裂项法_系数_求和
高考数学必杀技系列之数列7:数列求和(裂项相消法)

高考数学必杀技系列之数列7:数列求和(裂项相消法)
数列
专题七:数列求和(裂项相消法)
裂项相消法的实质是将数列中的每一项(通项)分解,然后再重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)把数列的通项拆成两项之差,即数列的每一项都可按此规律拆成两项之差,在求和时一些正负相消,适用于类似这种形式,用裂项相消法求和,需要掌握一些常见的裂项方法,是分解与组合思想在数列求和中的具体应用,高考中常见以下几种类型。
一、必备秘籍
1.裂项相消法
(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。
(2)常见的裂项技巧:
二、例题讲解
感悟升华(核心秘籍)本例是裂项相消法的简单应
用,注意裂项,是裂通项,
裂项的过程中注意前面的系
数不要忽略了。
感悟升华(核心秘籍)本例是含有根式型裂项,注
意分母有理化计算。
能完全记忆类型⑤的公式,建
议裂项完后通分检验是否正
确。
裂项法讲解

裂项法讲解裂项法是一种数学方法,用于将一个复杂的数学式子分解成一些简单的项之和。
在求解一些数学问题时,使用裂项法可以更加便捷地得到答案。
本文将介绍裂项法的基本原理和应用方法。
下面是本店铺为大家精心编写的4篇《裂项法讲解》,供大家借鉴与参考,希望对大家有所帮助。
《裂项法讲解》篇1裂项法是一种将一个复杂的数学式子分解成一些简单的项之和的方法。
通常情况下,我们将一个式子拆分成多个项,然后再进行求和。
这样做的好处在于,我们可以将一个复杂的问题分解成一些简单的子问题,从而更容易地解决。
下面,我们将介绍裂项法的基本原理和应用方法。
1. 基本原理裂项法的基本原理是将一个式子拆分成多个项,然后将这些项相加得到原式。
每个项通常都是一个常数与一些变量的乘积。
我们可以将这些项按照变量的次数排列,然后进行求和。
例如,我们将式子 $1/x$ 拆分成多个项,可以得到:$$frac{1}{x} = frac{1}{1times x} = frac{1}{x} - frac{1}{x+1} + frac{1}{x+1} - frac{1}{x+2} + frac{1}{x+2} - frac{1}{x+3} + cdots$$2. 应用方法裂项法通常应用于求解一些数学问题,例如求和、积分等。
下面,我们将介绍一些常见的应用方法。
(1) 求和裂项法最常见的应用就是求和。
例如,我们可以使用裂项法求解以下问题:$$1 +2 +3 + cdots + n = frac{n(n+1)}{2}$$我们可以将式子拆分成多个项,然后进行求和,得到:$$1 +2 +3 + cdots + n = 1 + (1+1) + (1+2) + cdots + (1+n-1) = n - 1 + n = frac{n(n+1)}{2}$$(2) 积分裂项法还可以用于积分。
《裂项法讲解》篇2裂项法是数学中一种常用的求和方法,主要用于求解一些可以拆分成多项式的和式。
数列求和——裂项相消法

————裂项相消法
2015全国I卷节选:
若an1
2n
1, 令bn
1 an an 1
, 求{bn}的前n项和Tn。
裂项求和法:
将数列的通项分解成两项或多项的差,使
数列中的项出现有规律的抵消项,只剩下首 尾若干项。
一般有两种类型:
类型一:an
k f (n) f (n c)
A[ 1 f (n)
1[ 1
1
]
n(n 1)(n 2) 2 n(n 1) (n 2)(n 1)
(an
(a 1)an b)(an1
b)
(an
an1 an b)(an1
b)
1 (an b)
1 (an1 b)
类型二:
通过有理化、对数的运算法则、公式的变形、阶乘和组合数
2n Sn
, 求证:T1 T2 L
Tn
3 2
练习:步步高P93例3及跟踪训练3
课堂小结:
1、分解与组合思想在数列求和中的应用。 2、裂项相消常用于方式和根式求和。 可以用通项裂解,也可以利用首项裂解, 甚至可以利用待定系数法去完成裂开通项
(1)应注意抵消后并不一定只剩下第一项和最后一 项,也有可能前面剩多项,后面也剩多项,
(2)再就是将通项公式裂项后,有时候需要调整前 面的系数,使裂开的两项之差和系数之积与原通 项公式相等.
