定比分点的向量公式及应用

合集下载

定比分点坐标公式在解题中的应用

定比分点坐标公式在解题中的应用

定比分点坐标公式在解题中的应用河北 陈庆新许多同窗可能已经能够熟练地应用有向线段的定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x 及定比的坐标公式λ=x -x 1x 2-x ,求解有向线段的定比分点坐标及定点分有向线段所成的比了.事实上用这两个公式,还可巧妙地用于解决其它一些问题.如用得好,会使解题进程显得别具一格,简捷明快,充分展现咱们思维的独创性.下面举例说明其解题中的应用. 一、在几何问题中的应用(一)关于公式的正用例1. 证明:三角形内角平分线分其对边之比等于夹那个角的两边长度之比.证明:以ΔOAB 的极点O 为原点,∠AOB 的平分线OC 因此直线为x 轴,成立平面直角坐标系如下图,设|OA|=m ,|OB|=n ,∠AOC =∠COB =θ,那么A(m cos θ,m sin θ),B(n cos θ,-nsin θ),设C 点分−→−AB 的所成的比为λ,由定比分点的坐标公式:m sin θ-λn sin θ1+λ=0,解之得,λ=m n ,即|AC||CB|=|OA||OB|.点评:本例的结论在解题中有着很多的应用。

请看下面的例子。

例2.已知△ABC 三个极点的坐标别离为A(-1,1),B(3,1),C(2,5),角A 的内角平分线交对边于D ,那么向量AD −−→的坐标为 .解析:容易计算|AB −−→|=4,|AC −−→|=5。

依照三角形内角平分线的性质知:ABAC=BD DC ,于是可知点D 分有向线段BC −−→所成的比为45,从而由定比分点坐标公式可求得点D 的坐标(239,259),于是AD −−→=(329,169).例3.已知三点A(1,2)、B(4,1)、C(3,4),在线段AB 上取一点P ,使过P 且平行于BC 的直线把△ABC 的面积分成4∶5两部份,求点P 的坐标.A C OBx y解析:由题意得:ABCAPQ S S ∆∆=2⎪⎭⎫ ⎝⎛AB AP =49.因此AP AB =23,即−→−AP =2−→−PB ,λ=2,设P(x ,y ),那么x =1+2×41+2=3,y =2+2×11+2=43.因此P 点的坐标为(3,43).例4.已知在△ABC 中,BC =a ,CA =b ,AB =c ,且A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3),求△ABC 的内心坐标.解析:设I 为△ABC 的内心,AD 为∠A 的平分线,那么AB AC =BD DC =cb ,∴点D 分−→−BC 所成的比为cb ,∴由定比分点的坐标公式可求得D 点的坐标:x D =x 2+c b ×x 31+c b=bx 2+cx 3b +c,y D =by 2+cy 3b +c.又AI ID =AB BD =AC CD ,∴AI ID =AB +AC BD +CD=b +ca ,即点I 分−→−AD 所成的比b +c a . ∴xI=acb c b cx bx a c b x ++++⋅++1321=ax 1+bx 2+cx 3a +b +c ,同理yI=ay 1+by 2+cy 3a +b +c .∴△ABC 的内心坐标为(ax 1+bx 2+cx 3a +b +c ,ay 1+by 2+cy 3a +b +c).(二)公式的逆用例5.已知一次函数y =-mx -2图象与线段AB 有交点,假设A(-2,3)、B(3,2),求实数m 的取值范围.解析:设一次函数的图象直线l 交AB 于点P(x ,y )且−→−AP =λ−→−PB (λ≥0),当λ=0时,直线过A 点,那么由定比分点坐标公式知⎪⎪⎩⎪⎪⎨⎧++=++-=λλλλ123132y x ,又因P 在直线l 上,故m ·-2+3λ1+λ+3+2λ1+λ+2=0,解得:λ=2m -53m +4≥0,从而m ≥52或mACBDI<-43.又当点P 与点B 重合时符合题意,因此将B(3,2)代入直线l 的方程,求得m =-43.故m 的取值范围为m ≥52或m ≤-43.本例能够推行为:已知定点P 1(x 1,y 1)、P 2(x 2,y 2)及直线l :A x +B y +C=0,设直线l 与直线P 1P 2相交于点P ,求证:点P 分有向线段12P P −−→所成的比λ=-A x 1+B y 1+CA x 2+B y 2+C.略解:设点P 分有向线段12P P −−→所成的比λ,由定比分点坐标公式可求得点P的坐标为:121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,将点P 的坐标代入直线l 的方程:A 121x x λλ+++B 121y y λλ+++C=0,整理得:(A x 1+B y 1+C )+λ(A x 2+B y 2+C)=0,解之得:λ=-A x 1+B y 1+CA x 2+B y 2+C .点评:假设利用那个结论来解答一下例5,就显得超级简捷:设点P(x ,y )分有向线段AB −−→所成的比为λ,则λ=-A x 1+B y 1+CA x 2+B y 2+C =--2m +3+23m +2+2=2m -53m +4,因为P 为内分点,因此λ=2m -53m +4≥0,解之得:m ≥52或 m <-43,当直线l 过点B时,有m =-43.