立体几何(向量法)—找点难(定比分点公式)

合集下载

奥数解谜立体几何中的难题

奥数解谜立体几何中的难题

奥数解谜立体几何中的难题立体几何是奥数中的一个重要分支,它与点、线、面相比,更加复杂和有趣。

解决立体几何难题需要学生具备良好的想象力、逻辑思维和空间想象能力。

本文将重点探讨奥数解谜立体几何中的一些难题,以及解决这些难题的方法。

第一部分:平面与立体的关系在立体几何中,我们经常需要将二维平面转化为三维立体,并理解它们之间的关系。

其中一个经典的难题是给定一个底面视图和一个侧面视图,要求确定对应的立体图形。

解决这个难题可以按照以下步骤进行:1. 观察底面视图和侧面视图,找出每个图形的特点和规律;2. 根据底面视图中的点、线、面的位置,将其转化为立体中的点、线、面;3. 根据侧面视图中的高度信息,确定立体图形的高度;4. 综合底面和侧面的信息,确定立体图形的形状和大小。

第二部分:直方体的拼装问题直方体是解谜立体几何中常见的图形。

一个常见的难题是给定一些尺寸相同的立方体块,要求用这些块拼出一个大的立方体。

解决这个难题可以按照以下步骤进行:1. 观察每个立方体块的形状和特点,找出它们之间的联系;2. 根据大立方体的尺寸确定需要多少个立方体块;3. 将每个立方体块按照规律进行拼装,注意保持块与块之间的相邻面接触。

第三部分:平行四边形的性质在立体几何中,平行四边形是常见的一个图形。

一个经典的难题是给定一个平行四边形,要求根据已有信息计算出其他未知的性质。

解决这个难题可以按照以下步骤进行:1. 观察平行四边形的特点,如平行边、角的性质等;2. 利用平行四边形的性质求解已知信息;3. 根据已知信息推导出其他未知的性质。

第四部分:圆锥体与圆台的体积计算圆锥体和圆台是奥数解谜立体几何中的另一个重要内容。

一个常见的难题是给定一个圆锥体或圆台,要求计算其体积。

解决这个难题可以按照以下步骤进行:1. 观察圆锥体或圆台的特点,了解它们的形状和性质;2. 根据已知信息计算出底面的面积和高度;3. 根据体积的计算公式,将已知信息代入计算。

空间向量与立体几何知识总结(高考必备!)

空间向量与立体几何知识总结(高考必备!)

y k iA(x,y,z)O jxz 空间向量与立体几何一、空间直角坐标系的建立及点的坐标表示空间直角坐标系中的坐标:如图给定空间直角坐标系和向量a ,设,,i j k(单位正交基底)为坐标向量,则存在唯一的有序实数组123(,,)a a a ,使123a a i a j a k =++,有序实数组123(,,)a a a 叫作向量a在空间直角坐标系O xyz -中的坐标,记作123(,,)a a a a =.在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.二、空间向量的直角坐标运算律(1)若123(,,)a a a a = ,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=--- ,123(,,)()a a a a R λλλλλ=∈,112233//,,()a b a b a b a b R λλλλ⇔===∈,(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

(3)//a b b a λ⇔= 112233()b a b a R b aλλλλ=⎧⎪⇔=∈⎨⎪=⎩三、空间向量直角坐标的数量积1、设b a ,是空间两个非零向量,我们把数量><b a b a ,cos ||||叫作向量b a ,的数量积,记作b a ⋅,即b a ⋅=><b a b a ,cos |||| 规定:零向量与任一向量的数量积为0。

定比分点的向量公式及应用

定比分点的向量公式及应用

定比分点的向量公式及应用浙江省永康市古山中学(321307) 吴汝龙定比分点的向量公式:在平面上任取一点O ,设a OP =1,b OP =2,若21PP P P λ=,则λλλ+++=111。

