车联网系统架构及其关键技术研究

车联网系统架构及其关键技术研究
车联网系统架构及其关键技术研究

《车联网体系架构分析》

《车联网体系架构分析》 车联网体系结构与解决方案 背景介绍 近年来,随着汽车保有量的持续增长,道路承载容量在许多城市已达到饱和,交通安全、出行效率、环境保护等问题日益突出。在此大背景下,汽车联网技术因其被期望具有大幅度缓解交通拥堵、提高运输效率、提升现有道路交通能力等功能,而成为当前一个关注重点和热点。欧洲、美国、日本等国家和地区较早进行了智能交通和车辆信息服务的研究与应用,xx年3月大唐电信科技产业集团与启明信息技术股份有限公司携手共建车联网联合实验室,4月在重庆建立国内首个“智能驾驶与车联网实验室”等,充分表明当前国内外对车联网研究的迫切性和广泛性。 车联网与物联网 物联网是一个以互联网为主体,兼容各项信息技术,为社会不同领域提供可定制信息化服务的具有泛在化属性的信息基础平台。物联网的概念和内涵随着信息技术的发展和不同阶段人们信息化需求的不断演进,因其接入对象的广泛性、运用技术的复杂性、服务内容的不确定性以及不同社会群体理解和追求上的差异性,很难用已有概念和标准来准确完整地给出权威定义。然而,车联网概念的出现,因其服务对象和应用需求明确、运用技术和领域相对集中、实施和评价标准较为统 一、社会应用和管理需求较为确定,引起了业界的普遍关注,已

被认为是物联网中最能够率先突破应用领域的重要分支,并成为目前的研究重点和热点。 源于物联网的车联网,以车辆为基本信息单元,以提高交通运输效率、改善道路交通状况、拓展信息交互方式,进而实现智能交通管理,使物联网技术这一原本宽泛的概念在现代交通环境中得以具体体现。本文立足物联网基础理论和模型,以构建以信息技术为主导的智能交通系统为背景,对车联网的基本概念、体系结构、通信架构及其关键技术进行研究。 车联网基本概念和分类车联网概念是物联网面向行业应用的概念实现。物联网是在互联网基础上,利用射频识别(radiofrequencyidentification,rfid)、无线数据通信等技术,构造一个覆盖世界上万事万物的网络体系,实现任何物体的自动识别和信息的互联与共享。物联网不刻意强调物体的类型,更多的是强调物理世界信息的获取和交换,以实现当前互联网未触及的物与物信息交换领域。车联网是物联网概念的着陆点,将这个具体的物理世界限定到车、路、人和城市上。车联网利用装载在车辆上电子标签rfid获取车辆的行驶属性和系统运行状态信息,通过gps等全球定位技术获取车辆行驶位置等参数,通过3g等无线传输技术实现信息传输和共享,通过rfid和传感器获取道路、桥梁等交通基础设施的使用状况,最后通过互联网信息平台,实现对车辆运行监控以及提供各种交通综合服务。 从技术角度区分,车联网技术主要有电子标签技术、位置定位技术、无线传输技术、数字广播技术、网络服务平台技术。

国内外物联网发展现状及物联网关键技术研发情况

国内外物联网发展现状及物联网关键技术研发情况

目录 一、全球物联网发展总体态势 (1) (一)发展动能不断丰富,带动物联网在全球的持续发展 (1) (二)物联网应用场景持续拓展,应用新特征不断显现 (2) (三)物联网产业力量不断增强,但供需对接仍需推进 (4) (四)物联网生态之争愈演愈烈,边云双核心加快布局 (7) (五)物联网与多样化技术加快融合,创新能力持续提升 (9) 二、物联网应用发展情况和特点 (12) (一)全球物联网应用的整体情况 (12) (二)消费物联网应用热点迭起 (14) (三)智慧城市物联网应用全面升温 (18) (四)生产性物联网应用成就新的风口 (21) 三、物联网关键技术产业进展情况 (23) (一)传感器成本持续走低,应用微创新特征显现 (23) (二)芯片产业格局初步形成,市场潜力巨大 (25) (三)模组产业竞争激烈,注重高附加值发展 (28) (四)网络接入侧进展迅速,核心网侧突破缓慢 (29) (五)平台功能更加完备,开放性不断提升 (32) 四、我国物联网发展情况 (35) (一)“十三五”进程过半,物联网取得阶段性进展 (35) (二)MEMS传感器产业取得一定进展,但短板仍较为突出 (37)

