数列裂项相消法求和
数列求和——裂项相消法

————裂项相消法
2015全国I卷节选:
若an1
2n
1, 令bn
1 an an 1
, 求{bn}的前n项和Tn。
裂项求和法:
将数列的通项分解成两项或多项的差,使
数列中的项出现有规律的抵消项,只剩下首 尾若干项。
一般有两种类型:
类型一:an
k f (n) f (n c)
A[ 1 f (n)
1[ 1
1
]
n(n 1)(n 2) 2 n(n 1) (n 2)(n 1)
(an
(a 1)an b)(an1
b)
(an
an1 an b)(an1
b)
1 (an b)
1 (an1 b)
类型二:
通过有理化、对数的运算法则、公式的变形、阶乘和组合数
2n Sn
, 求证:T1 T2 L
Tn
3 2
练习:步步高P93例3及跟踪训练3
课堂小结:
1、分解与组合思想在数列求和中的应用。 2、裂项相消常用于方式和根式求和。 可以用通项裂解,也可以利用首项裂解, 甚至可以利用待定系数法去完成裂开通项
(1)应注意抵消后并不一定只剩下第一项和最后一 项,也有可能前面剩多项,后面也剩多项,
(2)再就是将通项公式裂项后,有时候需要调整前 面的系数,使裂开的两项之差和系数之积与原通 项公式相等.
变式:若数列an的前n项和为Sn满足:
Sn
4 3
an
1 3
•
2n1
2 3
(1)求an
(2)设Tn
裂项相消法在数列求和中的应用

c1 c2
cn =(1+
1 d
) (
1 b1
1 b2
)
(1 b2
1 b3
)
(1 bn2
1 )( 1
bn1
bn1
1 bn
)
(1+ 1 ) ( 1 1 ) (1+ 1 ) (1 1 )
d b1 bn
d
bn
b1 1 0, d 0,bn 0
c1 c2
cn
(1+
1 ) (1 d
1 bn
1 16
二:裂项相消法与不等式的证明
(二)先放缩再求和
例6:已知an
n2
n (n 1)2
, 求证:a1
a2
an
1 2
总结:
1.三种常见裂项相消的通项特征
(一)等差型(一次函数)
(二)等比型
an
(2n
b)
1 (2n1
b)
=
1 2n
1
1
( 2 n b 2n1 b)
(三)无理式型
an
1
n
n 1 (
=
1 2
(11
1) 3
(
1 2
1 4
)
(1 3
1) 5
( 1 n 1
1) n 1
(1 n
n
1
2 )
=
1 2
1+
1 2
n
1 1
n
1
2
3 4
1 2
(
1 n
1
n
1
) 2
( 1 1) n2 n
裂项相消法在数列求和中 的应用
数列求和裂项相消法公式

数列求和裂项相消法公式
数列裂项相消公式:1/[n(n+1)]=(1/n)-[1/(n+1)]。
裂项是指这是分解与组合思想在数列求和中的具体应用。
是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。
通项分解(裂项)倍数的关系。
通常用于代数,分数,有时候也用于整数。
公式,在数学、物理学、化学、生物学等自然科学中用数学符号表示几个量之间关系的式子。
具有普遍性,适合于同类关系的所有问题。
在数理逻辑中,公式是表达命题的形式语法对象,除了这个命题可能依赖于这个公式的自由变量的值之外。
数列之裂项相消求和

=1
3
1(1- )
=39
1-
⇒a1=3,所以 an=3n.
(2)由已知得 bn=log332n+1=2n+1,所以 Tn=3+5+…+(2n+1)=n(n+2),
1
=
=
1
=
1 1
( +2) 2
1 1 1
-
2 1 3
-
1
+2
1
1
1
,所以 ∑ = + + +…+
1
=1
1 1 1
1 1 1
1 1
2 2 4
项和
.
解析 (1)因为 , 9 为函数 () = ( − 2)( − 99) 的两个零点且
(−1)
1+
2
= 2, 9 = 99 .又因为 =
= 3 ,所以数列 {
( − 1) = 2 + 1 .
1
(2)因为
所以
1
(
2
=
=
1
(
2
,所以 9
9×8
1+ 2
< 9 ,所以
× 2 = 99 ,解得
(2n+1)
1
1
-
1
1
解析∵an=
= 2n-1 2n+1 ,
(2n-1)
(2n+1) 2
1
1-
1
1
n
1
1
1 1
1
2n+1 =
∴Sn= [(1- )+( - )+…+(
-
)]=
.