特别地,当1=λ时,即P 为线段21P P 的中点,则有2121+=。

用定比分点的向量公式,可使有些问题的解决更简洁。

下面举几例说明。

一、求定比λ的值:例1:已知A (1,2),B (1,3-)及直线l :54-=x y ,直线AB 与l 相交于P 点,求P 点分的比λ。

解:设),(y x P ,则由λ=,得)11,131()1,3(1)1,2(11),(λλλλλλλ+-++=-+++=y x , 又∵P 点在直线l 上, ∴51)31(411-++=+-λλλλ, ∴31=λ。

例2:如图所示,在ABC ∆中,D 为边BC 上的点,且k =,E 为AD 上的一点,且l =,延长BE 交AC 于F ,求F 分有向线段所成的比λ。

解:∵λ=,∴λλλ+++=111, 又l =,∴l ll +++=111,而kkk +==1, ∴llk l k ++++=1)1)(1(,∵B 、E 、F 共线,∴设t =,而tt t λλλ+++=11 ∴tt l l k l k λλλ+++=++++111)1)(1(FEDCBA∴⎪⎪⎩⎪⎪⎨⎧+=+++=+llt k l k t11)1)(1(1λλλ,解得k k l )1(+=λ。

二、求直线上点的坐标例3:已知点)1,1(--A ,)5,2(B ,点C 为直线AB 上一点,且5-=,求C 点的坐标。

分析:先求出C 点分的λ的值,再利用定比分点的向量公式求出点C 的坐标。

解:∵5-=,∴5==λ,利用定比分点的坐标公式有)4,23()5,2(65)1,1(616561=+--=+=OB OA OC 。

∴C 点的坐标为)4,23(。

例4:已知)3,2(A ,)5,1(-B ,且31=,3=,求点C ,D 的坐标。

立体几何向量法解题步骤

立体几何向量法解题步骤

立体几何向量法解题步骤嘿,小伙伴们!今天咱们来讲讲立体几何向量法解题的步骤呀。

一、建立合适的空间直角坐标系1. 首先呢,你得观察这个立体几何图形的特点。

看看有没有现成的互相垂直的三条棱或者三条线呀。

这一步很关键哦!要是找不到现成的,你可能就得自己想办法构造啦。

比如说,利用图形中的垂直关系,像正方体、长方体那些棱就很好找垂直关系啦。

不过呢,有时候图形比较复杂,这就需要你多花点时间仔细观察啦。

我自己做的时候,在这个环节都会特别小心,因为这个坐标系建得好不好,直接影响后面的计算呢。

你可千万别小瞧这一步呀!2. 确定好坐标轴之后呢,把原点定好。

这就像给整个解题过程打地基一样重要呢。

通常我们会选择图形中比较特殊的点作为原点,比如顶点或者对称中心之类的。

这一步看起来很简单,但建议不要跳过,避免后续出现问题。

二、求出相关点的坐标1. 在坐标系建立好之后,就要找出题目中涉及到的点的坐标啦。

这时候呢,你要根据图形的已知条件,比如边长比例关系呀来确定坐标。

有些点的坐标可能很容易看出来,但是有些可能就需要你稍微推导一下喽。

比如说,如果知道一个点在某条棱上,而且知道它的比例位置,那就可以通过计算得到坐标。

我在求坐标的时候,经常会反复核对好几遍呢,因为一旦坐标错了,后面可就全错啦,这一点真的很重要,我通常会再检查一次,真的,确认无误是关键。

三、求出相关向量的坐标1. 根据已经得到的点的坐标,就可以求出我们需要的向量的坐标啦。

这一步就是简单的坐标相减啦。

不过呢,可别粗心算错了哦。

我就有过这样的经历,因为一个小的计算失误,结果整个题都做错了,真是太懊恼了!所以在这一步也要认真对待呢。

2. 如果涉及到多个向量,要一个一个耐心地求出来。

这时候,你可以把每个向量的坐标都写清楚,这样后面计算的时候就不容易混淆啦。

四、利用向量的运算解决问题(比如求角度、距离等)1. 要是求异面直线所成的角呢,我们就可以利用向量的夹角公式啦。

先算出两个向量的点积,再算出它们的模长,然后根据公式就能求出夹角的余弦值啦。