综上知:m ≥52或m ≤-43. 二、在代数问题中的应用 (一)、解不等式例6.解不等式2-x1+3x≥1.解析:令y =2-x 1+3x -1≥0,那么x =1-y 4+3y=14+3y 4×(-13)1+3y 4,且y ≥0,于是此问题可转化为:数轴上以P 1(14)为起点,P 2(-13)为终点,定比λ=34y ≥0时,求分点P 的坐标x 的范围问题.由λ=34y ≥0知点P 为有向线段−→−21P P 的内分点,或与点P 1重合,故应有-13<x ≤14.例7. 解不等式1<x 2-2x -1x 2-2x -2<2.解析:在数轴上取P 1,P ,P 2点依次表示1,x 2-2x -1x 2-2x -2,2,由−→−P P 1=λ−→−2PP 得λ=1x 2-2x -3,因为P 内分有向线段−→−21P P ,因此λ>0,即x 2-2x -3>0,解之即得原不等式的解集为:{x |x <-1或x >}3. (二)、求函数的值域例8. 求函数y =1+3x +11-x +1的值域.解析:令λ=-x +1,那么λ≤0,依题意有y =-1+λ(-3)1+λ,依照上式可知λ为点P(y )分有向线段−→−21P P 所成的比,其中P 1(1)、P 2(-3),于是函数y 为分点P 的坐标,由定比的坐标公式:λ=x -x 1x 2-x =y -1-3-y≤0,解之得y <-3或y ≥1.即原函数的值域为(-∞,-3)∪[1,+)∞.例9.求函数y =e x -1e x +1的反函数的概念域.解析:问题等价于求原函数的值域.令λ=e x >0,P 1(-1),P(y ),P 2(1),那么y =e x -1e x +1=-1+e x ·11+e x =-1+λ1+λ,∵λ>0,∴P 为有向线段−→−21P P 的内分点,∴-1<y <1,故原函数的值域为(-1,1),即其反函数的概念域为(-1,1).例10.求函数y =x 2-x +1x 2+x +1(1<x <)3的值域.解析:将原函数式变形为:y =x 2-x +1x 2+x +1=-1+(x +1x )·11+(x +1x ),设P 1(-1,0)、P 2(1,0),λ=x +1x ,其中1<x <3.由函数λ=x +1x 的单调性可求得,2<λ<103.又当λ=2时,y =13;λ=103时,y =713,因此所求函数的值域为(13,713). (三)、求函数的解析式例11.二次函数f (x )=ax 2+bx +c 的图像通过点(-1,0)且x ≤f (x )≤12(x 2+1),对一切实数x 都成立,求f (x ).解析:因为当x ∈R ,总有x ≤f (x )≤12(x 2+1),为此不妨设P 1(x )、P[f (x )]、P 2(x 2+12)为数轴上三点,那么−→−P P 1=λ−→−2PP ,其中λ≥0,于是由定比分点坐标公式得: f (x )= x +λ·x 2+121+λ,又因为y = f (x )通过点(-1,0),代入上式得,0=-1+λ1+λ,解得λ=1,再将λ=1代入f (x )= x +λ·x 2+121+λ得,f (x )= 14x 2+12x +14.(四)、用于处置三角问题例12. 证明:y =2sin x +12sin x -1的值不在区间(13,3)内.证明:①当sin x =1时,y =3∉(13,3); ②当sin x =-1时,y =-1∉(13,3);③当sin x ≠±1时,将P(y )视为数轴上的点A(13)与B(3)的分点,由定比的坐标公式:λ=x -x 1x 2-x ,得λ=y -133-y =sin x +13(sin x -1)<0,即点P(y )为有向线段−→−AB 的外分点,故有y ∉(13,3). 综上可知,y =2sin x +12sin x -1的值不在区间(13,3)内.(六)、用于解决数列问题数列是概念在正整数集上的特殊函数.而等差数列的通项公式为:a n =a 1+(n -1)d =dn +(a 1-d )为变量n 的一次函数(d ≠0),其图象为直线.故而有A(m ,a m )、B(n ,a n )、C(p ,a p )三点共线(其中a m 、a n 、a p 别离为项数是m 、n 、p 的数列中的项).为此咱们把C 视为−→−AB 的一个定比分点,那么有λ=p -mn -p,a p=a m +λa n 1+λ.例13 .在3与19之间插入31个数,使它们成等差数列,求通项公式. 解析:设通项为a n ,令点P(n ,a n )分A(1,a 1),B(33,a 33)两点连成的线段所成的比为λ,那么有λ=n -133-n ,又由题意,a 1=3,a 33=19,于是有a n =a 1+λa 331+λ=3+n -133-n ×191+n -133-n =12n +52. 即通项a n =12n +52.命题2. 设数列{ a n }是等差数列,S n 是数列的前n 项和,其中S P 、S m 、S n 知足λ=p -m n -p (λ≠-1),那么S m m =S p p+λS n n1+λ.例14. 设S n 是等差数列的前n 项和,已知S 10=100,S 100=10,求S 110. 解析:取λ=110-10100-110=-10,那么S 110110=S 1010+λS 1001001+λ =10010+(-10)101001+(-10) =-1,因此S 110=-110.。