2
裂项相消法求和附解析

.裂项相消法利用列相消法乞降,注意抵消后其实不必定只剩下第一和最后一,也有可能前面剩两,后边剩两,再就是通公式列后,有需要整前面的系数,使列前后等式两保持相等。
( 1 )假如 {a n }等差数列,11.( 11) ,11.(1 1 )a n a n 1 d a n a n 1a n a n 22d a n a n 2( 2 )111 n(n1) n n1( 3 )1k)1 ( 1n1)n(n k n k( 4 )1 1 (11)(2n 1()2n 1) 2 2n 1 2n 1( 5 )n(n12)1[1(n1] 1)( n2n(n 1)1)(n2)( 6 )1n1nn n1( 7 )11n k n) n n k(k1. 已知数列的前n和,.(1 )求数列的通公式;(2 ),求数列的前n和.[ 分析 ] (1)⋯⋯⋯⋯⋯①.,⋯⋯⋯⋯⋯②①②得 :即⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分在①中令, 有, 即,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分故2. 已知 {a n} 是公差 d 的等差数列,它的前n 和 S n, S4=2S 2 +8 .(Ⅰ)求公差 d 的;(Ⅱ)若 a 1 =1 , T n是数列 {} 的前 n 和,求使不等式T n≥全部的n ∈N* 恒建立的最大正整数m 的;[ 分析 ] (Ⅰ)数列{a n }的公差 d ,∵ S4 =2S 2 +8 ,即 4a 1 +6d=2(2a 1 +d) +8,化得:4d=8,解得 d=2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(Ⅱ)由 a 1=1 , d=2 ,得 a n =2n-1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分∴=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分.∴ T n ===≥ ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分又∵ 不等式n全部的 n ∈ N* 恒建立,T ≥∴ ≥,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分化得: m 2 -5m-6≤0 ,解得: -1 ≤m ≤6 .∴ m 的最大正整数 6 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分3.) 已知各均不同样的等差数列{a n } 的前四和S4 =14, 且 a 1 ,a3 ,a7成等比数列 . ( Ⅰ) 求数列 {a n } 的通公式 ;( Ⅱ)T n数列的前n和,求T2 012的.[ 答案 ] ( Ⅰ ) 公差 d, 由已知得(3 分)解得 d=1或d=0(舍去),∴a1=2. (5分)故 a n =n+1. (6分)(Ⅱ)==-,(8分).∴T n= - + - + ⋯+ -= -=. (10 分)∴T2012 =. (12分)4.) 已知数列 {a}是等差数列 ,- =8n+4, 数列 {|an |} 的前 n 和 S ,数列的前 nn n 和 T n .(1)求数列 {a n }的通公式 ;(2)求 : ≤T n <1.[ 答案 ] (1) 等差数列 {a n }的公差d,a n =a 1 +(n-1)d. (2分)∵- =8n+4,∴(a n+1 +a n )(a n+1 -a n )=d(2a 1 -d+2nd)=8n+4.当 n=1,d(2a 1 +d)=12;当 n=2,d(2a 1 +3d)=20.解方程得或(4分)知 ,a n =2n或a n=-2n都足要求.∴a n =2n或a n=-2n. (6分)(2) 明 : 由 (1) 知 :a n =2n或a n=-2n.∴|a n |=2n..∴S n =n(n+1). (8分)∴== -.∴T n=1- + - + ⋯+ -=1-. (10 分 )∴ ≤T n <1. (12分)5. 已知等差数列 {a n } 的公差2, 前 n 和 S n ,且 S1,S2 ,S4成等比数列 .( Ⅰ) 求数列 {a n } 的通公式 ;( Ⅱ) 令 b n =(-1)n-1,求数列 {b n }的前 n 和 T n .[ 答案 ] 看分析[ 分析 ] ( Ⅰ ) 因 S1 =a 1 ,S2=2a 1 +×2=2a1+2,S =4a1+×2=4a1+12,4由意得 (2a 1+2) 2 =a 1 (4a 1+12),解得 a 1 =1,因此 a n =2n-1.