(三)芯片呈现多层次供应商格局,模组低价格竞争明显 (39) (四)中国形成规模最大公共物联网网络,但盈利模式尚需探索 (40) (五)物联网平台之争进一步升级,探索商业模式闭环和转型增多 (42) 五、我国物联网发展展望与推进策略建议 (42) (一)我国物联网发展展望 (42) (二)我国物联网发展的策略建议 (44)

车联网技术全面解析及主要解决方案盘点

车联网技术全面解析及主要解决方案盘点 车联网(IOV:Internet of Vehicle)是指车与车、车与路、车与人、车与传感设备等交互,实现车辆与公众网络通信的动态移动通信系统。 【慧聪汽车电子网】 车联网概念解析 2004年中国提出“汽车计算平台”计划,防范汽车工业“空芯化”现象;巴西政府强制所有车辆2014年前必须安装类似“汽车身份识别”的系统并联网;欧洲、日本的ITS(智能交通系统)计划中也都有“车联网”的概念;印度甚至要求所有黄包车都装上GPS与RFID;2011年初,中国四部委联合发文,对“两客一危”运营类车辆提出了必须安装智能卫星定位装置并联网的强制性要求……这些都是车联网的雏形。 美国国家网络可信身份标识战略白皮书NSTIC则是一个里程碑,它要求所有移动终端、包括汽车都必须安装“安全ID芯片”;美国DOT进一步要求,2012年所有运营类车辆都必须遵从M911。显而易见,车联网已经不只是一个汽车业信息化的问题了,而已经上升到了国家信息安全和国家战略层面,很多国家已经开始立法实施了。 什么是车联网 车联网(IOV:InternetofVehicle)是指车与车、车与路、车与人、车与传感设备等交互,实现车辆与公众网络通信的动态移动通信系统。它可以通过车与车、车与人、车与路互联互通实现信息共享,收集车辆、道路和环境的信息,并在信息网络平台上对多源采集的信息进行加工、计算、共享和安全发布,根据不同的功能需求对车辆进行有效的引导与监管,以及提供专业的多媒体与移动互联网应用服务。 从网络上看,IOV系统是一个“端管云”三层体系。 第一层(端系统):端系统是汽车的智能传感器,负责采集与获取车辆的智能信息,感知行车状态与环境;是具有车内通信、车间通信、车网通信的泛在通信终端;同时还是让汽车具备IOV寻址和网络可信标识等能力的设备。 第二层(管系统):解决车与车(V2V)、车与路(V2R)、车与网(V2I)、车与人(V2H)等的互联互通,实现车辆自组网及多种异构网络之间的通信与漫游,在功能和性能上保障实时性、可服务性与网络泛在性,同时它是公网与专网的统一体。 第三层(云系统):车联网是一个云架构的车辆运行信息平台,它的生态链包含了ITS、物流、客货运、危特车辆、汽修汽配、汽车租赁、企事业车辆管理、汽车制造商、4S店、车管、保险、紧急救援、移动互联网等,是多源海量信息的汇聚,因此需要虚拟化、安全认证、实时交互、海量存储等云计算功能,其应用系统也是围绕车辆的数据汇聚、计算、调度、监控、管理与应用的复合体系。 值得注意的是,目前GPS+GPRS并不是真正意义上的车联网,也不是物联网,只是一种技术的组合应用,目前国内大多数ITS试验和IOV概念都是基于这种技术实现的。笔者以为,简单基于这样的技术来发展车联网,对国家战略领先和技术创新是非常不利的,会造成整体落后国际竞争的被动局面。 什么是GID IOV最核心的技术之一是根据车辆特性,给汽车开发了一款GID(GlobalID,相对于RFID)终端。它是一个具有全球泛在联网能力的通信网关和车载终端,是车辆智能信息传感器,同时也具有全球定位和全球网络身份标识(网络车牌)功能。 GID将汽车智能信息传感器、汽车联网、汽车网络车牌三大功能融为一体,具体表现为: 车辆状态的信息感知功能:GID与汽车总线(OBD、CAN等)相连,内嵌多种传感器,可感知和监控几乎所有车辆的动态与静态信息,包括车辆环境信息和车辆状态诊断信息等; 泛在通信功能:GID具有V2V、V2I和自组网(SON、移动AdHoc、AGPS等)的能力,具有车内联网以及多制式之间的桥接与中继功能,具备全球通信、全球定位与移动漫游能力;