变式:若数列an的前n项和为Sn满足:
Sn
4 3
an
1 3
•
2n1
2 3
(1)求an
(2)设Tn
数列求和中常见的裂项法

数列求和中常见的裂项法裂项法的实质是将数列中的每一项(通项)分解,然后再重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)把数列的通项拆成两项之差,即数列的每一项都可按此规律拆成两项之差,在求和时一些正负相消,适用是分解与组合思想在数列求和中的具体应用,高考中常见以下几种类型。
典例1.(2017课标全国Ⅱ,15,5分)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k=1n1S k= .解析:设公差为d,则{a 1+2d =3,4a 1+6d =10,∴{a 1=1,d =1,∴a n =n.∴前n 项和S n =1+2+…+n=n (n+1)2,∴1S n=2n (n+1)=2(1n -1n+1),∴∑k=1n1S k=21-12+12-13+…+1n -1n+1=2(1-1n+1)=2·n n+1=2nn+1.典例2、已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n+1}的前100项和为 (A)100101 (B) 99101(C) 99100 (D) 101100 解析:由a 5=5,S 5=15可知a 1=d =1,a n =n,1a n a n+1=1n(n+1)=1n -1n+1T 100=1−12+12−13+⋯1100−1101=100101故选A典例3、已知n k n a n++1,求{n a }的前10项和?解析:因为n n nn a n-+=++111,所以S 10=110910.........342312-=--+-+-典例4:已知数列{a n }为等差数列,其中a 2+a 3=8,a 5=3a 2. (1)求数列{a n }的通项公式; (2)记b n =2an b n ,设{b n }的前n 项和为S n .求使得S n >20162017 的最小正整数n .解析:(1)设等差数列{a n }的公差为d ,依题意有 {2a 1+3d =8a 1+4d =3a 1+3d解得a 1=1,d =2,从而{a n }的通项公式为a n =2n -1,n ∈N *. (2)因为b n =2an b n=12n−1−12n+1所以S n =(1-13)+(13−15)+……+(12n−1−12n+1) =1-12n+1 , 令1-12n+1>20162017 ,解得n >1 008,故取n =1 009.类型⑤)n 1x x)ln(1(ln )1ln()1ln()11ln(=+-+=+=+令通常情况下出现n n n n n典例6、求∑k=1ln(nn+1n)=?解析:∑k=1n ln (n+1n)=ln2−ln1+ln3−ln2……+ln (n +1)−ln =ln(n +1)类型⑥k k k k n n n n n+-+=++++112121)2)(2(2 典例7、数列{a n }的前n 项和S n ,满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列. (1)求数列{a n }的通项公式;(2)设11++=n n n n S S a b ,求数列{b n }的前n 项和T n .解析:(1)由已知S n =2a n -a 1,有S n -1=2a n -1-a 1(n ≥2),则有a n =2a n -1(n ≥2),即数列{a n }是以2为公比的等比数列,又a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1),∴a 1+4a 1=2(2a 1+1),解得a 1=2,故a n =2n . (2)由(1)知S n =2n +1-2,22121221221.......221221221221)221221.......()221221()221221(221221)22)(22(2221433221433221211--=---+---+---=---+---+---=---=--=++++++++++n n n n n n n n n n n n T b n n nn 2121-+=+典例8.设{}n a 是等比数列,公比大于0,其前n 项和为()n S n *∈N ,{}n b 是等差数列. 已知11a =,322a a =+,435a b b =+,5462a b b =+.(I )求{}n a 和{}n b 的通项公式;(II )设数列{}n S 的前n 项和为()n T n *∈N ,(i )求n T ; (ii )证明221()22()(1)(2)2n nk k k k T b b n k k n +*+=+=-∈+++∑N . 解析:(I )设等比数列{}n a 的公比为q.由1321,2,a a a ==+可得220q q --=.因为0q >,可得2q =,故12n n a -=.设等差数列{}n b 的公差为d ,由435a b b =+,可得13 4.b d +=由5462a b b =+,可得131316,b d += 从而11,1,b d == 故.n b n =所以,数列{}n a 的通项公式为12n n a -=,数列{}n b 的通项公式为.n b n =(II )(i )解:由(I ),有122112nn n S -==--,故 1112(12)(21)22212n nnkkn n k k T n n n +==⨯-=-=-=-=---∑∑.(ii )证明:因为11212()(222)222(1)(2)(1)(2)(1)(2)21k k k k k k+k T +b b k k k k k k k k k k k k ++++--++⋅===-++++++++,所以,324321221()2222222()()()2(1)(2)3243212n n n nk k k k T b b k k n n n ++++=+=-+-++-=-+++++∑. 既证。
数列之裂项相消求和

=1
3
1(1- )
=39
1-
⇒a1=3,所以 an=3n.
