AB∥面CED,∵AB⊂面ABE,面ABE∩面CED=EF∴AB∥EF;②取AB中点O,EF的中点O′,在Rt△OO′F中,OF=1,O′F=,∴OO′=∵BC⊥面ABE,AD∥BC∴AD⊥平面ABE∴V E﹣ADF =V D﹣AEF===【点评】本题考查面面垂直的性质,线面垂直的判定与性质,考查线面垂直,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.13.(12分)(2014•浙江模拟)如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.答案及解析:13.【考点】直线与平面垂直的性质;直线与平面平行的判定.【专题】综合题;空间位置关系与距离.【分析】(1)利用勾股定理的逆定理可得AC⊥BC.利用线面垂直的性质定理可得CC1⊥AC,再利用线面垂直的判定定理即可证明结论;(2)利用直三棱柱的性质、正方形的性质、三角形的中位线定理即可得出ED∥AC1,再利用线面平行的判定定理即可证明结论【解答】证明:(1)因为三棱柱ABC﹣A1B1C1为直三棱柱,所以C1C⊥平面ABC,所以C1C⊥AC.又因为AC=3,BC=4,AB=5,所以AC2+BC2=AB2,所以AC⊥BC.又C1C∩BC=C,所以AC⊥平面CC1B1B,所以AC⊥BC1.(2)连结C1B交CB1于E,再连结DE,由已知可得E为C1B的中点,又∵D为AB的中点,∴DE为△BAC1的中位线.∴AC1∥DE又∵DE⊂平面CDB1,AC1⊄平面CDB1∴AC1∥平面CDB1.【点评】熟练掌握勾股定理的逆定理、线面垂直的判定和性质定理、直三棱柱的性质、正方形的性质、三角形的中位线定理、线面平行的判定定理是解题的关键.14.如图,在三棱锥S﹣ABC中,SB⊥底面ABC,且SB=AB=2,BC=,D、E 分别是SA、SC的中点.(I)求证:平面ACD⊥平面BCD;(II)求二面角S﹣BD﹣E的平面角的大小.答案及解析:14.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)根据面面垂直的判定定理证明AD⊥平面BCD即可证明平面ACD⊥平面BCD.(Ⅱ)建立空间直角坐标系,利用向量法即可求二面角S﹣BD﹣E的余弦值.【解答】证明:(I)∵∠ABC=,∴BA⊥BC,建立如图所示的坐标系,则C(0,,0),A(2,0,0),D(1,0,1),E(0,,1),S(0,0,2),则=(﹣1,0,1),=(0,,0),=(1,0,1),则•=(﹣1,0,1)•(0,,0)=0,•=(﹣1,0,1)•(1,0,1)=﹣1+1=0,则⊥,⊥,即AD⊥BC,AD⊥BD,∵BC∩BD=B,∴AD⊥平面BCD;∵AD⊂平面BCD;∴平面ACD⊥平面BCD;(II)=(0,,1),则设平面BDE的法向量=(x,y,1),则,即,解得x=﹣1,y=,即=(﹣1,,1),又平面SBD的法向量=(0,,0),∴cos<,>==,则<,>=,即二面角S﹣BD﹣E的平面角的大小为.【点评】本题主要考查空间面面垂直的判定,以及二面角的求解,利用向量法是解决二面角的常用方法.15.如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,(Ⅰ)求证:平面PED⊥平面PAC;(Ⅱ)若直线PE与平面PAC所成的角的正弦值为,求二面角A﹣PC﹣D的平面角的余弦值.答案及解析:15.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.【专题】计算题;空间位置关系与距离;空间角.【分析】(I)由面面垂直的性质定理证出PA⊥平面ABCD,从而得到AB、AD、AP两两垂直,因此以AB、AD、AP为x轴、y轴、z轴,建立坐标系o﹣xyz,得A、D、E、C、P的坐标,进而得到、、的坐标.由数量积的坐标运算公式算出且,从而证出DE⊥AC且DE⊥AP,结合线面垂直判定定理证出ED⊥平面PAC,从而得到平面PED⊥平面PAC;(II)由(Ⅰ)得平面PAC的一个法向量是,算出、夹角的余弦,即可得到直线PE与平面PAC所成的角θ的正弦值,由此建立关于θ的方程并解之即可得到λ=2.利用垂直向量数量积为零的方法,建立方程组算出=(1,﹣1,﹣1)是平面平面PCD的一个法向量,结合平面PAC的法向量,算出、的夹角余弦,再结合图形加以观察即可得到二面角A﹣PC﹣D的平面角的余弦值.