智能网联汽车与车联网

一、智能网联汽车定义、关键技术、系统构成、功能等 智能网联汽车是指搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,使车辆具备复杂环境感知、智能决策、协同控制功能,能综合实现安全、节能、环保及舒适行驶的新一代智能汽车。 智能网联汽车关键技术包括环境感知技术、无线通信技术、智能互联技术、信息融合技术、人机界面技术、信息安全与隐私保护技术等;其系统一般由环境感知层、智能决策层、控制和执行层所构成。 智能网联汽车的功能: (1)交通安全:交通事故率可降低到目前的1%; (2)交通效率:车联网技术可提高道路通行效率10%,CACC系统大规模应用将会进一步提高交通效率; (3)节能减排:协同式交通系统可提高自车燃油经济性20%-30%,高速公路编队行驶可降低油耗10%-15%; (4)产业带动:智能网联汽车产业将会拉动机械、电子、通信、互联网等相关产业快速发展; (5)国防应用:无人驾驶战斗车辆; (6)交通方式的改变:减轻驾驶负担,娱乐、车辆共享,快捷出行。 车联网、智能汽车及智能交通系统的关系: (1)协同式智能车辆控制(智能网联汽车) (2)协同式智能交通管理与信息服务 (3)汽车电商、后服务、智能制造等

二、智能网联汽车、车联网相关政策 2016年7月《推进“互联网+”便捷交通促进智能交通发展的实施方案》规定:加快车联网、船联网建设,在民航、高铁等载运工具及重要交通线路、客运枢纽站点提供高速无线接入互联网的公共服务,扩大网络覆盖面。 2016年11月《关于进一步做好新能源汽车推广应用安全监管工作的通知》规定:自2017 年1月1日起对新生产的全部新能源汽车安装车载终端,通过企业监测平台对整车及动力电池等关键系统运行安全状态进行监测和管理 2017年2月《关于印发“十三五”现代综合交通运输体系发展规划的通知》规定:加快车联网、船联网等建设。在民航、高铁等载运工具及重要交通线路、客运枢纽站点提供高速无线接入互联网公共服务。建设铁路下一代移动通信系统,布局基于下一代互联网和专用短程通信的道路无线通信网。研究规划分配智能交通专用频谱。 2017年7月《国务院关于印发新一代人工智能发展规划的通知》规定:加快布局实时协同人工智能的5G增强技术研发及应用,建设面向空间协同人工智能的高精度导航定位网络,加强智能感知物联网核心技术攻关和关键设施建设,发展支撑智能化的工业互联网、面向无人驾驶的车联网等,研究智能化网络安全架构。 2017年9月,国家发改委透露,已启动国家智能汽车创新发展战略起草工作,将通过制订战略明确未来一个时期我国汽车战略方向,同时提出近期的行动计划,确定路线图和时间表。 2017年12月《国家车联网产业标准体系建设指南(智能网联汽车)》规定:到2020 年,初步建立能够支撑驾驶辅助及低级别自动驾驶的智能网联汽车标准体系。到2025 年,系统形成能够支撑高级别自动驾驶的智能网联汽车标准体系。 2017年12《促进新一代人工智能产业发展三年行动计划(2018-2020年)》,将智能网联汽车作为本次行动计划提出的第一项要大力发展的智能产品,并设定了到2020年建立可靠、安全、实时性强的智能网联汽车智能化平台,形成平台相关标准,支撑高度自动驾驶等目标。 2018年1月《智能汽车创新发展战略》(征求意见稿)规定:到2020 年大城市、高速公路的LTE-V2X 覆盖率达到90%,北斗高精度时空服务实现全覆盖;到2025 年,5G-V2X 基本满足智能汽车发展需要。