(2)由已知得 bn=log332n+1=2n+1,所以 Tn=3+5+…+(2n+1)=n(n+2),
1
=
=
1
=
1 1
( +2) 2
1 1 1
-
2 1 3
-
1
+2
1
1
1
,所以 ∑ = + + +…+
1
=1
1 1 1
1 1 1
1 1
2 2 4
项和
.
解析 (1)因为 , 9 为函数 () = ( − 2)( − 99) 的两个零点且
(−1)
1+
2
= 2, 9 = 99 .又因为 =
= 3 ,所以数列 {
( − 1) = 2 + 1 .
1
(2)因为
所以
1
(
2
=
=
1
(
2
,所以 9
9×8
1+ 2
< 9 ,所以
× 2 = 99 ,解得
(2n+1)
1
1
-
1
1
解析∵an=
= 2n-1 2n+1 ,
(2n-1)
(2n+1) 2
1
1-
1
1
n
1
1
1 1
1
2n+1 =
∴Sn= [(1- )+( - )+…+(
-
)]=
.
2
裂项求和法的知识点总结

裂项求和法的知识点总结一、裂项求和法的基本思想裂项求和法的基本思想是将原来的级数拆分成若干个部分,然后分别求解这些部分的和。
最后将这些部分的和相加得到原级数的和。
这种方法在求解级数时非常有效,可以将复杂的级数变成简单的级数来求解。
二、裂项求和法的常用技巧裂项求和法的常用技巧包括:拆项、分组求和、 Telescoping 等。
1. 拆项:拆项是裂项求和法中常用的一种技巧。
它可以将原级数中的每一项拆分成两个或多个部分,然后再进行求和。
拆项的目的是为了将原级数转化为一个更易求解的级数。
拆项的具体操作可以根据级数的特点来灵活运用。
2. 分组求和:分组求和是裂项求和法中常用的一种技巧。
它可以将原级数分成若干个相互独立的部分,然后分别求解这些部分的和。
最后将这些部分的和相加得到原级数的和。
分组求和的具体操作可以根据级数的特点和要求来选择合适的分组方法。
3. Telescoping:Telescoping 是裂项求和法中常用的一种技巧。
它可以将原级数中相邻的两项进行变形,从而使得这些项之间的差分项能够互相抵消,最终得到一个简单的级数。
Telescoping 的具体操作包括变形、抵消、整理等。
三、裂项求和法的应用范围裂项求和法在数学中有着广泛的应用范围,包括但不限于如下几个方面:1. 求解收敛级数:裂项求和法可以帮助我们求解各种类型的收敛级数,包括数值级数、幂级数、级数和等。
通过拆项、分组求和、 Telescoping 等技巧,可以将复杂的级数转化为简单的级数来求解。
2. 求解发散级数:裂项求和法也可以帮助我们对发散级数进行求解。
虽然发散级数本身没有定义和,但是通过一些技巧,可以使其在某种意义下有意义,从而得到发散级数的和。
3. 实际应用:裂项求和法在实际应用中也有着广泛的应用。
例如在物理、工程、经济等领域,经常需要求解各种级数,裂项求和法可以帮助我们快速、准确地求解这些级数,为实际问题的解决提供有力的支持。
四、裂项求和法的注意事项在使用裂项求和法时需要注意以下几个方面:1. 根据级数的特点选择合适的技巧:在使用裂项求和法时,需要根据级数的特点和要求来选择合适的技巧。
裂项相消法求和附解析

.裂项相消法利用列相消法乞降,注意抵消后其实不必定只剩下第一和最后一,也有可能前面剩两,后边剩两,再就是通公式列后,有需要整前面的系数,使列前后等式两保持相等。
( 1 )假如 {a n }等差数列,11.( 11) ,11.(1 1 )a n a n 1 d a n a n 1a n a n 22d a n a n 2( 2 )111 n(n1) n n1( 3 )1k)1 ( 1n1)n(n k n k( 4 )1 1 (11)(2n 1()2n 1) 2 2n 1 2n 1( 5 )n(n12)1[1(n1] 1)( n2n(n 1)1)(n2)( 6 )1n1nn n1( 7 )11n k n) n n k(k1. 已知数列的前n和,.(1 )求数列的通公式;(2 ),求数列的前n和.