【解答】解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA∴PA⊥平面ABCD结合AB⊥AD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示…(2分)可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ)(λ>0)∴,,得,,∴DE⊥AC且DE⊥AP,∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.(4分)∵ED⊂平面PED∴平面PED⊥平面PAC(6分)(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P的坐标为(0,0,2)(8分)设平面PCD的一个法向量为=(x0,y0,z0),,由,,得到,令x0=1,可得y0=z0=﹣1,得=(1,﹣1,﹣1)(10分)∴cos<,(11分)由图形可得二面角A﹣PC﹣D的平面角是锐角,∴二面角A﹣PC﹣D的平面角的余弦值为.(12分)【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角A﹣PC ﹣D的余弦值.着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题.16.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.答案及解析:16.(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).=(﹣1,,0),=(0,,﹣1),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则即,因此可取=(,1,)设平面PBC的法向量为=(x,y,z),则,即:可取=(0,1,),cos<>==故二面角A﹣PB﹣C的余弦值为:﹣.考点:直线与平面垂直的性质;用空间向量求平面间的夹角.专题:计算题;证明题;综合题;数形结合;转化思想.分析:(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(Ⅱ)建立空间直角坐标系,写出点A,B,C,P的坐标,求出向量,和平面PAB的法向量,平面PBC的法向量,求出这两个向量的夹角的余弦值即可.解答:(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).=(﹣1,,0),=(0,,﹣1),=(﹣1,0,0),设平面PAB的法向量为=(x,y,z),则即,因此可取=(,1,)设平面PBC的法向量为=(x,y,z),则,即:可取=(0,1,),cos<>==故二面角A﹣PB﹣C的余弦值为:﹣.点评:此题是个中档题.考查线面垂直的性质定理和判定定理,以及应用空间向量求空间角问题,查了同学们观察、推理以及创造性地分析问题、解决问题能力.17.如图,在三棱锥P﹣ABC中,∠ABC=90°,PA⊥平面ABC,E,F分别为PB,PC的中点.(1)求证:EF∥平面ABC;(2)求证:平面AEF⊥平面PAB.答案及解析:17.【考点】平面与平面垂直的判定;直线与平面平行的判定.【专题】空间位置关系与距离.【分析】(1)根据三角形中位线定理可得EF∥BC,进而根据线面平行的判定定理可得EF∥平面ABC;(2)根据PA⊥平面ABC,可得PA⊥BC,结合∠ABC=90°,及线面垂直的判定定理可得BC⊥平面PAB,进而由线面垂直的第二判定定理可得EF平面PAB,最后由面面垂直的判定定理可得平面AEF⊥平面PAB.【解答】证明:(1)∵E,F分别为PB,PC的中点.∴EF∥BC,又∵BC⊂平面ABC,EF⊄平面ABC,∴EF∥平面ABC;(2)∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,又∵∠ABC=90°,∴AB⊥BC,又∵PA∩AB=A,PA,AB⊂平面PAB,∴BC⊥平面PAB,由(1)中EF∥BC,∴EF⊥平面PAB,又∵EF⊂平面AEF,∴平面AEF⊥平面PAB.【点评】本题考查的知识点是线面平行的判定定理,线面垂直的判定定理,面面垂直的判定定理,是空间线面关系的简单综合应用,难度中档.18.(14分)如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.(Ⅰ)求证:AC⊥平面BCE;(Ⅱ)求三棱锥A﹣CDE的体积;(Ⅲ)线段EF上是否存在一点M,使得BM⊥CE?