( Ⅱ)b n =(-1)n-1=(-1)n-1=(-1) n-1当 n 偶数 , T n =-=1-=.当 n 奇数 , T n =-.因此 T n =..+⋯+-+⋯-+++=1+=6.已知点的象上一点,等比数列的首,且前和( Ⅰ) 求数列和的通项公式;( Ⅱ) 若数列[ 分析 ]解: (Ⅰ)由于的前项和为,问,因此的最小正整数,是多少?因此,,,又数列是等比数列,因此,因此,又公比,因此,由于,又因此数列因此因此,因此,因此组成一个首项为 1 ,公差为,当时,.(6分),1 的等差数列,,,(Ⅱ) 由(Ⅰ ) 得,(10 分)由得,知足的最小正整数为 72.(12 分)7. 在数列,中,,,且成等差数列,成等比数列() .(Ⅰ)求,,及,,,由此概括出,的通项公式,并证明你的结论;(Ⅱ)证明:.[ 分析 ] (Ⅰ)由条件得,由此可得.猜想. ( 4分)用数学概括法证明:①当时,由上可得结论建立.②假定当时,结论建立,即,那么当时,.因此当时,结论也建立.由①②,可知对全部正整数都建立. ( 7 分)(Ⅱ)由于.当时,由(Ⅰ)知.因此.综上所述,原不等式建立. (12分)8. 已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求使建立的最小.的正整数的.[ 分析 ](1)当,,由,⋯⋯⋯⋯⋯⋯⋯⋯1分当,∴是以首,公比的等比数列.⋯⋯⋯⋯⋯⋯⋯⋯4分故⋯⋯⋯⋯⋯⋯⋯ 6 分(2 )由( 1)知,⋯⋯⋯⋯⋯⋯ 8 分,故使建立的最小的正整数的.⋯⋯⋯⋯⋯⋯12分.9.己知各均不相等的等差数列 {a n } 的前四和 S4=14 ,且 a 1, a 3, a 7成等比数列.(I)求数列 {a n } 的通公式;( II ) T n数列的前n和,若T n≤¨ 恒建立,求数的最小.[ 分析 ] 122.解得(Ⅰ)公差 d. 由已知得⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯,因此3 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(Ⅱ),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分恒建立,即恒建立10.又∴的最小⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯已知数列前和,首,且,,成等差数列.12 分.(Ⅰ)求数列的通公式;( II )数列足,求:,[分析] (Ⅰ)成等差数列,∴,,当,,两式相减得:.因此数列是首,公比 2 的等比数列,.(6分)( Ⅱ),(8分),.(12 分)11. 等差数列 {a n } 各均正整数, a 1 =3,前n和S n,等比数列{b n}中, b1=1,且b 2 S2 =64, {} 是公比64 的等比数列 .( Ⅰ) 求 a n与 b n ;(Ⅱ) 明: + +⋯+ <.. [ 答案 ] ( Ⅰ ){a n } 的公差d, {b n }的公比q, d 正整数 ,a n =3+(n-1) d,b n =q n-1.依意有①由(6+d) q=64知q正有理数,又由q=知, d 6 的因子 1, 2, 3, 6之一,解①得d=2, q=8.故 a n =3+2(n-1) =2n+1, b n =8n-1.( Ⅱ) 明 :S n =3+5+⋯+(2n+1) =n(n+2) ,因此+ +⋯+ =+++⋯+==<.12.等比数列{a n}的各均正数, 且 2a 1+3a 2 =1,=9a 2a 6.( Ⅰ) 求数列 {a n }的通公式 ;( Ⅱ) b n =log 3 a 1+log3a 2 +⋯+log 3 a n ,求数列的前n和.[ 答案 ] ( Ⅰ ) 数列 {a n} 的公比q.由=9a 2 a 6得=9 , 因此 q 2=.因条件可知q>0,故q=..由 2a 1 +3a 2 =1 得 2a 1 +3a 1 q=1,因此a1=.故数列 {a n } 的通公式 a n=.( Ⅱ) b n =log 3 a 1+log3a 2 +⋯+log 3 a n=-(1+2+⋯+n)=-,故=-=-2,+ +⋯+ =-2++⋯+=-.因此数列的前 n 和 -.13. 等差数列 {a n } 的各均正数,a 1=3, 其前 n 和 S n ,{b n } 等比数列 ,b 1 =1, 且b 2 S2 =16,b3 S3 =60.( Ⅰ) 求 a n和 b n ;(Ⅱ)求+ +⋯+.[ 答案 ] ( Ⅰ ) {a n }的公差d, 且 d 正数 ,{b n }的公比q,a n =3+(n-1)d,b n=q n-1 ,依意有 b 2 S2 =q ·(6+d)=16,b 3 S3 =q 2·(9+3d)=60,(2分).