[ 分析 ] (1)⋯⋯⋯⋯⋯①.,⋯⋯⋯⋯⋯②①②得 :即⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分在①中令, 有, 即,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分故2. 已知 {a n} 是公差 d 的等差数列,它的前n 和 S n, S4=2S 2 +8 .(Ⅰ)求公差 d 的;(Ⅱ)若 a 1 =1 , T n是数列 {} 的前 n 和,求使不等式T n≥全部的n ∈N* 恒建立的最大正整数m 的;[ 分析 ] (Ⅰ)数列{a n }的公差 d ,∵ S4 =2S 2 +8 ,即 4a 1 +6d=2(2a 1 +d) +8,化得:4d=8,解得 d=2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(Ⅱ)由 a 1=1 , d=2 ,得 a n =2n-1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分∴=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分.∴ T n ===≥ ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分又∵ 不等式n全部的 n ∈ N* 恒建立,T ≥∴ ≥,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分化得: m 2 -5m-6≤0 ,解得: -1 ≤m ≤6 .∴ m 的最大正整数 6 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分3.) 已知各均不同样的等差数列{a n } 的前四和S4 =14, 且 a 1 ,a3 ,a7成等比数列 . ( Ⅰ) 求数列 {a n } 的通公式 ;( Ⅱ)T n数列的前n和,求T2 012的.[ 答案 ] ( Ⅰ ) 公差 d, 由已知得(3 分)解得 d=1或d=0(舍去),∴a1=2. (5分)故 a n =n+1. (6分)(Ⅱ)==-,(8分).∴T n= - + - + ⋯+ -= -=. (10 分)∴T2012 =. (12分)4.) 已知数列 {a}是等差数列 ,- =8n+4, 数列 {|an |} 的前 n 和 S ,数列的前 nn n 和 T n .(1)求数列 {a n }的通公式 ;(2)求 : ≤T n <1.[ 答案 ] (1) 等差数列 {a n }的公差d,a n =a 1 +(n-1)d. (2分)∵- =8n+4,∴(a n+1 +a n )(a n+1 -a n )=d(2a 1 -d+2nd)=8n+4.当 n=1,d(2a 1 +d)=12;当 n=2,d(2a 1 +3d)=20.解方程得或(4分)知 ,a n =2n或a n=-2n都足要求.∴a n =2n或a n=-2n. (6分)(2) 明 : 由 (1) 知 :a n =2n或a n=-2n.∴|a n |=2n..∴S n =n(n+1). (8分)∴== -.∴T n=1- + - + ⋯+ -=1-. (10 分 )∴ ≤T n <1. (12分)5. 已知等差数列 {a n } 的公差2, 前 n 和 S n ,且 S1,S2 ,S4成等比数列 .( Ⅰ) 求数列 {a n } 的通公式 ;( Ⅱ) 令 b n =(-1)n-1,求数列 {b n }的前 n 和 T n .[ 答案 ] 看分析[ 分析 ] ( Ⅰ ) 因 S1 =a 1 ,S2=2a 1 +×2=2a1+2,S =4a1+×2=4a1+12,4由意得 (2a 1+2) 2 =a 1 (4a 1+12),解得 a 1 =1,因此 a n =2n-1.( Ⅱ)b n =(-1)n-1=(-1)n-1=(-1) n-1当 n 偶数 , T n =-=1-=.当 n 奇数 , T n =-.因此 T n =..+⋯+-+⋯-+++=1+=6.已知点的象上一点,等比数列的首,且前和( Ⅰ) 求数列和的通项公式;( Ⅱ) 若数列[ 分析 ]解: (Ⅰ)由于的前项和为,问,因此的最小正整数,是多少?