巧用平面向量解立体几何问题

巧用平面向量解立体几何问题

=1+12(2cos60°cos40°)-12(cos40°-cos120°)=1+12cos40°-12cos40°+12cos120°=1-14=34.四、其它转化在求值问题中,除了重组角度转化之外,还应重视三角函数名,结构等方面的转化,如:①切割化弦;②降幂转化来计算.例6 求tan20°+4sin20°的值.分析:对此类问题一般先将切化弦:tan20°+4sin20°=sin20°cos20°+4sin20°=sin20°+4sin20°cos20°cos20°由于题目中出现了20°与40°的角,其和为60°的特殊角,这样就为转化带来了空间,而且方法不是唯一的.变式1 tan20°+4sin20°=sin20°+2sin40°cos20°=sin(60°-40°)+sin40°cos20°=sin60°cos40°-cos60°sin40°+2sin40°cos20°=32cos40°-12sin40°+2sin40°cos20°=32cos40°+32sin40°cos20°=3(12cos40°+32sin40°)cos20°=3sin70°cos20°=3.变式2 tan20°+4sin20°=sin20°+2sin(60°-20°)cos20°=sin20°+3cos20°-sin20°cos20°=3cos20°cos20°=3.以上几种形式的转化求值问题,只是在三角函数教学中比较普遍存在的转化思想的体现,在很多的具体求值中,还有些异于上述的其它方法.但任何问题的解决都是将未知转化为已知的过程,在三角函数求值中体现得更为突出.在教学中应提炼出来,以便于学生共享.黑龙江省农垦总局哈尔滨分局高级中学(150088)●韩晓辉巧用平面向量解立体几何问题 平面向量是解答立体几何问题的一种快速、简捷的运算工具.不少复杂的立体几何问题,引入平面向量后,通过将空间元素的位置关系转化为数量关系,将过去的形式逻辑证明转化为数值运算,即借助平面使解题模式化,用机械性操作把问题转化,因此,平面向量为立体几何代数化带来了极大的便利.下面,介绍平面向量在立体几何中的应用.例1 如图1,AB、CD为异面直线,CD<平面α,AB∥平面α,M、N分别是AC、BD的中点,求证MN∥平面α证明因为D<平面α,B∥平面α且··数理化学习(高中版)©:.:C A12AB 、CD 异面,所以在α内存在�a 、�b 使AB =�a ,CD =�b ,且�a 、�b 不共线,由M 、N 分别是AC 、BD 的中点,得MN =12(MB +MD )=12[(MA +AB )+(MC +CD )]=12[(MA +AB )+(MC +C D )]=12[-M C +AB +MC +CD ]=12[AB +CD ]=12(�a +�b ),即MN 与�a 、�b 共面.又因为�a 、�b 在平面α内,故MN ∥平面α或MN <平面α,而若MN <平面α,则A B 、C D 同在平面α内,与AB 、CD 为异面直线矛盾,所以MN ∥平面α.例2 正四面体V -ABC 的高VD 的中点为O ,AC 的中点为M.求证:A O 、BO 、CO 两两垂直.证明:设V A =�a,V �b =�b ,VC =�c ,正四面体棱长为m,则VD =13(�a +�b +�c ),A O =16(�b +�c -5�a ),BO =16(�a +�c -5�b ),CO =16(�a +�b -5�c ).因为AO ·BO =136(�b +�c -5�a )·(�a +�c -5�b )=0,所以AO ⊥BO,即AO ⊥BO,同理,AO ⊥CO ,BO ⊥C O.例3 如图3,在三棱锥S -A BC 中,∠S AB =∠S AC =∠AC B =90°,AC =2,SA =23,BC =13,S B =29.证明:(1)SC ⊥BC;(2)求异面直线SC 与AB 所成角α的余弦值.解:(1)证明:由题意,S ·B =,·B =,所以S ·B =(S +)·B =S A ·CB +AC ·C B =0,即SC ⊥BC .(2)因为SC ·AB =(S A +AC)·(AC +C B )=S A ·AC +SA ·C B +AC ·AC +AC ·CB =0+0+|AC |2+0=|AC |2=4,|SC |=(23)2+22=4,|A B |=(13)2+22=17,所以cosα=SC ·AB |SC |·|AB |=4417=1717.例4 如图3,已知平行六面体ABC D -A 1B 1C 1D 1的底面是菱形,且∠C 1CB =∠C 1C D=∠BC D =60°.(1)证明:C 1C ⊥BD ;(2)当CDCC 1的值为多少时,能使A 1C ⊥平面C 1BD 请给予证明.证明:(1)取C D 、CB 、CC 1为空间的一个基.因为∠C 1CB =∠BC D =60°,ABCD 是棱形,所以|C D |=|CB |,又因为BD =C D -CB,所以CC 1·BD =CC 1·(C D -CB )=CC 1·CD -CC 1·C B =0.所以C 1C ⊥BD.(2)设CDCC 1=λ(λ>0),即|C D |=λ|CC 1|时,能使A 1C ⊥平面C 1BD.因为C 1D ∩BD =D ,所以A 1C ⊥平面C 1BD ΖA 1C ⊥C 1D 且A 1C ⊥BD ΖA 1C ·C 1D =0且A 1C ·BD =0.因为=(D +B +),D =D ,<B,D >=6°,<B ,>=6°,··数理化学习(高中版)©A C 0AC C 0C C A AC C A 1C -C C CC 1C 1C -CC 1C C 0C CC 1022|CD|=|CB|,所以A1C·C1D=-(|C D|2-CD·CC1+ CB·CD-CB·CC1+CC1·CD-|CC1|2)=-(λ2|CC1|2+12λ2|CC1|2-12λ|CC1|2-|CC1|2)=-(32λ2-12λ-1)|CC1|2.所以A1C·C1D=0Ζ32λ2-12λ-1=0Ζ(λ-1)(3λ+2)=0,因为λ>0,所以λ=1.经验证,当λ=1时,A1C·C1D=0.即当C DCC1=1时,能使A1C⊥平面C1BD.前面这些题目若采用传统的立体几何方法证明,大多数不可避免地需要添加“辅助线”,然后再分别证明线线平行(垂直)或面面平行(垂直),而这些证法与用平面向量法相比,显然难度是大的.因此,平面向量确实是处理立体几何问题的重要而又简便的方法.作为平面向量的主要技巧,是将相关量表示为基向量的形式,把问题转化为平面向量的运算,这与把空间图形关系转化为平面图形关系的传统解法相比,显然是更高的思维方式,它抓住了空间的主要特征和其内在规律,使“纷繁复杂的现象变得井然有序.”河北省乐亭县第一中学(063600)●张云飞线段定比分点的向量公式及应用例举(一) 线段的定比分点公式是同学们所熟悉的重要公式,它在中学数学中有较为广泛的应用,近几年的高考也时有涉及,如2000年全国高考文理科倒数第一大题都直接考查了定比分点公式的运用.同学们所熟悉的是定比分点的坐标公式,其实,除此以外,定比分点公式还有其向量形式.运用定比分点的向量形式解题有时显得更为简洁明快.一、线段的定比分点向量公式设P1、P2是直线l上的两点,点P是l上不同于、的任意一点,O 是平面内任意一点,设O P1=�a,O P2=�b,P分有向线段P1P2所成的比为λ,则有O P=�a+λ�b1+λ.证明:如图1,因为P1P=O P-�a,.PP2=�b-O P,P1P=λPP2,所以O P-�a=λ(�b-O P)所以O P=�a+λ�b1+λ①公式①就是线段的定比分点向量公式.二、应用例1 在△ABC中,已知D是BC的中点, E是AD的中点,直线B E交AC于F,求证:CF =2FA.证明如图,在△B中,设BD=�,B=�,·3·数理化学习(高中版)©P1P2:2A Ca A b2。

定比分点的向量公式及应用

定比分点的向量公式及应用

定比分点的向量公式及应用向量是在数学中广泛应用的一种重要概念。

在向量中,可以定义加法、减法和数量乘法等运算,这些运算规则以及向量的模、方向等性质,使得向量在数学、物理和工程等领域的应用中具有重要的意义。

在计算机科学和计算机图形学中,向量被广泛用于表示三维空间中的点、方向和位移等概念。

这些向量通常表示为[x,y,z],其中x、y和z分别表示在三个坐标轴上的分量。

定比分点的向量公式可以用于计算两个点之间的中点、分点以及线段的长度。

假设有两个点A和B,它们的坐标分别为A(x1,y1,z1)和B(x2,y2,z2),我们可以使用如下的公式来计算两个点之间的中点:M=(A+B)/2其中M是点A和点B之间的中点,"+"表示向量的加法运算,"/"表示向量与标量的除法运算。