绿色物联网:需求、发展现状和关键技术

综述 从物联网的概念提出至今,政产学研用各界大力投入物联网的研究和建设工作中。当前,物联网主要集中在传统的技术设计和行业应用方面,作为信息技术产业的重要组成部分,其建设和发展必然受到能源和成本问题的制约,绿色节能也是目前关注较少的一个领域。为从根本上理清物联网目前存在的能耗问题,为建设高能效的绿色物联网提供理论依据,本文首先介绍了绿色物联网的基本概念,对绿色物联网的发展进行了分析,然后根据物联网的发展需求,结合我国物联网的发展现状,对当前绿色物联网各层的能耗构成进行了具体分析,总结了产业界和学术界在绿色物联网方面的推动工作;同时以物联网的层次关系为出发点,对绿色物联网各层的绿色节能和能效优先设计技术进行了深入分析和梳理,然后结合物联网层次关系给出了当前研究界对绿色物联网研究的各个环节的主要技术,最后对绿色物联网的未来发展进行了总结和展望。 关键词 物联网;绿色通信;能耗;能效 绿色物联网:需求、发展现状和关键技术* 张 兴,黄 宇,王文博 (北京邮电大学泛网无线通信教育部重点实验室无线信号处理与网络实验室(WSPN )北京100876) 摘要 1前言 物联网近年得到政产学研用社会各界的极大关注,美 国权威咨询机构Forrester 预测[1],到2020年,全球物物互联的业务跟人与人通信的业务相比,将达到30∶1,因此物联网被称为下一个万亿级的通信业务。自1999年美国移动计算和网络国际会议提出物联网的概念以来,物联网的研究已经经过了十几个年头。2009年8月7日,国务院总理温家宝在视察中国科学研究院嘉兴无线传感网络工程中心无锡研发分中心时,提出“在传感网发展中,要早一点谋划未来,早一点攻破核心技术”,并且明确要求尽快建立我国的传感信息中心,称为“感知中国”。在关注物联网技术发展的同时注意到,整个物联网的能耗问题日益突出,绿色物联网的需求越来越迫切。为了避免以往“先发展,后治理”的错误行业误区,适应“绿色通信”的发展趋势,减小 通信行业发展对生态环境的压力,在大力发展物联网的同时,提前做好绿色物联网的相关研究工作,对我国物联网未来的健康发展具有重要的指导意义。 绿色物联网,一般指节能减排,减少环境污染、资源浪费以及对人体和环境有危害的新一代物联网设计理念,通过对网络设备进行改造、优化并引入新技术,以达到降低能耗的目的,最终实现人与自然的和谐相处,实现可持续发展。 2物联网的绿色发展需求 作为最大的发展中国家以及第二大能源消费国,并且 从目前情况来看,通信行业已经成为耗电大户,排在全国各行业的第12位[2]。巨额的用电成本不仅阻碍了行业的发展,也意味着碳排放量的大幅度升高。 物联网作为一种全新的网络形态,除包括无线传感器网络之外,还包括无线/有线接入网、IP 核心网以及大型计算处理管理平台,几乎包含ICT 产业的各个领域,庞大的 *国家“973”计划基金资助项目(No.2012CB316005),国家自然科学基金资助项目(No.61001117,No.U1035001)96

物联网关键技术和应用

中科院孙利民:物联网关键技术和应用 2009年11月21日10:53 来源:人民网―无线频道 为全面探讨和分享全球物联网产业链成熟度和最新发展情况,特别是物联网作为继计算机、互联网之后,世界信息产业的第三次浪潮在全球的部署和运营情况。由天地互连公司主办的“2009无线技术世界暨物联网国际高峰会议”于2009年11月19日-20日在北京国宾酒店顺利举办。 中科院软件所研究员孙利民在大会上发表了题为《物联网关键技术和应用》题演讲。 中科院软件所研究员孙利民 以下为演讲实录: 孙利民:大家好,我来自中科院软件所。我给大家报告的题目是《物联网的关键技术》,前面中科院的侯老师和几个运营商都谈论了物联网,特别是侯老师谈了物联网上层的概念和发展趋势,运营商从产业界去谈物联网,包括我们Intel谈到了云计算,这是支撑物联网很好的技术。 我以前是从无线传感器网络的,我从这个角度谈一下对于物联网的认识。 首先,谈一下我们对于物联网的理解和关键技术,以及一些典型的应用。现在物联网非常热闹,包括了我们的股市,前一段时间听起来与这个相关的都在发生波动。其实有两个事情是相关的,第一个是IBM的云计算提出了这个概念之后,受到了美国政府的重视,特别是奥巴马政府是作为将来的一个救市重要的发展方向。在中国,温总理在8月7日到无锡中科院的高新微纳传感网工程技术研发中心时,对该中心对感知中国传感网络的发展做了很好的规划。 其实这个概念在很早就提出来了,最早从我们的资料上看到,是98年MIT的Kevin,他提出了物联网这个概念。他当时的概念是希望把RFID和其他的传感器,与我们平常用到的物品放在一起,嵌入到这些设备里面,使日常的物品联在一起,形成一个比较简单的物联网。然后是由世界上的四个大学,他们成立了RFID的分布式的中心,这个中心研究的方向,就是以RFID为基础,构建一个全球性的RFID的架构,对我们的物品能够进行实时的跟踪。在05年的ITU研究报告,就是比较正式的RFID,比较全面正确的认识了物联网相关的内容和知识。美国对于物理上的物联网认识比较多一点,IBM加上了网络,是在物体上,包括了桥梁、火车、隧道等都加上传感器,通过传感器获取物体的自身状态、周围的环境状态,是把计算的能力、联网的能力都融入进来。它是物体或者是上网,它能够更有智能化。 这是09年欧洲报告上的东西,他们在这个定义里面叫做Internet of Things。他们认为是物理和虚拟的实体,这个实体是可标识的,在时间和空间上是可移动的。他认为是这样的概念,它具有一些属性,包括了可标识、可通信、可信息交换的,这是任何一个物体都具有的。到上层可以创建、可以管理、可以毁灭其他的物体。