因此,,,又数列是等比数列,因此,因此,又公比,因此,由于,又因此数列因此因此,因此,因此组成一个首项为 1 ,公差为,当时,.(6分),1 的等差数列,,,(Ⅱ) 由(Ⅰ ) 得,(10 分)由得,知足的最小正整数为 72.(12 分)7. 在数列,中,,,且成等差数列,成等比数列() .(Ⅰ)求,,及,,,由此概括出,的通项公式,并证明你的结论;(Ⅱ)证明:.[ 分析 ] (Ⅰ)由条件得,由此可得.猜想. ( 4分)用数学概括法证明:①当时,由上可得结论建立.②假定当时,结论建立,即,那么当时,.因此当时,结论也建立.由①②,可知对全部正整数都建立. ( 7 分)(Ⅱ)由于.当时,由(Ⅰ)知.因此.综上所述,原不等式建立. (12分)8. 已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求使建立的最小.的正整数的.[ 分析 ](1)当,,由,⋯⋯⋯⋯⋯⋯⋯⋯1分当,∴是以首,公比的等比数列.⋯⋯⋯⋯⋯⋯⋯⋯4分故⋯⋯⋯⋯⋯⋯⋯ 6 分(2 )由( 1)知,⋯⋯⋯⋯⋯⋯ 8 分,故使建立的最小的正整数的.⋯⋯⋯⋯⋯⋯12分.9.己知各均不相等的等差数列 {a n } 的前四和 S4=14 ,且 a 1, a 3, a 7成等比数列.(I)求数列 {a n } 的通公式;( II ) T n数列的前n和,若T n≤¨ 恒建立,求数的最小.[ 分析 ] 122.解得(Ⅰ)公差 d. 由已知得⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯,因此3 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(Ⅱ),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分恒建立,即恒建立10.又∴的最小⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯已知数列前和,首,且,,成等差数列.12 分.(Ⅰ)求数列的通公式;( II )数列足,求:,[分析] (Ⅰ)成等差数列,∴,,当,,两式相减得:.因此数列是首,公比 2 的等比数列,.(6分)( Ⅱ),(8分),.(12 分)11. 等差数列 {a n } 各均正整数, a 1 =3,前n和S n,等比数列{b n}中, b1=1,且b 2 S2 =64, {} 是公比64 的等比数列 .( Ⅰ) 求 a n与 b n ;(Ⅱ) 明: + +⋯+ <.. [ 答案 ] ( Ⅰ ){a n } 的公差d, {b n }的公比q, d 正整数 ,a n =3+(n-1) d,b n =q n-1.依意有①由(6+d) q=64知q正有理数,又由q=知, d 6 的因子 1, 2, 3, 6之一,解①得d=2, q=8.故 a n =3+2(n-1) =2n+1, b n =8n-1.( Ⅱ) 明 :S n =3+5+⋯+(2n+1) =n(n+2) ,因此+ +⋯+ =+++⋯+==<.12.等比数列{a n}的各均正数, 且 2a 1+3a 2 =1,=9a 2a 6.( Ⅰ) 求数列 {a n }的通公式 ;( Ⅱ) b n =log 3 a 1+log3a 2 +⋯+log 3 a n ,求数列的前n和.[ 答案 ] ( Ⅰ ) 数列 {a n} 的公比q.由=9a 2 a 6得=9 , 因此 q 2=.因条件可知q>0,故q=..由 2a 1 +3a 2 =1 得 2a 1 +3a 1 q=1,因此a1=.故数列 {a n } 的通公式 a n=.( Ⅱ) b n =log 3 a 1+log3a 2 +⋯+log 3 a n=-(1+2+⋯+n)=-,故=-=-2,+ +⋯+ =-2++⋯+=-.因此数列的前 n 和 -.13. 等差数列 {a n } 的各均正数,a 1=3, 其前 n 和 S n ,{b n } 等比数列 ,b 1 =1, 且b 2 S2 =16,b3 S3 =60.( Ⅰ) 求 a n和 b n ;(Ⅱ)求+ +⋯+.