通过这个公式,我们可以计算出两个点之间的中点的坐标。

在计算两个点之间的分点时,可以使用类似的方法。

假设有一个分点P,它位于点A和点B之间的t比例处,我们可以使用如下的公式来计算分点的坐标:P=A+t*(B-A)其中t是一个介于0和1之间的比例值。

当t等于0时,分点P的坐标就是点A的坐标;当t等于1时,分点P的坐标就是点B的坐标。

通过改变t的值,我们可以在点A和点B之间找到任意位置的分点。

除了计算中点和分点之外,向量的长度也是一个重要的概念。

在三维空间中,向量的长度可以通过计算其模来获得。

一个向量的模定义为其各个分量的平方和的平方根。

对于一个三维向量V=[x,y,z],其模的计算公式如下:V, = sqrt(x^2 + y^2 + z^2)通过计算向量的模,我们可以获得向量的长度信息。

定比分点的向量公式在计算机图形学中有许多应用。

例如,在三维建模中,我们经常需要计算物体的表面上的点的位置和属性。

通过定比分点的向量公式,我们可以在物体的两个顶点之间找到任意位置的点,从而进行物体的细分或者其他形变操作。

此外,向量的线性插值也是一个重要的应用。

定比分点的向量公式及应用_慕泽刚

定比分点的向量公式及应用_慕泽刚

1 b= 4 a+ 5 b. 399
解 析 二 由 已 知 条 件 得 D 分 AB 所 成 的 λ=
5 , 则O!"D = 1 O!"A + λ !O"B = 4 a+ 5 b.

1+λ 1+λ 9 9
评注 用已知向量表示其他向量也是一个热
点, 常规的解法是利用三角形法则或平行四边形法
则, 而本题利用定比分点的向量公式, 过程相对较
B!"P = 1 P!"A = 1 !B"A = 1 a,

1+m
1+m
因为 Q 分!A"D 的比为 n, 则
人 教 大 纲
专 业S
精心策划
!B"Q = 1 !B"A + n !B"D = 1 a+ n ( a+b) =
1+n
1+n
1+n 1+n

a+ n b,

1+n
B!"R = 1 B!"P + λ B!"C =
在线段
AB 上 ,
且 AP PB
=m, Q 在 线 段
AD 上 ,

AQ QD
=n, BQ 与 CP 相交于 R, 求 PR 的值. RC



PR


解析 设!B"A =a, B!"C =b, P!"R =λR!"C ,
所以
PR RC
=λ,
由题意有!A"P =mP!"B , A!"Q =nQ!"D , 则
1+λ 1+n