定比分点的向量公式

定比分点的向量公式

定比分点的向量公式定比分点的向量公式,这可是高中数学里一个相当重要的知识点呢!咱们先来聊聊啥是定比分点。

想象一下,在一条直线上有两个点 A 和 B,然后又有一个点 P 把线段 AB 按照一定的比例分成了两段。

这个点 P 就叫做线段 AB 的定比分点。

那定比分点的向量公式是啥呢?假设点 A 的坐标是 (x₁, y₁) ,点B 的坐标是 (x₂, y₂) ,点 P 的坐标是 (x, y) ,并且点 P 分线段 AB 的比是λ ,那么定比分点的向量公式就是:x = (x₁ + λx₂) / (1 + λ) ,y = (y₁ + λy₂) / (1 + λ) 。

听起来是不是有点晕乎?别担心,我给您举个例子哈。

有一次我在课堂上讲这个知识点,有个学生一脸迷茫地看着我,我就知道他没听懂。

于是我走到他身边,问他:“你是不是觉得有点迷糊呀?”他使劲儿点头。

我就拿了一支笔在纸上画了一条直线,标上 A 点和 B 点,然后跟他说:“咱们就把这当成是一条路,A 点是你家,B 点是学校,你每天上学走到某个地方,这个地方就是点 P 。

现在假设你走的路程和剩下的路程有个比例,那这个点 P 的位置是不是就能算出来啦?”这孩子听了,眼睛一下子亮了,好像突然就明白了。

咱们继续说这个公式啊。

定比分点的向量公式在解决很多几何问题的时候特别有用。

比如说,已知两个点的坐标和分点的比例,就能轻松算出定比分点的坐标。

在实际生活中,这个公式也能派上用场呢。

比如说,在规划物流路线的时候,要确定货物在某个路段的分配点,就可以用到这个公式。

还有在建筑设计中,计算一些结构的位置也能用到。

再比如,咱们想象一个场景,有一辆送快递的车,要在一条路线上的几个站点送货,每个站点的需求比例不同。

这时候,就可以用定比分点的向量公式来计算最佳的送货停留点,这样就能提高送货效率啦。

总之,定比分点的向量公式虽然看起来有点复杂,但只要咱们多做几道题,多联系实际,就能很好地掌握它,让它成为咱们解决问题的有力工具。

高中数学竞赛公式定理大全

高中数学竞赛公式定理大全

高中数学竞赛公式定理大全包括但不限于:
1. 集合运算的分配律与反演律(摩根律)、容斥原理、有限等集的性质。

2. 直线与方程:克莱姆法则、二维对称点坐标公式、二维投影点坐标公式、直线的参数方程、交轨法、定比分点公式。

3. 圆锥曲线:阿波罗尼斯圆、圆的直径式方程、曲线系、圆幂定理、调和点列、椭圆和双曲线的第二定义、各种切割线方程、特殊类型的双曲线、抛物线的各种几何性质、阿基米德三角形、齐次化方法、双根式、仿射变换、隐函数、蒙日圆、等角定理、二次锥面形成圆锥曲线的过程、极点与极线。

4. 立体几何:祖暅原理、用行列式求平面的法向量、三维对称点坐标公式、三维投影点坐标公式、直角四面体勾股定理、四面体余弦定理、三射线定理、三余弦定理、三面角余弦定理、三正弦定理、平行六面体的性质、立体几何中的正余弦定理。

5. 导数与极限:夹逼定理、洛必达法则、极限运算法则、常用极限、对数求导法则、隐函数求导、多个极值判定法、抽象函数的构造、对数平均不等式、指数平均不等式。

6. 数列:等差数列中,S奇=na中,例如S13=13a7;等差数列中,S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差;等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立;等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q;数列的终
极利器,特征根方程等。

7. 其他公式和定理:三角形垂心爆强定理;维维安尼定理;爆强思路;常用结论;爆强公式;函数y=(lnx)/x在(0,e)上单调递增,在(e,+无穷)上单调递减等。