解得 d=2,q=2.(4分)故 a n =3+2(n-1)=2n+1,b n =2n-1.(6分)( Ⅱ)S n =3+5+⋯+(2n+1)=n(n+2),(8分)因此+ +⋯+=+++⋯+=(10 分)== -.(12 分 )14. 数列 {a n } 的前 n 和 S n足 :S n =na n -2n(n-1).等比数列{b n}的前n和T n,公比a 1 ,且 T5 =T 3 +2b 5 .(1)求数列 {a n }的通公式 ;(2) 数列的前n和M n,求:≤M n<.[ 答案 ](1) ∵T5 =T 3+2b 5 ,∴b 4+b 5=2b 5,即 (a 1 -1)b 4 =0, 又 b 4≠0, ∴a1 =1.n ≥2,a n =S n -S n-1 =na n -(n-1)a n-1 -4(n-1),即(n-1)a n-(n-1)a n-1 =4(n-1).∵n-1 ≥1, ∴a n -a n-1 =4(n≥2),.∴数列{a n }是以 1 首 ,4 公差的等差数列,∴a n =4n-3. (6分)(2)明:∵==·,(8 分)∴M n =++ ⋯+==< ,(10 分)又易知 M n增 ,故 M n≥M 1=.上所述 , ≤M n < . (12分)。
裂项相消法数列求和例题

裂项相消法数列求和例题
裂项相消法(Telescoping Series)是一种在数列求和中常用的技巧。
它适用于一些特定的数列,能够简化数列求和的过程。
下面我将通过一个例题来说明裂项相消法的应用。
考虑以下数列,\[1 \frac{1}{2} + \frac{1}{2} \frac{1}{3} + \frac{1}{3} \frac{1}{4} + \ldots + (-
1)^{n+1}\frac{1}{n}.\]
我们可以观察到每两项之间的部分可以相消,留下一个简化后的表达式。
具体来说,我们可以将相邻的两项相加,然后相减,这样中间的部分就会相消掉,只留下首尾两项的和。
这个过程可以写成如下形式:
\[S_n = \left(1 \frac{1}{2}\right) + \left(\frac{1}{2} \frac{1}{3}\right) + \left(\frac{1}{3} \frac{1}{4}\right) + \ldots + \left(\frac{1}{n-1} \frac{1}{n}\right) +
\left(\frac{1}{n} \frac{1}{n+1}\right).\]
观察上式,中间部分的项都相消了,只剩下了首项1和尾项\(-
1/n\)。
因此,数列的部分和可以简化为\[S_n = 1
\frac{1}{n+1}.\]
这个例子展示了裂项相消法在数列求和中的应用。
通过巧妙地调整数列中各项的组合方式,我们可以简化数列求和的过程,得到一个更加简洁的表达式。
希望这个例题能够帮助你理解裂项相消法的应用。
如果你还有其他关于数列求和或者裂项相消法的问题,欢迎继续提问。
数列裂项相消法例子

数列裂项相消法数列裂项相消法是一种常用的数学技巧,用于求解一些复杂的数列求和问题。
以下是几个例子,说明该方法的应用。
例1:已知等差数列{an},其中a1=1,d=2,求前n项和Sn。
解:首先,我们可以将等差数列的通项公式表示为an=a1+(n-1)d=1+2(n-1)=2n-1。
然后,我们可以将前n项和表示为Sn=a1+a2+...+an。
接下来,我们使用裂项相消法,将相邻两项相加,得到:Sn=(1+3)+(3+5)+...+[(2n-3)+(2n-1)]=2+4+ (2)=n(n+1)例2:已知等比数列{an},其中a1=1,q=2,求前n项和Sn。
解:首先,我们可以将等比数列的通项公式表示为an=a1*q^(n-1)=2^(n-1)。
然后,我们可以将前n项和表示为Sn=a1+a2+...+an。
接下来,我们使用裂项相消法,将相邻两项相减,得到:Sn=(1-2)+(2-4)+...+[2^(n-2)-2^(n-1)]+2^(n-1)=-1-1-...-1+2^(n-1)=-(n-1)+2^(n-1)=(2^n)-1-(n-1)=(2^n)-n例3:已知数列{an},其中an=n^2,求前n项和Sn。
解:首先,我们可以将数列的通项公式表示为an=n^2。
然后,我们可以将前n项和表示为Sn=a1+a2+...+an。
接下来,我们使用裂项相消法,将相邻两项相减,得到:Sn=(1^2-0^2)+(2^2-1^2)+...+[n^2-(n-1)^2]=1+3+5+...+(2n-1)=n^2通过以上例子可以看出,裂项相消法是一种非常实用的数学技巧,可以用于求解各种复杂的数列求和问题。
需要注意的是,在使用该方法时,需要根据具体的数列类型和题目要求来选择合适的裂项方式。