n 1+m)(
1+n)
, 即 PR RC

向量的坐标表示及其运算

向量的坐标表示及其运算

向量的坐标表示及其运算【知识概要】1. 向量及其表示1)向量:我们把既有大小又有方向的量叫向量(向量可以用一个小写英文字母上面加箭头来表示,如a 读作向量a ,向量也可以用两个大写字母上面加箭头来表示,如AB ,表示由A 到B 的向量. A 为向量的起点,B 为向量的终点).向量AB(或a )的大小叫做向量的模,记作AB (或a ).注:① 既有方向又有大小的量叫做向量,只有大小没有方向的量叫做标量,向量与标量是两种不同的量,要加以区别;② 长度为0的向量叫零向量,记作00的方向是任意的 注意0与0的区别③ 长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都是只限制大小,不确定方向.例1 下列各量中不是向量的是( DA.浮力B.风速C.位移D.密度 例2 下列说法中错误..的是( A )A.零向量是没有方向的 B .零向量的长度为0C. D.例 3 把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是( D ) A. B . C. D.2)向量坐标的有关概念① 基本单位向量: 在平面直角坐标系中,方向分别与x 轴和y 轴正方向相同的两个单位向量叫做基本单位,记为i 和j .② 将向量a 的起点置于坐标原点O ,作OA a =,则OA 叫做位置向量,如果点A 的坐标为(,)x y ,它在x 轴和y 轴上的投影分别为,M N ,则,.OA OM ON a OA xi y j =+==+③ 向量的正交分解在②中,向量OA 能表示成两个相互垂直的向量i 、j 分别乘上实数,x y 后组成的和式,该和式称为i 、j 的线性组合,这种向量的表示方法叫做向量的正交分解,把有序的实数对(,)x y 叫做向量a 的坐标,记为a =(,)x y .一般地,对于以点111(,)P x y 为起点,点222(,)P x y 为终点的向量12PP ,容易推得122121()()PP x x i y y j =-+-,于是相应地就可以把有序实数对2121(,)x x y y --叫做12PP 的坐标,记作12PP =2121(,)x x y y --. 3)向量的坐标运算:1122(,),(,)a x y b x y ==,R λ∈则1212121212(,);(,);(,)a b x x y y a b x x y y a x x λλλ+=++-=--=. 4) 向量的模:设(,)a x y =,由两点间距离公式,可求得向量a 的模()norm .22a x y =+.注:① 向量的大小可以用向量的模来表示,即用向量的起点与终点间的距离来表示; ② 向量的模是个标量,并且是一个非负实数.例4 已知点A 的坐标为(2,0),点B 的坐标为(3,0)-,且4,3AP BP ==,求点P 的坐标.解:点P 的坐标为612(,)55- 或 612(,)55--. 例5 已知2(4,3),2(3,4)a b a b +=--=,求a 、b 的坐标. 解:(1,2),(2,1)a b =-=-- 例6 设向量,,,,a b c R λμ∈,化简:(1)()()()()a b c a b c b c λμμλμλ+--+-+--; (2)2()(22)2a b c a b c λμλμλμμ+--++. 解:都为0.2. 向量平行的充要条件平行向量:方向相同或相反的非零向量叫平行向量(我们规定0与任一向量平行). 已知a 与b 为非零向量,若1122(,),(,)a x y b x y ==,则//a b 的充要条件是1221x y x y =,所以,向量平行的充要条件可以表示为:1221//().a b a b x y x y λλ⇔=⇔=其中为非零实数例7 已知向量(2,3)a =-,点(2,1)A -,若向量AB 与a 平行,且213AB =,求向量OB 的坐标.解:OB 的坐标为(6,7)- 或 (2,5)-.3. 定比分点公式1)定比分点公式和中点公式① 12,P P 是直线l 上的两点,P 是l 上不同于12,P P 的任一点,存在实数λ, 使P P 1=2PP λ,λ叫做点P 分21P P 所成的比,有三种情况:(内分) λ>0 (外分) λ<-1 (外分) -1<λ<0② 已知111(,)P x y 、222(,)P x y 是直线l 上任一点,且P P 1=2PP λ(,1)R λλ∈≠.P 是直线12P P 上的一点,令(,)P x y ,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,这个公式叫做线段12P P 的定比分点公式,特别地1λ=时,P 为线段12P P 的中点,此时121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩,叫做线段12P P 的中点公式.注:① 12PP PP λ=⋅可得12PP PP λ=±⋅;② 当1λ=-时,定比分点的坐标公式121x x x λλ+=+和121y y y λλ+=+显然都无意义,也就是说,当1λ=-时,定比分点不存在2)三角形重心坐标公式设ABC ∆的三个点的坐标分别为112233(,),(,),(,)A x y B x y C x y ,G 为ABC ∆的重心,则12312333G G x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩例8 在直角坐标系内12(4,3),(2,6)P P --,点P 在直线12P P 上,且122PP PP =,求出P 的坐标.解:当P 在12P P 上时,(0,3)P ;当P 在12P P 延长线上,(8,15)P -.例9 已知(3,1),(4,2)A B ---,P 是直线AB 上一点,若23AP AB =,求点P 的坐标. 解: 注意定比分点的定点,可得155(,)22P --.*方法提炼*几个重要结论1. 若,a b 为不共线向量,则a b +,a b -为以,a b 为邻边的平行四边形的对角线的向量;2. 22222()a b a b a b ++-=+;3. G 为ABC ∆的重心0GA GB GC ⇔++=123123(,)33x x x y y y G ++++⇔ 112233[(,),(,)(,)]A x y B x y C x y【基础夯实】1. 判断下列命题是否正确,若不正确,请简述理由. ①向量AB 与CD 是共线向量,则A 、B 、C 、D④四边形ABCD 是平行四边形的充要条件是AB =DC ⑤模为0⑥共线的向量,若起点不同,则终点一定不同.解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB 、AC 在同一直线上.②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. ④、⑤正确.⑥不正确.如图AC 与BC 共线,虽起点不同,但其终点却相同.评述:本题考查基本概念,对于零向量、单位向量、平行向量、共线向量的概念特征及相互关系必须把握好.2.下列命题正确的是( CA.a与b共线,b与c共线,则a与cB.C.向量a与b不共线,则a与bD.有相同起点的两个非零向量不平行3. 在下列结论中,正确的结论为( D (1)a ∥b 且|a |=|b |是a =b(2)a ∥b 且|a |=|b |是a =b(3)a 与b 方向相同且|a |=|b |是a =b(4)a 与b 方向相反或|a |≠|b |是a ≠bA. (1)(3)B. (2)(4)C. (3)(4)D. (1)(3)(4) 4. 已知点A 分有向线段BC 的比为2,则在下列结论中错误的是( D )A. 点C 分AB 的比是-31B.点C 分BA 的比是-3C 点C 分AC 的比是-32D 点A 分CB 的比是25. 已知两点1(1,6)P --、2(3,0)P ,点7(,)3P y -分有向线段21P P 所成的比为λ,则λ、y的值为( C )A -41,8 B.41 C -41,-8 D 4,816. △ABC 的两个顶点A(3,7)和B(-2,5),若AC 的中点在x 轴上,BC 的中点在y 轴上,则顶点C 的坐标是( A )A (2,-7)B (-7,2)C (-3,-5)D (-5,-3)7. “两个向量共线”是“这两个向量方向相反”的 条件. 答案:必要非充分8. 已知a 、b 是两非零向量,且a 与b 不共线,若非零向量c 与a 共线,则c 与b 必定 . 答案:不共线9. 已知点A(x,2),B(5,1),C(-4,2x)在同一条直线上,那么x=答案:2或2710. △ABC 的顶点A(2,3),B(-4,-2)和重心G(2,-1),则C 点坐标为 答案:(8,-4)11. 已知M 为△ABC 边AB 上的一点,且18AMC ABC S S ∆∆=,则M 分AB 所成的比为 答案:71【巩固提高】12. 已知点(1,4)A =--、(5,2)B ,线段AB 上的三等分点依次为1P 、2P ,求1P 、2P 点的坐标以及,A B 分21P P 所成的比λ.解:P 1(1,-2),P 2(3,0),A 、B 分21p p 所成的比λ1、λ2分别为-21,-213. 过1(1,3)P 、2(7,2)P 的直线与一次函数5852+=x y 的图象交于点P ,求P 分21P P 所成的比值解:12514. 已知平行四边形ABCD 一个顶点坐标为A(-2,1),一组对边AB 、CD 的中点分别为M(3,0)、N(-1,-2),求平行四边形的各个顶点坐标 解:B(8,-1),C(4,-3),D(-6,-1)15. 设P 是ABC ∆所在平面内的一点,2BC BA BP +=,则( B ) (A). 0PA PB += (B). 0PC PA += (C). 0PB PC += (D). +0PA PB PC +=16. 若平面向量,a b 满足1,a b a b +=+平行于x 轴,(2,1)b =-,则(1,1)(3,1)a =--或.17.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点.若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-6,21)B .(-2,7)C .(6,-21)D .(2,-7)解析:选A.AC →=2AQ →=2(PQ →-PA →)=(-6,4),PC →=PA →+AC →=(-2,7),BC →=3PC →=(-6,21).18.已知O 为坐标原点,向量(2,),(,1),(5,1).OA m OB n OC =-==-若A,B,C 三点共线,且2m n =,求实数,m n 的值19.已知点A(3,0),B(-1,-6), P 是直线AB 上一点,且1||||3AP AB =,求点P 的坐标.20. 已知向量(cos ,sin )m θθ=和(2sin ,cos ),(,2)n θθθππ=-∈,且8||25m n +=,求cos()28θπ+的值。