若存在,确定M点的位置;若不存在,请说明理由.答案及解析:18.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【专题】空间位置关系与距离.【分析】(I)如图所示,取AB的中点N,连接CN,可得四边形ADCN是正方形,可得NA=NB=NC,可得AC⊥CB,利用AF⊥平面ABCD,AF∥BE,可得BE⊥平面ABCD,即可证明.=V三棱锥E﹣ACD=即可得出.(II)利用V三棱锥A﹣CDE(III)线段EF上存在一点M为线段EF的中点,使得BM⊥CE.连接MN,BM,EN,则四边形BEMN为正方形,可得BM⊥EN,利用线面面面垂直的判定与性质定理可得:CN⊥平面ABEF,可得CN⊥BM,又BM⊥CE.即可证明BM⊥平面CEN.【解答】(I)证明:如图所示,取AB的中点N,连接CN,则四边形ADCN是正方形,可得NA=NB=NC,∴AC⊥CB,∵AF⊥平面ABCD,AF∥BE,∴BE⊥平面ABCD,∴BE⊥AC,又BE∩BC=B,∴AC⊥平面BCE.=V三棱锥E﹣ACD===.(II)解:V三棱锥A﹣CDE(III)解:线段EF上存在一点M为线段EF的中点,使得BM⊥CE.连接MN,BM,EN,则四边形BEMN为正方形,∴BM⊥EN,∵CN⊥AB,平面ABEF⊥平面ABCD,平面ABEF∩平面ABCD=AB,∴CN⊥平面ABEF,∴CN⊥BM,又CN∩EN=N,∴BM⊥平面CEN,∴BM⊥CE.【点评】本题考查了线面面面垂直的判定与性质定理、正方形的判定与性质定理、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.19.(13分)如图,在正方体A1B1C1D1﹣ABCD中,(1)在正方体的12条棱中,与棱AA1是异面直线的有几条(只要写出结果)(2)证明:AC∥平面A1BC1;(3)证明:AC⊥平面BDD1B1.答案及解析:19.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题;数形结合;数形结合法;空间位置关系与距离.【分析】(1)画出正方体ABCD﹣A1B1C1D1,根据异面直线的概念即可找出与棱AA1异面的棱.(2)连接AC,A1C1,则A1C1∥AC,利用线面平行的判定定理即可证明;(3)由DD1⊥面AC,知DD1⊥AC,由DD1⊥BD,能够证明AC⊥平面BDD1B1.【解答】解:(1)与棱AA1异面的棱为:CD,C1D1,BC,B1C1,共4条.(2)证明:连接AC,A1C1,则A1C1∥AC,∵AC⊄平面A1BC1,A1C1⊂平面A1BC1,∴AC∥平面A1BC1;(3)证明:∵DD1⊥面AC,AC⊂平面AC,∴DD1⊥AC,∵AC⊥BD,DD1∩BD=D,BD⊂平面BDD1B1,DD1⊂平面BDD1B1∴AC⊥平面BDD1B1.【点评】考查异面直线的概念,直线与平面垂直的证明,直线与平面平行的判定,解题时要认真审题,仔细解答,注意合理地进行等价转化,属于中档题.20.如图,在正方体ABCD﹣A1B1C1D1中,(1)证明:BC1⊥面A1B1CD;(2)求直线A1B和平面A1B1CD所成的角.答案及解析:20.【考点】直线与平面所成的角;直线与平面垂直的判定.【分析】(1)要证BC1⊥面A1B1CD;应通过证明A1B1⊥BC1.BC1⊥B1C两个关系来实现,两关系容易证明.(2)因为BC1⊥平面A1B1CD,所以A1O为斜线A1B在平面A1B1CD内的射影,所以∠BA1O 为A1B与平面A1B1CD所成的角.在RT△A1BO中求解即可.【解答】解:(1)连接B1C交BC1于点O,连接A1O.在正方体ABCD﹣A1B1C1D1中因为A1B1⊥平面BCC1B1.所以A1B1⊥BC1.又∵BC1⊥B1C,又BC1∩B1C=O∴BC1⊥平面A1B1CD(2)因为BC1⊥平面A1B1CD,所以A1O为斜线A1B在平面A1B1CD内的射影,所以∠BA1O 为A1B与平面A1B1CD所成的角.设正方体的棱长为a在RT△A1BO中,A1B=a,BO=a,所以BO=A1B,∠BA1O=30°,即直线A1B和平面A1B1CD所成的角为30°.【点评】本题考查空间直线与平面垂直关系的判断,线面角大小求解,考查空间想象能力、推理论证、计算、转化能力.21.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.(1)证明:PA∥平面EDB;(2)证明:平面PAC⊥平面PDB.答案及解析:21.