这些公式和定理是高中数学竞赛的重要知识点,需要学生熟练掌握和应用。

同时,学生还需要具备灵活运用知识的能力和创造性思维,才能取得优异的成绩。

定比分点向量公式

定比分点向量公式

定比分点向量公式定比分点向量公式是一种在几何学中使用的数学工具,用于计算两个给定向量之间的夹角和距离。

它是一种应用于平面几何的技术,能够以有效的方式测量两个向量之间的距离或角度。

定比分点向量公式已经用于许多不同的几何计算任务,如求解直线的斜率、计算所有的三角形面积、计算多边形的周长和面积以及计算多边形内部的面积等。

它也用于计算空间几何中的距离和角度,如求解一个真空间中的抛物线的斜率、求解立体几何中的椭圆的离心率等。

定比分点向量公式的定义定比分点向量公式的定义为:给定两个向量a=(a1,a2)和b=(b1,b2),则它们的定比分点向量公式为:Vec(a,b)= (a1/b1, a2/b2)这里的“Vec”表示向量,a1和b1表示向量a的第一个分量,a2和b2表示向量b的第二个分量。

定比分点向量公式的作用定比分点向量公式的作用是根据两个给定向量确定它们之间的夹角和距离。

因此,该公式能够有效地求解平面几何中的距离和角度,也可以用于空间几何中的计算。

定比分点向量公式的用法要使用定比分点向量公式,首先要给定两个向量a和b,然后将它们表示为a=(a1,a2)和b=(b1,b2)的形式。

接下来,就可以将它们代入定比分点向量公式中:Vec(a,b)= (a1/b1, a2/b2)这样就可以得到两个向量之间的夹角和距离。

定比分点向量公式的应用定比分点向量公式可以用于许多不同的几何计算任务。

它可以帮助我们计算直线的斜率、三角形的面积、多边形的周长和面积以及多边形内部的面积。

此外,它还可以用于计算空间几何中的距离和角度,如求解一个真空间中的抛物线的斜率、求解立体几何中的椭圆的离心率等。

定比分点向量公式的优点定比分点向量公式的优点在于,它可以帮助我们有效地计算几何中的距离和角度,而无需考虑具体的坐标系。

此外,它还可以节省大量时间,因为它可以在非常短的时间内完成计算任务。

最后,它还可以帮助我们更好地理解几何中的各种概念,因为它可以清楚地描述几何中的距离和角度。

利用向量解决几何定比分点问题

利用向量解决几何定比分点问题

利用向量解决几何定比分点问题在几何学中,我们经常会遇到定比分点的问题,即在一条线段上找到满足一定比例的点。

利用向量方法,我们可以轻松解决这类问题。

本文将介绍如何利用向量解决几何定比分点问题。

一、向量的基本概念在开始讨论向量解决定比分点问题之前,我们先来了解一些向量的基本概念。

向量是具有大小和方向的量,可以用箭头表示。

在二维几何中,向量通常用有序数对表示,例如向量AB可以表示为→AB=(x,y)。

在三维几何中,向量通常用有序数对表示,例如向量AB可以表示为→AB=(x,y,z)。

二、定比分点的定义定比分点是指在一条线段上,将该线段分成两部分,使得两部分之间的比例是确定的。

例如,如果我们要在线段AB上找到一个点C,使得AC:CB=2:3,即AC是CB的两倍,那么点C就是线段AB的定比分点。

三、向量解法步骤下面我们将介绍利用向量解决定比分点问题的步骤。

步骤1:给出已知条件首先,我们需要明确已知条件。

在定比分点问题中,已知条件通常会给出线段的两个端点和分点的比例。

例如,在线段AB上,已知A(-1,2)和B(3,4),要求找到点C,使得AC:CB=2:3。

步骤2:表示向量关系接下来,我们用向量来表示已知条件。

我们可以利用向量的加法和减法来表示线段的两个端点和分点。

例如,向量→AB可以表示为→AB=(3-(-1),4-2)=(4,2)。

步骤3:设定未知向量我们设未知点C的坐标为(x,y)。

步骤4:建立向量关系等式根据已知条件,我们可以建立向量关系等式。

根据AC:CB=2:3,我们可以得到以下向量关系等式:→AC : →CB = 2:3→AC = 2/3 × →CB步骤5:列方程解向量利用步骤4中得到的向量关系等式,我们可以列方程解向量。