数列求和的“裂项相消法”讲解

创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*对于本题通项公式类型的数列,采用的“求前n项和”的方法叫“裂项相消法”——就是把通项拆分成“两项的差”的形式,使得恰好在求和时能够“抵消”多数的项而剩余少数几项。
很多题目要善于进行这种“拆分”请看几例:(1)本题:()()2211111nn n n nan n n n++===-++-+(变形过程中用了“分子有理化”技巧)得12233411111 11111 nn n nS n++ =++++==+ -----…【往下自己求吧!答案C 】(2)求和1111122334(1)nSn n=++++⨯⨯⨯+…解:通项公式:()()()1111111n n n a n n n n n n +-===-+++ 所以 111111*********n S n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭…1111n n n =-+=+(3)求和 1111377111115(41)(43)n S n n =++++⨯⨯⨯-+… 解:()()()()()()43411111141434414344143n n n a n n n n n n +--⎛⎫===- ⎪-+-+-+⎝⎭得 1111377111115(41)(43)n S n n =++++⨯⨯⨯-+ (11111111)143771111154143n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦… 1114343n ⎛⎫=- ⎪+⎝⎭ ()343nn =+(4)求和 1111132435(2)n S n n =++++⨯⨯⨯+… ()()()21111122222n n n a n n n n n n +-⎛⎫===- ⎪+++⎝⎭()()()()1111111113243546572112n S n n n n n n =++++++++⨯⨯⨯⨯⨯--++… 1111111111111112132435462112n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥--++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦…11111212n n =+--++ (仔细看看上一行里边“抵消”的规律 ) 311212n n =--++ 最后这个题,要多写一些项,多观察,才可能看出抵消的规律来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2012大纲卷高考理)已知等差数列{an}的前n项和为Sn,a5=5,
S5=15,则数列
an
1 an1
的前100项和为?( )
A100 101
B 99 101
C 99 100
D. 101 100
(2012大纲卷高考理)已知等差数列{an}的前n项和为Sn,a5=5,
S5=15,则数列
2(n 1)②
① ②得,an 2 n 1
= 2,所以an
2n ,因为a1 =2也适合上式,
所以an 2( n n N )
解: (1)因为a1
a2 2
a3 22
+ an 2 n 1
2n(n N )①
当n 1时,a1 2
当n
2时,a1
a2 2
a3 22
+
an 1 2n2
2(n 1)②
n
1
1
,
所以S 100
1
1 2
1 2
1 3
1 1 1 1 100 100 101 101 101
什么是裂项法?
把数列的通项拆成两项之差,则分母的 每一项都可以按此法拆成两项之差,并 在求和时一些正负项可以相互抵消,使 前n项和变成首尾有限项之和.
例1:已知数列的通项公式an
=
1 n(n
1 anan1
1 (2n1)(2n1)
1 2
(1 2n1
1) 2n1
Sn
b1
b2
bn
1 2
(1
1 3
1 3
1 5
…
1 2n1
1) 2n1
1 2
(1
1) 2n1
n 2n1
思考:已知数列的通项公式an
=
1 2n(n
3)
,求数列an
的前n项和为Sn
例2:设数列an 满足a1
a2 2
a3 22
+
(1 3
1) 7
(1 2n 1
2
n
1
1
1
)
1
1 2 n1 1
练
习
:
正
项
数
列
an的
前
n项
和
为
S
满
n
足
:
S2 n
(n 2
n
1) S n
(n 2
n)
0
(1 ) .求
数
列
an的
通
项
公
式
a
;
n
( 2)
令
b n
(n
n 1
2
)2
a
2 n
,数
列
bn的
前
n
项 和 为 Tn ,求 Tn.