【考点】平面与平面垂直的判定;直线与平面平行的判定.【专题】证明题;转化思想;综合法;空间位置关系与距离.【分析】(1)欲证PA∥平面EDB,根据直线与平面平行的判定定理可知只需证PA与平面EDB内一直线平行,连接AC,交BD于O,连接EO,根据中位线定理可知EO∥PA,PA⊄平面EDB,EO⊂平面EDB,满足定理所需条件;(2)证明AC⊥平面PBD,即可证明平面PAC⊥平面PDB.【解答】证明:(1)设AC与BD相交于点O,则O为AC的中点.∵E是P的中点,∴EO∥PA又∵EO⊂平面EDB,PA⊄平面EDB,∴PA∥平面EDB;(2)∵PO⊥平面ABCD,∴PD⊥AC又∵四边形ABCD为正方形,∴AC⊥BD从而AC⊥平面PBD,∴平面PAC⊥平面PBD.【点评】本题考查直线与平面平行的判定,以及平面与平面垂直的判定,考查空间想象能力,逻辑思维能力,计算能力,是中档题.22.如图,在直三棱柱ABC=A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.(1)求证:BC⊥A1B;(2)若AD=,AB=BC=2,P为AC的中点,求二面角P﹣A1B﹣C的平面角的余弦值.答案及解析:22.【考点】用空间向量求平面间的夹角;空间中直线与直线之间的位置关系.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)由已知得A1A⊥平面ABC,A1A⊥BC,AD⊥BC.由此能证明BC⊥A1B.(Ⅱ)由(Ⅰ)知BC⊥平面A1AB,从而BC⊥AB,以B为原点建立空间直角坐标系B﹣xyz,利用向量法能求出二面角P﹣A1B﹣C的平面角的余弦值.【解答】(Ⅰ)证明:∵三棱柱ABC﹣A1B1C1为直三棱柱,∴A1A⊥平面ABC,又BC⊂平面ABC,∴A1A⊥BC,∵AD⊥平面A1BC,且BC⊂平面A1BC,∴AD⊥BC.又AA1⊂平面A1AB,AD⊂平面A1AB,A1A∩AD=A,∴BC⊥平面A1AB,又A1B⊂平面A1BC,∴BC⊥A1B.(Ⅱ)解:由(Ⅰ)知BC⊥平面A1AB,AB⊂平面A1AB,从而BC⊥AB,如图,以B为原点建立空间直角坐标系B﹣xyz∵AD⊥平面A1BC,其垂足D落在直线A1B上,∴AD⊥A1B.在Rt△ABD中,AD=,AB=2,sin∠ABD==,∠ABD=60°,在直三棱柱ABC﹣A1B1C1中,A1A⊥AB.在Rt△ABA1中,AA1=AB•tan60°=2,则B(0,0,0),A(0,2,0),C(2,0,0),P(1,1,0),A 1(0,2,2),,=(0,2,2),,设平面PA1B的一个法向量,则,即,得,设平面CA1B的一个法向量,则,即,得,,∴二面角P﹣A1B﹣C平面角的余弦值是.…【点评】本题考查异面直线垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意空间思维能力的培养.23.(16分)如图,在正方体ABCD﹣A1B1C1D1的棱长为a,E为棱AB上的一动点.(1)若E为棱AB的中点,①求四棱锥B1﹣BCDE的体积②求证:面B1DC⊥面B1DE(2)若BC1∥面B1DE,求证:E为棱AB的中点.答案及解析:23.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;平面与平面垂直的判定.【专题】数形结合;数形结合法;空间位置关系与距离.【分析】(1)①四棱锥B1﹣BCDE的底面为直角梯形BEDC,棱锥的高为B1B,代入体积公式即可;②面B1DC∩面B1DE=B1D,故只需在平面B1DE找到垂直于交线B1D的直线即可,由DE=B1E=a可易知所找直线为等腰△EB1D底边中线;(2)辅助线同上,由中位线定理可得OF∥DC,且OF=DC,从而得出OF∥EB,由BC1∥面B1DE可得EO∥B1C,故四边形OEBF是平行四边形,得出结论.【解答】证明:(1)①∵正方体ABCD﹣A1B1C1D1∴B1B平面BEDC,•B1B=•(a+)•a•a=.∴V=•S梯形BCDE②取B1D的中点O,设BC1∩B1C=F,连接OF,∵O,F分别是B1D与B1C的中点,∴OF∥DC,且OF=DC,又∵E为AB中点,∴EB∥DC,且EB=DC,∴OF∥EB,OF=EB,即四边形OEBF是平行四边形,∴OE∥BF,∵DC⊥平面BCC1B1,BC1⊂平面BCC1B1,∴BC1⊥DC,∴OE⊥DC.又BC1⊥B1C,∴OE⊥B1C,又∵DC⊂平面B1DC,B1C⊂平面B1DC,DC∩B1C=C,∴OE⊥平面B1DC,。