根据→AC = 2/3 × →CB,我们可以得到以下方程:(x-(-1), y-2) = 2/3 × (3-(-1), 4-2)步骤6:求解未知向量解方程,得到未知点C的坐标(x,y)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何(向量法)—找点难(定比分点公式)例1(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为6, 求线段AM 的长.【答案】解:方法一:如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).(1)证明:易得B 1C 1→=(1,0,-1),CE →=(-1,1,-1),于是B 1C 1→·CE →=0,所以B 1C 1⊥CE . (2)B 1C →=(1,-2,-1),设平面B 1CE 的法向量=(x ,y ,z ),则⎩⎪⎨⎪⎧·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0,消去x ,得y +2z =0,不妨令z =1,可得一个法向量为=(-3,-2,1).由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1→=(1,0,-1)为平面CEC 1的一个法向量.于是cos 〈,B 1C 1→〉=m ·B 1C 1→|m |·|B 1C 1→|=-414×2=-2 77,从而sin 〈,B 1C 1→〉=217. 所以二面角B 1-CE -C 1的正弦值为217.(3)AE →=(0,1,0),EC 1→=(1,1,1).设EM →=λEC 1→=(λ,λ,λ),0≤λ≤1,有AM →=AE →+EM →=(λ,λ+1,λ).可取AB →=(0,0,2)为平面ADD 1A 1的一个法向量.设θ为直线AM 与平面ADD 1A 1所成的角,则 sin θ=|cos 〈AM →,AB →〉|=|AM →·AB →||AM →|·|AB →|=2λλ2+(λ+1)2+λ2×2=λ3λ2+2λ+1.于是λ3λ2+2λ+1=26,解得λ=13(负值舍去),所以AM = 2. 方法二:(1)证明:因为侧棱CC 1⊥平面A 1B 1C 1D 1,B 1C 1⊂平面A 1B 1C 1D 1,所以CC 1⊥B 1C 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3,从而B 1E 2=B 1C 21+EC 21,所以在△B 1EC 1中,B 1C 1⊥C 1E .又CC 1,C 1E ⊂平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1⊥平面CC 1E ,又CE ⊂平面CC 1E ,故B 1C 1⊥CE .(2)过B 1 作B 1G ⊥CE 于点G ,联结C 1G .由(1),B 1C 1⊥CE .故CE ⊥平面B 1C 1G ,得CE ⊥C 1G ,所以∠B 1GC 1为二面角B 1-CE -C 1的平面角.在△CC 1E 中,由CE =C 1E =3,CC 1=2,可得C 1G =2 63.在Rt △B 1C 1G 中,B 1G =423,所以sin ∠B 1GC 1=217,即二面角B 1-CE -C 1的正弦值为217.(3)联结D 1E, 过点M 作MH ⊥ED 1于点H ,可得MH ⊥平面ADD 1A 1,联结AH ,AM ,则∠MAH 为直线AM 与平面ADD 1A 1所成的角.设AM =x ,从而在Rt △AHM 中,有MH =26x ,AH =346x .在Rt △C 1D 1E 中,C 1D 1=1,ED 1=2,得EH =2MH =13x .在△AEH 中,∠AEH =135°,AE =1,由AH 2=AE 2+EH 2-2AE ·EH cos 135°,得1718x 2=1+19x 2+23x .整理得5x 2-22x -6=0,解得x =2(负值舍去),所以线段AM 的长为 2. 例2(2013年高考北京卷(理))如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB=3,BC=5. (Ⅰ)求证:AA 1⊥平面ABC ;(Ⅱ)求二面角A 1-BC 1-B 1的余弦值;(Ⅲ)证明:在线段BC 1存在点D,使得AD ⊥A 1B ,并求1BDBC 的值.