高三数学线段的定比分点

高三数学线段的定比分点
线段的定比分点与平移
高三备课组
一、基础知识
1、 线段的定比分点
(1)定义
设P1,P2是直线L上的两点,点P是L上不同 于P1,P2的任意一点,则存在一个实数 , P 使p1 p pp , 所 2 叫做点P分有向线段 1P 2 成的比。
0 ;当点P在线 当点P在线段 P 上时, 1P 2 <0 段 P1 P2 或 P2 P1 的延长线上时,
(2)定比分点的向量表达式:
点P分有向线段 P 所成的比是 ,则 1P 2 1 OP OP1 OP2 1 1 (O为平面内任意点)

(3)定比分点的坐标形式
x1 x 2 x 1 y y 2 y 1 1
,

(4)中点坐标公式
当 =1时,分点P为线段的中点,即有
练习:
若直线x+2y+m=0,按向量a 1,2平移后与圆C:
x 2 y 2 2x 4 y 0
相切
则实数m的值等于
例5.是否存在这样的平移,使抛物线: y x 2 平移后 过原点,且平移后的抛物线的顶点和它与 x 轴的两个 交点构成的三角形面积为 1 ,若不存在,说明理由;若 存在,求出函数的解析式。 例4.设函数
x1 x y y 1 x2 2 y2 2
ABC 的重心坐标公式: (5)
x A x B xC x 3 y A y B yC y 3
2、平移
(1)图形平移的定义
设F是坐标平面内的一个图形,将图上的所有 点按照同一方向移动同样长度,得到图形 F’ , 我们把这一过程叫做图形的平移。
A(4,1), B(3,4), C (1,2) , BD 是角 ABC 的平分 线,求点D的坐标及BD的长。

平面向量广义定比分点公式_袁微维

平面向量广义定比分点公式_袁微维

○袁微维平面向量广义定比分点公式 在学习平面向量知识时,自然会接触到定比分点的概念及其计算公式,推广线段的定比分点,更有助于使用向量工具处理数学问题.定理:若在■ABC中,点E、F分别分向量AB、AC所成的比为λ、μ,且BF交CE于点M,则A=λ1+λ+μA+μ1+λ+μA证明:如图1,因为点B、M、F共线,所以A=(1-t)A+tA.同理A=(1-t′)A+t′A(这是因为C、M、E三点共线).所以(1-t)A+tA=(1-t′)A+t′A①因为E分A所成的比为λ,即A=λE,所以AE=λ1+λAB.②同理A=μ1+μA.③(这是因为F分AC所成的比为μ)将②、③代入①得(1-t)AB+tμ1+μA=(1-t′)A+t′λ1+λA因为向量A、A不共线所以1-t=t′λ1+λtμ1+μ=1-t′消去t′可得t=1+μ1+λ+μ.所以AM=(1-t)AB+tμ1+μAC=(1-1+μ1+λ+μ)AB+1+μ1+λ+μ·μ1+μA=λ1+λ+μA+μ1+λ+μA.例1 如图2,已知■ABC中,点P在■ABC内,且3AP+4BP+5CP=O,延长AP交BC于点D,设A=,A=,试用、表示AD.解:由3A+4B+5C= 3(A+BP)+4BP+5(CB+BP)=O BP=312BA+512BC.设CP交AB于点E,BE=λEA,BD=μD,根据广义定比分点公式,得λ1+λ+μ=312μ1+λ+μ=512λ=34μ=54从而BD=54DC AD-AB=54(AC-A) A=49+59(已知A=,A=),例2 已知■ABC的三边a、b、c成等差数列,且a<b<c,G为■ABC的重心,1为■ABC的内心,O是平面上任一点.·17·数理化学习(高中版)求证:(1)=aOA+bOB+cOCa+b+c;(2)GI∥AC.证明:(1)如图3,设角B、C的平分线BE、CF分别交AC、AB于点E、F,由内角平分线定理知λ=AFFB=ba,μ=AEEC=ca,从而1+λ+μ=a+b+ca.根据广义定比分点公式=λ1+λ+μA+μ1+λ+μA =ba+b+cA+ca+b+cA O-O=ba+b+c(OB-OA)+ca+b+c(OC-OA)O=aO+bO+cOa+b+c(*)(2)如图4,设■ABC的中线BM、CN,则BM交CN于点G,从而λ′=ANNB=1,μ′=AMMC=1.1+λ′+μ′=3.根据广义定比分点公式A=λ′1+λ′+μ′A+μ′1+λ′+μ′A=13A+13A.所以O-O=13(OB-OA)+13(OC-O),所以O=13O+13O+13O(**)将式(*)与(**)相减,得OI-OG=(aa+b+c-13)OA+(ba+b+c-13)OB+(ca+b+c-13)OC.因为a<b<c且a、b、c成等差数列,所以不妨设公差为d,则d=c-b=b-a>0,所以O-O=d3b(OC-OA),所以GI=d3bAC.显然,内心I不在AC上,所以GI∥AC,(注:式(**)也可以从重心方程GA+GB+GC=0得到)例3 设D、E■ABC的边AB、AC上,DC与EB交于F,且AD=AE,FB=FC,求证:AB=AC.证明:如图5,设■ABC的角A、B、C所对边分别为a、b、c,令A=λD,A=μE,则AD=λ1+λAB,AE=μ1+μAC.又已知 A = A ,所以λc-μb=λμ(b-c).①根据广义定比分点公式得A=λ1+λ+μA+μ1+λ+μA,从而B=BA+μBC1+λ+μ,C=CA+λCB1+λ+μ.因为已知B2=CF2·18·数理化学习(高中版)所以(B+μB)2=(CA+λCB)2所以c2+μ2a2+2μB·B=b2+λ2a2+2λC·C.在■ABC中,运用余弦定理可得2B·B=a2+c2-b2,2C·C=a2+b2-c2,所以c2+μ2a2+μ(a2+c2-b2)=b2+λ2a2+λ(a2+b2-c2),所以(1+λ+μ)[(μ-λ)a2+(c2-b2)]=0.所以(μ-λ)a2=b2-c2②若b>c,则由②知μ>λ,所以μb>λc.由①可得 λμ(b-c)<0,所以b<c,矛盾.所以b≤c.同理c≤b于是b=c,即AC=AB.以上几例充分说明广义定比分点公式是平面向量内容中较重要的向量方程,掌握定比分点推广式有利于提高解题能力.贵州省安顺市双阳中学(561018)○梁克强以正方体为载体研究空间角 正方体的六个面都是正方形,有众多相等的线段和角,还有很多平行和垂直以及对称的条件,这些都为研究空间角提供了有效的依据,只要很好的运用,空间角的问题是不难解决的.一、垂连求角正方体有很多垂直关系,只要善于利用,就能将空间角转化为平面角.例1 正方体ABCD-A1B1C1D1的棱长是1,P是AD的中点,求二面角A-BD1-P的大小.解:如图1,过P作BD1及AD1的垂线,垂足分别是E、F,连结EF.由AB⊥平面AD1,得AB⊥PF,又PF⊥AD1,所以PF⊥平面ABD1,而PE⊥BD1,故EF⊥BD1,∠PEF为所求二面角平面角.Rt■ADD1∽■AFP,利用相似比得PF=24.在■PBD1中,PD1=PB=52,因为PE⊥BD1,所以BE=32.在Rt■PEB中,PE=PB2-BE2=22.在Rt■PFE中,sin∠PEF=PFPE=12,所以∠PEF=π6.例2 如图2,在棱长为1的正方体ABCD-A1B1C1D1中,P是侧棱CC1上的一点,CP=m,试确定m,使得直线AP与平面BDD1B1所成角的正切值为32.解:连AC,设AC∩BD=0.AP与平面BDD1B1交于G,连OG,由PC∥面BDD1B1,得OG∥PC,故OG=12PC=m2.又AO⊥DB,AO⊥BB1,从而AO⊥面BDD1B1,故∠AGO为直线AP与平面BDD1B1所成角.在Rt■AOG中,tan∠AGO=2m=32,所以m=13.故当m=13时,AP与平面BDD1B1所成角正切值为32.二、射影法正方体的六个面都是正方形,有很多对称·19·数理化学习(高中版)。