[ 答案 ] ( Ⅰ ) {a n }的公差d, 且 d 正数 ,{b n }的公比q,a n =3+(n-1)d,b n=q n-1 ,依意有 b 2 S2 =q ·(6+d)=16,b 3 S3 =q 2·(9+3d)=60,(2分).解得 d=2,q=2.(4分)故 a n =3+2(n-1)=2n+1,b n =2n-1.(6分)( Ⅱ)S n =3+5+⋯+(2n+1)=n(n+2),(8分)因此+ +⋯+=+++⋯+=(10 分)== -.(12 分 )14. 数列 {a n } 的前 n 和 S n足 :S n =na n -2n(n-1).等比数列{b n}的前n和T n,公比a 1 ,且 T5 =T 3 +2b 5 .(1)求数列 {a n }的通公式 ;(2) 数列的前n和M n,求:≤M n<.[ 答案 ](1) ∵T5 =T 3+2b 5 ,∴b 4+b 5=2b 5,即 (a 1 -1)b 4 =0, 又 b 4≠0, ∴a1 =1.n ≥2,a n =S n -S n-1 =na n -(n-1)a n-1 -4(n-1),即(n-1)a n-(n-1)a n-1 =4(n-1).∵n-1 ≥1, ∴a n -a n-1 =4(n≥2),.∴数列{a n }是以 1 首 ,4 公差的等差数列,∴a n =4n-3. (6分)(2)明:∵==·,(8 分)∴M n =++ ⋯+==< ,(10 分)又易知 M n增 ,故 M n≥M 1=.上所述 , ≤M n < . (12分)。
等比数列之裂项求和-技巧

等比数列求和之裂项法——杰少,2020年2月27日一、什么是等比数列?等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(q ≠0).例如:①2,4,8,16,…;②13,132,133,…像这样的数列就是等比数列.二、等比数列如何求和?一般对于等比数列求和通常采用【错位相减】的方法. 下面我们来看一种特殊情况的等比数列之和. 【例如】计算:2+22+23+…+210【解析】显然易得这是公比为2的等比数列之和, 则我们一般是令S =2+22+23+…+210 ①,然后在①式两边同乘公比2,并错位书写可得, 2S = 22+23+…+210+211 ②, 再利用②式减去①式,把相同的项抵消, 可得2S -S =211-2, 从而S =2048-2=2046, 即:原式=2046.继续研究错位相减,②-①:2S -S =(22+23+…+210+211)-( 2+22+23+…+210), ∴2+22+23+…+210=(211-210)+(210-29)+…+(22-2), 即:()1010111222nn n n n +===-∑∑,也就是说,此题我们完全可以采用【裂项相消】求解此题.三、一般等比数列之和如何裂项?我们来研究一下一般情况: 求a +a 2+a 3+…+a n (a ≠1)的值.【解析】我们先采用【错位相减】法,寻找裂项的灵感! 令 S =a +a 2+a 3+…+a n ①, ∴aS = a 2+a 3+…+a n +a n +1 ②,②-①得:(a -1)S =(a n +1-a n )+ (a n -a n -1)+…+(a 2-a ), ∴()()111nk k k a S aa +=-=-∑,∴()1111nk k k S aa a +==--∑,即:()11111nnkk k k k a aa a +===--∑∑.因此,基于【错位相减】法的灵感,我们找到了直接裂项的方法:()()111111·111nnnkk k k k k k aa a aa a a +====-=---∑∑∑至此,我们就找到了一般情况的等比数列之和的【裂项相消】法.例如:()()()20202020202012021111111331333333122kk k k k k k +====-=-=--∑∑∑ 四、自我挑战例1.计算:【解析】202020202020111202020201111211111112222222n n n n n n n --===-⎛⎫==-=-=- ⎪⎝⎭∑∑∑例2.