高中空间立体几何经典例题精选全文完整版

高中空间立体几何经典例题精选全文完整版

可编辑修改精选全文完整版立体几何一、选择题1.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D2 2.(20XX 年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C 【答案】A3 3.(20XX 年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 4.(20XX 年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B .2C .2-12D .2+12【答案】C5.(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面是边长为3.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )A.512πB .3πC.4πD.6π【答案】B6.(20XX年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为()A.5603B.5803C.200D.240【答案】C7.(20XX年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为,m n,那么m n+=()A.8 B.9 C.10 D.11【答案】A二、填空题8.(20XX年高考北京卷(理))如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为__________.1D1BPD1CCEBA1A【答案】2559.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2410.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-11.(20XX 年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π12.(20XX 年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______AB C1A D EF1B 1C【答案】3π三、解答题13.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1 B 1A 1D C AB14.(20XX 年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,113tan 6233BC CC BC C =⋅∠==从而2333ABC S BC ∆==因此该三棱柱的体积为1336183ABC V S AA ∆=⋅==15.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))B 1 A 1C 1ACB如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点 ∵E.F 分别是SA.SB 的中点 ∴EF ∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF ∥平面ABC 同理:FG ∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC ∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SAB AF ⊥SB∴AF ⊥平面SBC 又∵BC ⊆平面SBC ∴AF ⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC ⊥平面SAB 又∵SA ⊆平面SAB ∴BC ⊥SA16.(20XX 年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.C 11A【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=而1AD C ∆中,11AC DC AD ==故132AD C S ∆= AB CSGFE所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.17.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD=由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角. 结合图1可知,H 为AC 中点,故2OH =,从而2A H '== 所以cos OH A HO A H '∠=='所以二面角ACD B '--向量法:以O 点为原点,建立空间直角坐标系O -.CO BDEA CDOBE'A图1图2C DO BE'AH则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,1,n =- 由(Ⅰ)知,(OA '=为平面CDB 的一个法向量,所以3cos ,3n OA n OA n OA'⋅'===',即二面角A CD B '--的平面角的余弦值为5.18.(20XX年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD = CD = 1, AA1 = AB = 2, E为棱AA1的中点.(Ⅰ) 证明B1C1⊥CE;(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为2, 求线段AM的长.6【答案】19.(20XX年高考陕西卷(理))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,12AB AA==(Ⅰ) 证明: A1C⊥平面BB1D1D;(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.1A【答案】解:(Ⅰ) BDOAABCDBDABCDOA⊥∴⊂⊥11,,面且面;又因为,在正方形AB CD 中,BDCAACACAACABDAACOABDAC⊥⊂⊥=⋂⊥11111,,故面且面所以;且.在正方形AB CD中,AO = 1 . .111=∆OAOAART中,在OECAOCEAEDB1111111⊥为正方形,所以,则四边形的中点为设.,所以由以上三点得且,面面又OOBDDDBBODDBBBD=⋂⊂⊂111111E.E,DDBBCA111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O为原点,以OC为X轴正方向,以OB为Y轴正方向.则)1,0,1()1,1,1(),10(),1(,0,1,0111-=⇒CABACB,,,,)(.由(Ⅰ)知, 平面BB1D1D的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OCOBCAn设平面OCB1的法向量为,则0,0,2122=⋅=⋅OCnOBnn).1-,1,0(法向量2=n为解得其中一个21221||||||,cos|cos212111=⋅=⋅=><=nnnnnnθ.所以,平面OCB1与平面BB1D1D的夹角θ为3π1A。

立体几何基础题题库(360道附详细答案)

立体几何基础题题库(360道附详细答案)

S P
S
SS
S
PP
P
R
RR
Pபைடு நூலகம்
Q
R Q
QR
R
P
QR P PQ
Q
R
P
R
Q
QS
R
SS
Q
R
S
SQ R
Q
Q
RP
Q
P
R
S SQ R
P S
R Q
(A)
(B)
(C)
(D)
D
解析: A 项: PS 底面对应的中线,中线平行 QS,PQRS 是个梯形
D'
P
A'
S
C'
B'
R
D
A
B 项: 如图
Q
C B
C 项:是个平行四边形
EG2 FH 2 =2 (EF 2 FG2 ) = 1 ( AC2 BD2 ) 1 (a2 2b)
2
2
27. 如图,在三角形⊿ABC 中,∠ACB=90º, AC=b,BC=a,P 是⊿ABC 所在平面外一点,PB⊥AB, 点,AB⊥MC,求异面直 MC 与 PB 间的距离.
M 是 PA 的中
四边形矛盾。∴EF 和 AD 为异面直线.
26. 在空间四边形 ABCD 中,E,H 分别是 AB,AD 的中点,F,G 分别是 CB,CD 的中点,若 AC + BD
= a ,AC BD =b,求 EG2 FH 2 . A
解析:四边形 EFGH 是平行四边形,…………(4 分)
E H
B F
D
G C
得 OX2+OY2+OZ2=37,OP= 37 .

空间立体几何练习题(含答案)

空间立体几何练习题(含答案)

第一章 空间几何体 [基础训练A 组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B.棱锥C.棱柱D.都不对2.棱长都是1的三棱锥的表面积为( )3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )AB2 C.5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( )A.92π B. 72π C. 52π D. 32π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。

2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。

3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。

4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是____________。

5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的主视图 左视图 俯视图C 底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。

空间几何体练习试题和答案解析

空间几何体练习试题和答案解析

(数学 2 必修)第一章空间几何体[ 基础训练A组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A. 棱台B. 棱锥C. 棱柱D. 都不对主视图左视图俯视图2.棱长都是1的三棱锥的表面积为()A. 3B. 2 3C. 3 3D. 4 33.长方体的一个顶点上三条棱长分别是3, 4,5 ,且它的8 个顶点都在同一球面上,则这个球的表面积是()A.25 B.50 C.125 D.都不对4.正方体的内切球和外接球的半径之比为()A. 3 :1 B.3: 2 C.2: 3 D.3:35.在△ABC中,AB BC ABC ,若使绕直线BC 旋转一周,2, 1.5, 120则所形成的几何体的体积是()A. 92B.72C.52D.326.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为 5 ,它的对角线的长分别是9和15 ,则这个棱柱的侧面积是()A.130 B.140 C.150 D.160二、填空题1.一个棱柱至少有_____个面,面数最少的一个棱锥有________个顶点,. .专业知识分享. .顶点最少的一个棱台有________条侧棱。