定比分点

定比分点

[编辑本段]定比分点定义对于轴上两个已给的点P,O,它们的坐标分别为X1,X2,在轴上有一点L,可以使PL/LO等于已知常数λ。

即PL/LO=λ,我们就把L叫做有向线段PO的定比分点。

若设L的坐标为X,则X=(X1+λX2)/(1+λ),Y=(Y1+λY 2)/(1+λ)[编辑本段]定比分点相关概念1.线段的定比分点及λ:P1,P2是直线L上的两点,P是L上不同于P1,P2的任一点,存在实数λ,使向量P1P=λ向量PP2,λ叫做点P分P1P2所成的比。

P点位置与λ的关系以P1P2中点为原点,x轴表示P相对P1 P2的位置,y轴表示λ的取值根据右图,从左往右看,λ 的取值有以下五种情况①P在P1左边(P在向量P1P2反向延长线上),λ∈(-1,0)②P与P1重合,λ=0③P在P1与P2之间(P在向量P1P2上),λ∈(0,+∞)*i. P在P1与原点之间,即P1P<PP2,λ∈(0,1)*ii. P与原点重合,即P1P=PP2,λ=1*iii. P在原点与P2之间,即P1P>PP2,λ∈(1,+∞)④P与P2重合,λ∈Φ⑤P在P2右边(P在向量P1P2正向延长线上),λ∈(-∞,-1)2 定比分点公式:若设点P1(x1,y1),P2(x2,y2),λ为实数,且向量P1P=λ向量PP2即P1P=λPP2由向量的坐标运算,得P1P=(x-x1,y-y1),PP2=(x2-x, y2-y)∴(x-x1,y-y1)=λ(x2-x, y2-y)∴定比分点公式为,λ=(x-x1)/(x2-x)λ=(y-y1)/(y2-y)3.定比分点坐标公式:∴λ=(x-x1)/(x2-x)∴λx2-λx=x-x1λx2+x1=λx+x得,x=(λx2+x1)/(λ+1)同理,y=(λy2+y1)/(λ+1)注:当λ=1时,即中点坐标公式。

定比分点定理目录[隐藏]证明定比分点补充公式补充公式证明已知线段PQ上有一点T,且PT/PQ=a,AB是与PQ无交点的一条线段,则S(AT B)=a*S(ABQ)+(1-a)*S(ABP)其中S(AQB)表示AQB的面积,以此类推。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定比分点的向量公式及应用浙江省永康市古山中学(321307) 吴汝龙定比分点的向量公式:在平面上任取一点O ,设a OP =1,b OP =2,若21PP P P λ=,则b a OP λλλ+++=111。

特别地,当1=λ时,即P 为线段21P P 的中点,则有b a OP 2121+=。

用定比分点的向量公式,可使有些问题的解决更简洁。

下面举几例说明。

一、求定比λ的值:例1:已知A (1,2),B (1,3-)及直线l :54-=x y ,直线AB 与l 相交于P 点,求P 点分AB 的比λ。

解:设),(y x P ,则由PB AP λ=,得)11,131()1,3(1)1,2(11),(λλλλλλλ+-++=-+++=y x , 又∵P 点在直线l 上, ∴51)31(411-++=+-λλλλ, ∴31=λ。

例2:如图所示,在ABC ∆中,D 为边BC 上的点,且DC k BD =,E 为AD 上的一点,且EA l DE =,延长BE 交AC 于F ,求F 分有向线段CA 所成的比λ。

解:∵FA CF λ=,∴BA BC BF λλλ+++=111, 又EA l DE =,∴BA l lBD l BE +++=111,而BC kkDC k BD +==1, ∴BA llBC k l k BE ++++=1)1)(1(,∵B 、E 、F 共线,∴设BF t BE =,而BA tBC t BF t λλλ+++=11 ∴BA tBC t BA l l BC k l k λλλ+++=++++111)1)(1(FEDCBA∴⎪⎪⎩⎪⎪⎨⎧+=+++=+llt k l k t11)1)(1(1λλλ,解得k k l )1(+=λ。