练
习
:
正
项
数
列
an的
前
① ②得,an 2 n 1
= 2,所以an
2n ,因为a1 =2也适合上式,
所以an 2( n n N )
( 2) 由 ( 1) 得 an 2n, 所 以
bn
(an
an 1)(a n1
= 1)
(2 n
2n 1)(2 n1 1)
1 2n 1
2
1
n 1
1
,
Sn
b1
b2
bn
(1
1) 3
1,x2
b,由韦达定理得解之得
1 b
b
2
,
3 a
, ,
a
a 1b 2,an a1 (n 1)b 1 (n 1) 2 2n 1.
练习1:已知等差数列an的首项为a,公差为b,且不等式ax2 3x 2 0的
解集为(,1) U(b, ).(1)求数列an的通项公式;
(2)设数列满足bn
an 2n1
2n(n N )
(1)求数列an 的通项公式;
(2)设bn
(an
an 1)(an 1
1) , 求数列bn的前n项和Sn.
解: (1)因为a1
a2 2
a3 22
+ an 2 n 1
2n(n N )①
当n 1时,a1 2
当n
2时,a1
a2 2
a3 22
+
an 1 2n2
3)
,求数列an
的前n项和为Sn
例1:已知数列的通项公式an=n(n13),求数列an的前n项和为Sn
解:an
=
1 n(n
3)
=
1(1 3n
n
1
) 3
Sn
1 3
(1
1) 4
(1 2
1ห้องสมุดไป่ตู้ 5
(1 3
1) 6
(1 4
1) 7
( n
1 2
1) n 1
( 1 n 1
n
1
) 2
(1 n
n
1
3)
1 (1 1 1 1 1 1 ) 11 1 ( 1 1 1 ) 3 2 3 n 1 n 2 n 3 18 3 n 1 n 2 n 3
设an为公差大于零的等差数列,S n为数列an
的前n项和.已知S4 24, a2 a3 35
(1)求数列an 的通项公式.
(2)若bn
an
1 an1
, 求bn 在前n项和.
an
1 an1
的前100项和为?( )
A100 101
B 99 101
C 99 100
D. 101 100
【解析】选A 设数列{an}的公差为d,则a1+4d=5,
S5=5a1 +
54 2
d
15,得d=1,a1=1,故an=1+(n-1) 1=n,
所以
1 an an 1
1 n(n 1)
1 n
解:由S2 n
(n2
n 1)Sn
(n2
n)
0,得
Sn (n2 n) Sn +1 =0
由于an是正项数列,所以Sn 0, Sn n2 n
于是a1 S1 2, n 2时,an =Sn -Sn1 2n
所以an =2n.
( 2 )由
于
an= 2n,bn
n 1
(n
2
)
2
a
2 n
n 1 4 n 2 (n 2)2
练习1:已知等差数列an的首项为a,公差为b,且不等式ax2 3x 2 0的
解集为(,1) U(b, ).(1)求数列an的通项公式;
(2)设数列满足bn
1 anan1
,求数列bn的前项和Sn.
解:(1)ax2 3x 2 0的解集为(,1) U(b, ),根据不等式解集
的意义可知,方程的两根为x1
n项
和
为
S
满
n
足
:
S2 n
(n 2
n
1) S n
(n 2
n)
0
(1 ) .求
数
列
an的
通
项
公
式
a
;
n
( 2)
令
b n
(n
n 1
2
)2
a
2 n
,数
列
bn的
前
n
项 和 为 Tn ,求 Tn.
解:由S2 n
(n2
n 1)Sn
(n2
n)
0,得
Sn (n2 n) Sn +1 =0
由于an是正项数列,所以Sn 0, Sn n2 n 于是a1 S1 2, n 2时,an =Sn -Sn1 2n 所以an =2n.
1 1
1
16
n
2
(n
2 )2
Tn
1 16
(1
1 32
)
1 (22
1 42
)
1 (32
1 52
)
1 (n 1)2
1 (n 1)2
1 n2
1
(n
2 )2
1 16
1
1 22
1 (n 1)2
(n
1
2 )2
5 64
1 (n 1)2
1 (n 2)2
课时小结:
❖ 裂项相消的常规方法
课后作业
1 anan1
,求数列bn的前项和Sn.
解:(1)ax2 3x 2 0的解集为(,1) U(b, ),根据不等式解集
的意义可知,方程的两根为x1
1,x2
b,由韦达定理得解之得
1 b
b
2
,
3 a
, ,
a
a 1b 2,an a1 (n 1)b 1 (n 1) 2 2n 1.
(2)由(1)得,bn