2.若三个球的表面积之比是1: 2 :3,则它们的体积之比是_____________。

3.正方体ABCD A1B1C1D1 中,O是上底面ABCD 中心,若正方体的棱长为a,则三棱锥O AB D 的体积为_____________。

1 14.如图,E,F 分别为正方体的面ADD1 A1 、面BCC1B1 的中心,则四边形B F D1E 在该正方体的面上的射影可能是____________ 。

5.已知一个长方体共一顶点的三个面的面积分别是 2 、 3 、 6 ,这个长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15 ,则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。

立体几何大题训练题(含答案)

立体几何大题训练题(含答案)

立体几何大题训练题一、解答题(共17题;共150分)1.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,在四边形ABCD中,∠ABC= ,AB=4,BC=3,CD= ,AD=2 ,PA=4.(1)证明:CD⊥平面PAD;(2)求二面角B-PC-D的余弦值..2.如图,在四棱锥中,平面,在四边形中,,,,,,.(1)证明:平面;(2)求B点到平面的距离3.如图,在四棱锥中,底面为长方形,底面,,,为的中点,F 为线段上靠近B 点的三等分点.(1)求证:平面;(2)求平面与平面所成二面角的正弦值.4.如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.5.如图,在三角锥中,, , 为的中点.(1)证明:平面;(2)若点在棱上,且MC=2MB,求点C到平面POM的距离.6.如图,在三角锥中,, , 为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值. 7.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.8.如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.9.如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,BAD=60°,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值。