【答案】解:(I)因为AA 1C 1C 为正方形,所以AA 1 ⊥AC.因为平面ABC ⊥平面AA 1C 1C,且AA 1垂直于这两个平面的交线AC,所以AA 1⊥平面ABC. (II)由(I)知AA 1 ⊥AC,AA 1 ⊥AB. 由题知AB=3,BC=5,AC=4,所以AB ⊥AC. 如图,以A 为原点建立空间直角坐标系A-xyz ,则B(0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),设平面A 1BC 1的法向量为,,)x y z n =(,则11100A B A C ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u u r n n ,即34040y z x -=⎧⎨=⎩, 令3z =,则0x =,4y =,所以(0,4,3)n =.同理可得,平面BB 1C 1的法向量为(3,4,0)m =,所以16cos 25⋅==n m n,m |n ||m |. 由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625.(III)设D (,,)x y z 是直线BC1上一点,且1BD BC λ=u u u r u u u u r. 所以(,3,)(4,3,4)x y z λ-=-.解得4x λ=,33y λ=-,4z λ=.所以(4,33,4)AD λλλ=-u u u r. [来源:学科网]由1·0AD A B =u u u r u u u r ,即9250λ-=.解得925λ=. 因为9[0,1]25∈,所以在线段BC 1上存在点D,使得AD ⊥A 1B. 此时,1925BD BC λ==. 例3(2012高考真题辽宁理18)(本小题满分12分)如图1-4,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′-MN -C 为直二面角,求λ的值.图1-4【答案】解:(1)(证法一)连结AB ′,AC ′,由已知∠BAC =90°, AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱. 所以M 为AB ′中点.又因为N 为B ′C ′的中点. 所以MN ∥AC ′. 又MN ⊄平面A ′ACC ′, AC ′⊂平面A ′ACC ′, 因此MN ∥平面A ′ACC ′. (证法二)取A ′B ′中点P ,连结MP ,NP ,M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′, 所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′,又MP ∩NP =P , 因此平面MPN ∥平面A ′ACC ′,而MN ⊂平面MPN , 因此MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立直角坐标系O -xyz ,如图1-5所示.图1-5设AA ′=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1),B ′(λ,0,1),C ′(0,λ,1). 所以M ⎝ ⎛⎭⎪⎫λ2,0,12,N ⎝ ⎛⎭⎪⎫λ2,λ2,1.设=(x 1,y 1,z 1)是平面A ′MN 的法向量,由⎩⎪⎨⎪⎧·A ′M →=0,m ·MN →=0得⎩⎪⎨⎪⎧λ2x 1-12z 1=0,λ2y 1+12z 1=0,可取=(1,-1,λ).设=(x 2,y 2,z 2)是平面MNC 的法向量, 由⎩⎪⎨⎪⎧·NC →=0,n ·MN →=0得⎩⎪⎨⎪⎧-λ2x 2+λ2y 2-z 2=0,λ2y 2+12z 2=0.可取=(-3,-1,λ).因为A ′-MN -C 为直二面角,所以·=0. 即-3+(-1)×(-1)+λ2=0,解得λ= 2.例4(2012高考真题湖北理19)(本小题满分12分)如图1,45ACB ∠=o ,3BC =,过动点A 作AD BC ⊥,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使90BDC ∠=o (如图2所示). (Ⅰ)当BD 的长为多少时,三棱锥A BCD -的体积最大;(Ⅱ)当三棱锥A BCD -的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在 棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.