计算:100425nn =⨯∑【解析】202020202020111202020201111211111112222222n n n n n n n --===-⎛⎫==-=-=- ⎪⎝⎭∑∑∑例3.计算:1nkk aq=∑,其中aq ≠0,q ≠1.【解析】()()()11111·1111n nnnk k k k k k k a q q a aaq q q q q q q q ++===-=-=-=---∑∑∑.五、拓展延伸形如:()1nk k akb c =+∑,其中ac ≠0,c ≠1,这样的等差×等比之和,我们又如何采用【裂项相消】求解呢?与前面裂项类似,我们希望每一项的裂项都是相邻两项的差值, 即如果能出现()()11k k x k y cxk y c +++-+⎡⎤⎣⎦这样的结构,那我们就可以裂项求和,因此,我们可以通过待定系数把x ,y 求解出来. 令()()()11kk kak b c x k y c xk y c ++=++-+⎡⎤⎣⎦, ∴()()()()()111kk k k ak b cx k c yc c xk y c x c k xc y c c +=++-+=-++-⎡⎤⎡⎤⎣⎦⎣⎦,匹配系数可得,()()11x c a xc y c b -=⎧⎪⎨+-=⎪⎩,解得()2111a x c b ac y c c ⎧=⎪-⎪⎨⎪=--⎪-⎩, ∴()()(){}1111nnkk k k k akb c x k y cxk y c +==+=++-+⎡⎤⎣⎦∑∑=()()11n x n y cxn y c +++-+⎡⎤⎣⎦,其中()2111a x c b ac y c c ⎧=⎪-⎪⎨⎪=--⎪-⎩.六、自我超越例1.计算:112nk k k =-∑【解析】()111121111122222nnnk kk k n k k k k k k kk n -===-+-++⎛⎫==-=- ⎪⎝⎭∑∑∑例2.计算:1213nk k k =-∑【解析】()1111312111133333nnnkkk k n k k k k k k k k n -===-+-++⎛⎫==-=- ⎪⎝⎭∑∑∑例3.计算:12nkk k =⋅∑【解析】令()(){}1112122n nkk k k k k x k y xk y +==⋅=++-+⎡⎤⎣⎦∑∑∴()()1112212222nnnkkkk k k k x k y xk y xk x y ===⋅=++--=++⎡⎤⎣⎦∑∑∑匹配系数可得,120x x y =⎧⎨+=⎩,解得12x y =⎧⎨=-⎩,∴()(){}111212222nnkk k k k k k k +==⋅=+---⎡⎤⎣⎦∑∑=()()11122122n n ++---⨯⎡⎤⎣⎦=()1122n n +-+例4.计算:()1213nk k k=+∑【解析】令()()(){}111213133n nkk k k k k x k y xk y +==+=++-+⎡⎤⎣⎦∑∑,∴()()()11121331332323nnnkkkk k k k x k y xk y xk x y ===+=++--=++⎡⎤⎣⎦∑∑∑,令22321x x y =⎧⎨+=⎩,解得11x y =⎧⎨=-⎩, ∴()()(){}11121311313nnkk k k k k k k +==+=+---⎡⎤⎣⎦∑∑=()()11113113n n ++---⎡⎤⎣⎦=13n n +⋅例5.计算:1326nk k k =-∑【解析】()111613237155666nnnkkkk k k k k k ===-+-=-∑∑∑=11131761525666nnk k kk k k k -==+-⎛⎫-- ⎪⎝⎭∑∑=1111317115256666nnk k k k k k k k --==+⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭∑∑=3117115125166n nn +⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=86158256n nn ⨯--⨯说明:本题也可以采用待定系数法求解,方法与例1和例2类似,求出待定系数x 、y 即可,这里不再赘述.。