10.已知三棱柱,底面三角形为正三角形,侧棱底面,,为的中点,为中点.(1)求证:直线平面;(2)求平面和平面所成的锐二面角的余弦值.11.如图,已知三棱柱ABC-A1B1C1,平面A1AC1C⊥平面ABC,∠ABC=90°.∠BAC=30°,A1A=A1C=AC,E,F 分别是AC,A1B1的中点(1)证明:EF⊥BC(2)求直线EF与平面A1BC所成角的余弦值.12.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(Ⅰ)证明:平面ACD⊥平面ABC;(Ⅱ)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C 的余弦值.13.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.(Ⅰ)证明:直线CE∥平面PAB;(Ⅱ)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.14.如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.15.如图所示多面体中,AD⊥平面PDC,四边形ABCD为平行四边形,点E,F分别为AD,BP的中点,AD =3,AP=3 ,PC .(1)求证:EF//平面PDC;(2)若∠CDP=120°,求二面角E﹣CP﹣D的平面角的余弦值.16.如图,四棱锥中,侧棱垂直于底面,,,为的中点,平行于,平行于面,.(1)求的长;(2)求二面角的余弦值.17.如图,在斜三棱柱中,侧面,,,,.(Ⅰ)求证:平面平面;(Ⅱ)若为中点,求二面角的正切值.答案解析部分一、解答题1.【答案】(1)解:连接,由∠ABC= ,AB=4,BC=3,则,又因为CD= ,AD=2 ,所以,即,因为PA⊥平面ABCD,平面ABCD,所以,因为,所以CD⊥平面PAD;(2)解:以点D为坐标原点,的延长线为x,为y轴,过点D与平行线为z轴,建立空间直角坐标系,如图:作交与点G,,即,所以,,所以,所以,,,,则,,,设平面的一个法向量为,则,即,令,则,,即,设平面的一个法向量为,则,即,令,则,,即,由,所以二面角B-PC-D的余弦值为.【解析】【分析】(1)连接,证出,利用线面垂直的性质定理可得,再利用线面垂直的判定定理即可证出.(2)以点D为坐标原点,的延长线为x,为y轴,过点D与平行线为轴,建立空间直角坐标系,分别求出平面的一个法向量与平面的一个法向量,利用向量的数量积即可求解.2.【答案】(1)解:在平面中,,,,则,又,∴,即,又平面,则,又,∴平面.(2)解:在平面中,过A作BC的平行线交CD的延长线于M,因为,,,则,又因为,,所以.所以又,则,所以,在中,.因为,则面,所以由可知:,,所以,则,因此P点到平面的距离为.【解析】【分析】(1)在三角形中,由勾股定理可证得,由平面,可得,根据线面垂直的判定定理即可证得结论;(2) 在平面中,过A作BC的平行线交CD 的延长线于M,因为利用等体积转换即可求得距离.3.【答案】(1)证明:,为线段中点,.平面,平面,.又底面是长方形,.又,平面.平面,. 又,平面.(2)解:由题意,以为轴建立空间直角坐标系,则,,,,,.所以, ,,,设平面的法向量,则,即,令,则,,,同理可求平面的法向量,,,即平面与平面所成角的正弦值为.【解析】【分析】(1)通过,可证明平面,进而可得,结合证明线面垂直.(2)以为轴建立空间直角坐标系,可求出平面的法向量,平面的法向量,则可求出两向量夹角的余弦值,从而可求二面角的正弦值.4.【答案】(1)解:由已知可得,BF⊥PF,BF⊥EF,又,∴BF⊥平面PEF.∴又平面ABFD,平面PEF⊥平面ABFD.(2)解:作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系H−xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE= .又PF=1,EF=2,故PE⊥PF.可得.则为平面ABFD的法向量. 设DP与平面ABFD所成角为,则.∴DP与平面ABFD所成角的正弦值为.【解析】【分析】(1)在翻折过程中,作于H,由得到,从而得到面面垂直;(2)DP与平面所成的角就是,在三角形中求其正弦值.5.【答案】(1)∵PA=PC=AC=4 且O是AC的中点∴PO⊥AC∵AB=BC=2 ,AC=4,∴∴∠ABC=90°连接BO则OB=OC∴PO2+BO2=PB2PO⊥OB,PO⊥OCOB∩OC=O∴PO⊥平面ABC(2)过点C作CH⊥OM交OM于点H又∵PO⊥平面ABC∴∴CH的长度为点C到平面POM的距离在△COM中,CM= ,OC=2,∠OCM=45°∴∴OM=∴【解析】【分析】(1)由线面垂直的判定定理易得;(2)由线面垂直可得面面垂直,易找点面距,可求.6.【答案】(1)PA=PC=AC=4 且O是AC的中点PO⊥AC∵AB=BC=2 ,AC=4,∴∴∠ABC=90°连接BO则OB=OC∴PO2+BO2=PB2PO⊥OB,PO⊥OCOB∩OC=O∴PO⊥平面ABC(2)∵PO⊥平面ABC,∴PO⊥OB∴AB=BC=2 O是AC的中点∴OB⊥AC OB⊥平面PAC如图所示以O为坐标原点,为x轴正方向建立如图所示的直角坐标系O-xyz则P(0,0,)A(,0,-2,0),C(0,2,0),B(2,0,0)平面PAC法向量为=(1,0,0)设M(x,2-x,0)平面PAC法向量为=(1,λ,μ),=(0,2,), = (x,4-x,0)则即即得到,∴x=-4(舍),x=即M∴PAM的法向量记PC与平面PAM所成的角为θ∴即PC与平面PAM所成的角为的正弦值为.【解析】【分析】(1)由线面垂直的判定定理易得;(2)先由条件建系,找到点M的位置,再用公式求线面角.7.【答案】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥AD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>= = .由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【解析】【分析】(1.)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2.)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD 为矩形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.8.【答案】(1)解:由已知得,平面,平面,故.又,所以平面.(2)由(1)知.由题设知,所以,故,.以为坐标原点,的方向为x轴正方向,为单位长,建立如图所示的空间直角坐标系D-xyz,则C(0,1,0),B(1,1,0),(0,1,2),E(1,0,1),,.设平面EBC的法向量为=(x,y,x),则即所以可取= .设平面的法向量为=(x,y,z),则即所以可取=(1,1,0).于是.所以,二面角的正弦值为.【解析】【分析】(1)根据题意由线面垂直的性质得出线线垂直,再由线线垂直的判定定理出线面垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间立体几何建系设点专题
引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一•所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算1、如图所示,四棱锥P—ABCD中,AB_AD,CD _ AD,PA_底面ABCD,
PA=AD=CD=2AB=2,M 为PC 的中点。

(1) 求证:BM //平面PAD;
(2) 在侧面PAD内找一点N,使MN _平面PBD;
(3) 求直线PC与平面PBD所成角的正弦。

19.(本題满分直分)
正方形曲与矩形ABCD所在平面互相垂直,AB=2AD=2t
点E%AB的中点.
(1 )求证:轲"平面A^DEt
(H)求二面角DSE①的大卜
(III)求多面体AyDyDBE的休积*
3. 已知多面体 ABCDE 中,AB 丄平面 ACD , DE 丄平面ACD, AC = AD = CD = DE
=2a , AB = a , F 为 CD 的中点.
4. 如图,四边形 ABCD 是正方形,PB 丄平面ABCD , MA//PB , PB=AB=2MA ,
(I) 证明:AC//平面PMD ;
(U)求直线BD 与平面PCD 所成的角的大小;
(川)求平面PMD 与平面ABCD 所成的二面角(锐角)的大小。