第19题图【答案】(Ⅰ)解法1:在如图1所示的△ABC 中,设(03)BD x x =<<,则3CD x =-.由AD BC ⊥,45ACB ∠=o 知,△ADC 为等腰直角三角形,所以3AD CD x ==-.由折起前AD BC ⊥知,折起后(如图2),AD DC ⊥,AD BD ⊥,且BD DC D =I ,所以AD ⊥平面BCD .又90BDC ∠=o ,所以11(3)22BCD S BD CD x x ∆=⋅=-.于是1111(3)(3)2(3)(3)33212A BCD BCD V AD S x x x x x x -∆=⋅=-⋅-=⋅--312(3)(3)21233x x x +-+-⎡⎤≤=⎢⎥⎣⎦, DABCACDB图2图1M E. ·当且仅当23x x =-,即1x =时,等号成立,故当1x =,即1BD =时, 三棱锥A BCD -的体积最大. 解法2:同解法1,得321111(3)(3)(69)3326A BCD BCD V AD S x x x x x x -∆=⋅=-⋅-=-+.令321()(69)6f x x x x =-+,由1()(1)(3)02f x x x '=--=,且03x <<,解得1x =.当(0,1)x ∈时,()0f x '>;当(1,3)x ∈时,()0f x '<. 所以当1x =时,()f x 取得最大值.故当1BD =时, 三棱锥A BCD -的体积最大. (Ⅱ)解法1:以D 为原点,建立如图a 所示的空间直角坐标系D xyz -.由(Ⅰ)知,当三棱锥A BCD -的体积最大时,1BD =,2AD CD ==.于是可得(0,0,0)D ,(1,0,0)B ,(0,2,0)C ,(0,0,2)A ,(0,1,1)M ,1(,1,0)2E ,且(1,1,1)BM =-u u u u r.设(0,,0)N λ,则1(,1,0)2EN λ=--u u u r . 因为EN BM ⊥等价于0EN BM ⋅=u u u r u u u u r ,即11(,1,0)(1,1,1)1022λλ--⋅-=+-=,故12λ=,1(0,,0)2N .所以当12DN =(即N 是CD 的靠近点D 的一个四等分点)时,EN BM ⊥.设平面BMN 的一个法向量为(,,)x y z =n ,由,,BN BM ⎧⊥⎪⎨⊥⎪⎩u u u ru u u u rn n 及1(1,,0)2BN =-u u u r , 得2,.y x z x =⎧⎨=-⎩ 可取(1,2,1)=-n . 设EN 与平面BMN 所成角的大小为θ,则由11(,,0)22EN =--u u u r ,(1,2,1)=-n ,可得1|1|sin cos(90)||||EN EN θθ--⋅=-===⋅o u u u r u u u r n n 60θ=o .故EN 与平面BMN 所成角的大小为60.o解法2:由(Ⅰ)知,当三棱锥A BCD -的体积最大时,1BD =,2AD CD ==. 如图b ,取CD 的中点F ,连结MF ,BF ,EF ,则MF ∥AD . 由(Ⅰ)知AD ⊥平面BCD ,所以MF ⊥平面BCD .如图c ,延长FE 至P 点使得FP DB =,连BP ,DP ,则四边形DBPF 为正方形, 所以DP BF ⊥. 取DF 的中点N ,连结EN ,又E 为FP 的中点,则EN ∥DP , 所以EN BF ⊥. 因为MF ⊥平面BCD ,又EN ⊂面BCD ,所以MF EN ⊥. 又MF BF F =I ,所以EN ⊥面BMF . 又BM ⊂面BMF ,所以EN BM ⊥. 因为EN BM ⊥当且仅当EN BF ⊥,而点F 是唯一的,所以点N 是唯一的.即当12DN =(即N 是CD 的靠近点D 的一个四等分点),EN BM ⊥.连接MN ,ME,由计算得NB NM EB EM ====, 所以△NMB 与△EMB 是两个共底边的全等的等腰三角形, 如图d 所示,取BM 的中点G ,连接EG ,NG ,则BM ⊥平面EGN .在平面EGN 中,过点E 作EH GN ⊥于H , 则EH ⊥平面BMN .故ENH ∠是EN 与平面BMN 所成的角.在△EGN中,易得2EG GN NE ===,所以△EGN 是正三角形, 故60ENH ∠=o ,即EN 与平面BMN 所成角的大小为60.o图a图bC AD BE FMN图cBD PCF NEGMNH图d第19题解答图。

相关文档
最新文档