二、求直线上点的坐标例3:已知点)1,1(--A ,)5,2(B ,点C 为直线AB 上一点,且BC AC 5-=,求C 点的坐标。

分析:先求出C 点分AB 的λ的值,再利用定比分点的向量公式求出点C 的坐标。

解:∵BC AC 5-=,∴5==CBAC λ,利用定比分点的坐标公式有)4,23()5,2(65)1,1(616561=+--=+=OB OA OC 。

∴C 点的坐标为)4,23(。

例4:已知)3,2(A ,)5,1(-B ,且AB AC 31=,AB AD 3=,求点C ,D 的坐标。

分析:由题设,运用定比分点的向量公式,可以求得点C ,D 的坐标。

解:设),(11y x C ,),(22y x D , ∵AB AC 31=,∴211==CB λ, ∴根据定比分点的向量公式有OB OA OC 211111λλλ+++=, ∴)311,1()5,1(31)3,2(32)5,1(21121)3,2(2111),(11=-⨯+⨯=-⨯++⨯+=y x同理由AB AD 3=得232-==DBλ,∴根据定比分点的向量公式有OB OA OC 211111λλλ+++=, ∴)9,7()5,1(3)3,2(2)5,1(23123)3,2(2311),(22-=-⨯+⨯-=-⨯+-+⨯-=y x∴点C 的坐标为)311,1(,D 点的坐标为)9,7(-。

三、证明三点共线例5:已知点),(c b a A +,),(a c b B +,),(b a c C +,求证:A 、B 、C 三点共线。

证明:设),(/y c C 在AB 上,/C 分AB 的比为λ,则),(1),(11111/a c b c b a OB OA OC +++++=+++=λλλλλλ)1,1(λλλλλ++++++=c c b a b a∴⎪⎪⎩⎪⎪⎨⎧++++=++=λλλλλ11c c b a y b a c ,解得⎪⎩⎪⎨⎧+=--=b a y b c c a λ∴),(/y c C 与),(b a c C +重合, 由题设知C 在AB 上, ∴A 、B 、C 三点共线。

四、求字母系数范围例6:已知点)3,3(A ,)5,1(-B ,一次函数1+=kx y 的图象与线段AB 有公共点,求实数k 的取值范围。

解:设),(y x P 为一次函数图象与线段AB 的交点,把P 看作AB 的定比分点,其定比为λ,则有0≥λ,由定比分点公式有)153,13()5,1(1)3,3(11111λλλλλλλλλλ+++-=-+++=+++=OB OA OP , 而P 点在函数1+=kx y 图象上,∴113153++-⋅=++λλλλk , 解得423+-=k k λ,∴0423≥+-k k ,即32≥k 或4-<k , 而当P 点与B 重合时,4-=k 也适合。

∴4-≤k 或32≥k 。

例7:若直线2--=ax y 与连接)1,2(-P ,)2,3(Q 两点的线段有公共点,求实数a 的取值范围。

解:当直线过P 点时,23=a ,直线过Q 点时,34-=a , 当直线与线段PQ 的交点在P 、Q 之间时,设这个交点),(y x M 分PQ 的比为λ, 由定比分点公式有)121,132()2,3(1)1,2(11111λλλλλλλλλλ++++-=++-+=+++=OQ OP OM , ∴M 点的坐标为)121,132(λλλλ++++-,又∵直线过点M ,∴2132121-++-⨯-=++λλλλa , ∴4332+-=a a λ,又∵点M 在线段PQ 上知0>λ, ∴04332>+-a a ,解得34-<a 或23>a , ∴34-≤a 或23≥a 。

五、解决平面几何问题:例8:如图所示,在平行四边形ABCD 中,P 点在线段AB 上,且m PBAP=,Q 在线段AD 上,且n QD AQ =,BQ 与CP 相交于R ,求RCPR的值。

分析:取两基底,由定比分点的向量公式将有关向量用基底表示出来,再求解。

解:设a BA =,b BC =,RC PR λ=,∴λ=RCPR , 由题意有PB m AP =,QD n AQ =,则a m BA m PA m BP 11111+=+==, b nna b a n n a n BD n n BA n BQ ++=++++=+++=1)(111111,b a m BC BP BR λλλλλλ++++=+++=1)1)(1(1111, 又B 、R 、Q 三点共线,∴存在实数t 使BR t BQ =, ∴b nna b t a m t ++=++++11)1)(1(λλλ,RQ PDCB A∴1)1)(1(=++m t λ,且nnt +=+11λλ。

∴)1)(1(n m n ++=λ,即)1)(1(n m nRC PR ++=。

例9:设直角三角形AOB斜边的三等分点为D 、E 。

求证2222||32||||||AB DE OE OD =++。

分析:以O 为原点,OA 为x 轴正向建立直角坐标系,设)0,(a OA =,),0(b OB =,用a ,b 表示相关线段的长度,从而证明命题。

证明:以直角顶点O 为原点,直角边OA 、OB 所在直线为x 轴,y 轴建立直角坐标系,如图设点)0,(a A ,点),0(b B ,),(y x D 则D 分AB 的比为21=λ, ∴由定比分点的向量公式得)31,32(),0(21121)0,(2111111b a b a OB OA OD =+++=+++=λλλ∴点D 坐标为)31,32(b a同理点E 坐标为)32,31(b a ,由两点间距离公式,得994||222b a OD +=,949||222b a OE +=, 99||222b a DE +=,∴)(323232||||||2222222b a b a DE OE OD +=+=++, 而222||AB b a =+,∴2222||32||||||AB DE OE OD =++。

例10:如图,已知ABC ∆,求证:ABC ∆的三条中线AD 、BE 、CF 相交于一点G ,且32===CF CG BE BG AD AG 。

分析:几何问题应用向量来解决,关键是将有关线段设为Y XE DBAOG FEDCBA向量,可以在平面内任取一点O 为向量的始点,将OA 、OB 、OC 设出。

证明:如图,在平面内任取一点O ,设a OA =,b OB =,c OC =,又设1G 为AD 上一点,且D G AG 112=,则OD OA OG 2122111+++=OD a OD OA 32313231+=+= ∵D 为BC 中点,∴)(21c b OD +=,∴)(31)(2132311c b a c b a OG ++=+⨯+=,同样,若设E G BG 222=,F G CG 332=,则可证得)(312c b a OG ++=,)(313c b a OG ++=∴321OG OG OG == ∴1G 、2G 、3G 三点重合。

设交点为G ,则有32===CF CG BE BG AD AG 。

O G FEDCB A。

相关文档
最新文档