所成二面角的大小
(I)求证:AF 丄平面CDE ;
(U)求异面直线AC , BE 所成角余弦值;
(
5. 已知斜三棱柱ABC - AB。

, . BCA =90“ , AC 二BC =2, A在底面ABC上
的射影恰为AC的中点D,又知BA _ AC i
(I) 求证:AC i _平面ABC ;
(II) 求CC i到平面AAB的距离;
(III )求二面角A-AB-C的大小。

6. (湖南卷理科第18题)已知两个正四棱锥P—ABCD与Q—ABCD 的高都为2, AB= 4.
(1)证明:PQ丄平面ABCD;
(2)求异面直线AQ与PB所成的角;
(3)求点P到平面QAD的距离.
图I
7. (全国卷U理科第19题)在直三棱柱ABC-ABQ i中,AB= BC, D、E
分别
为B% AG的中点.
(1)证明:ED为异面直线BB i与AC i的公垂线;
(2)设AA =AC =::;2A B,求二面角几- AD -G的大小.
图2 8. 如图,平面PAC_平面ABC , ABC是以AC为斜边的等腰直角三角
形,
E,F,O 分别为PA , PB , AC 的中点,AC =16, PA二PC =10 .
(I)设G是OC的中点,证明:FG//平面BOE ;
(II )证明:在ABO内存在一点M,使FM _平面BOE,并求点M 到OA , OB的距离.
9. 如图,在直四棱柱ABCD-A 1B1C1D1中,底面ABCD为等腰梯形,AB//CD ,
AB=4, BC=CD=2, AA 1 =2, E、E1、F 分别是棱AD、
AA1、AB的中点。

(1)证明:直线EE1//平面FCC1;
(2)求二面角B-FC i-C的余弦值。

10.如图,在四棱锥P - ABCD中,底面ABCD是矩形.
已知AB =3, AD =2, PA =2, PD = 2 . 2, PAB = 60 .
(I)证明AD _平面PAB ;
(n)求异面直线PC与AD所成的角的大小;
(川)求二面角P - BD - A的大小.
2
3 求异面直线BD 与B i C 的距离。

4. 四棱椎P — ABCD 中,底面ABCD 是矩形,PCD 为正三角形, 平面PCD _平面ABCD, PB_ AC ,E 为PD 中点.
(1) 求证:PB//平面AEC
(2) 求二面角E — AC — D 的大小.
高三立几建系设点专向练习 1. 在正方体A —C i 中,E 、F 分别为D i C i 与AB 的中点, 所成的角的正弦值为( ) A . sin 空
B . sin —3 3 3 2. 如图,正三棱柱ABC-ABG 中, 则A i B i 与截面A I ECF 值为(
) 6 C . sin - 2
则AC 与平面
D •都不对 AB =AA , BBCC 所成的角的正弦 3.已知正方体 ABCD-A i B i C i D i 的棱长为1,
5. 如图,已知四棱锥P-ABCD ,底面ABCD为菱形,PA _平面ABCD ,
.ABC =60 , E, F分别是BC, PC的中点.
(1)证明:AE _ PD ;
⑵若H为PD上的动点,EH与平面PAD所成最大角的正切值为于,求二
面角E -AF -C的余弦值.
6. 如图,ABCD是边长为a的菱形,且/ BAD=60°,
△ PAD为正三角形,且面PAD丄面ABCD
(1)求COS〈AB,PD〉的值;
(2)若E为AB的中点,F为PD的中点,求|EF |的值;
(3)求二面角P—BC—D的大小
7. 如图,四棱锥P- ABCD中,PA丄底面ABCD,PC丄AD .底面ABCD为梯形,AB//DC,AB_BC . PA 二AB 二BC,点E 在棱PB 上,且PE=2EB .
(1)求证:平面PAB丄平面PCB ;
(2)求证:PD // 平面EAC ;
(3)(理)求平面AEC和平面PBC所成锐二面角的余弦值.
p
8. 三棱锥C-OAB的底面OAB是边长为4的正三角形,CO _平面OAB且
CO =2,设D、E分别是OA、AB的中点。

(I )求证:OB //平面CDE ;
(II )求二面角O-DE-C的余弦值.
9. 如图所示,AF、DE分别是圆O、圆O i的直径,AD与两圆所在的平面均垂直, AD =8. BC 是圆O 的直径,AB =AC =6, OE//AD .
(I) 求二面角B-AD-F的大小;
(II) 求直线BD与EF所成的角的余弦值.。

相关文档
最新文档