车联网引领智能交通进入新时代

车联网引领智能交通进入新发展时代 摘要:2010年上海世博会通用汽车馆展出的“2030年上海车联网智能交通体系”一度令观众 倍感神奇,而近期随着物联网、车联网等技术的发展和应用完善,汽车制造商和智能交通设 备商的联合已经让这个曾经看上去遥不可及的车联网智能交通梦在现实中前进了一大步。而 一系列的车联网智能交通技术理念和产业构想,让人们看到了更为壮观的产业蓝图。 传统的智能交通系统(Intelligent Transportation Systems,ITS)作为解决车辆与道路间矛盾、提高道路通行能力及保障行驶安全的有效手段,在我国已得到广泛研究与应用。北京、上海、广州等大型城市先后建立了智能化交通控制与管理一体化系统,其集成了智能交通灯控制、重要路段监控、动态车辆抓拍、实时路况信息发布等多项功能。其次,具有车辆定位和智能调度功能的智能公交系统也已经在上海的多条公交线路投入使用。再次,不停车收费系统(ETC, Electronic Toll Collection System)在长三角的高速公路中已经得到全面覆盖。纵观上述应用为代表的现有智能交通系统,存在应用范围上的局限,其限于某类车辆或者特定区域车辆,并且较多地关注于交通信息采集和交通综合管理,而对车辆自身安全行驶的辅助作用不大和车载的娱乐办公系统未能起到重要作用。 随着经济、社会的发展,车辆的爆发式增长和无处不在的信息需求将车联网和智能交通紧密的结合起来,基于车联网的智能交通研究正成为世界瞩目的焦点。车辆行驶在高速公路上是车联网在提高行驶安全方面的典型应用,如果在高速公路上实现车联网,前后及相邻车道的车辆信息可通过车辆上的车载单元(On-Board Unit,OBU)通信获得,一旦周边车辆出现紧急状况,驾驶员便可根据提示及时避让,有效减少事故的发生;而通过使用安装在路边的路边单元(Road-Side Unit,RSU),交管部门就可以利用RSU一方面实时采集到车辆更详细的运行情况,提高道路管理的信息化水平,另一方面将路况信息和其他多媒体服务信息实时通报给行驶在指定路段的所有车辆,提高信息发布有效性。可以说,以车联网为核心的广义智能交通系统,具有广阔的发展前景,是未来智能交通的发展方向。 作为“国家中长期科学和技术发展规划纲要”中指定的重点攻关领域,车联网的可以提高智能交通系统服务水平、促进城市信息化系统建设,为发展和建设

基于车联网的智能交通安全辅助功能研究

基于车联网的智能交通安全辅助功能研究 摘要:智能交通系统是解决当下交通问题的有效手段,而车联网技术是物联网 在智能交通系统中的典型运用。本文通过基于车联网的智能交通安全辅助系统的 构建,实现了车联网技术在智能交通系统中,尤其是车辆碰撞预警、事故上报及 救援的应用,使智能交通系统的功能更加全面,更加安全、可靠。 关键词:车联网;车辆碰撞预警;事故上报及救援 1车联网概述 车联网是指由车辆运行路线、位置以及速度等信息组成的交互网络,即通过定位系统、 射频识别以及传感器等装置,对车辆状态信息及道路环境信息进行采集,其中的状态信息包 括静态信息、动态信息以及属性信息等;将采集到的车辆信息通过互联网传输到中央处理器;最后通过计算机对信息进行分析和处理,根据不同的交通需求,对车辆的状态进行监管,以 及提供移动互联网应用,进而实现智能交通安全辅助功能,例如车辆碰撞预警、事故上报及 救援等功能。 2车联网架构分析 车联网是以车内网、车际网和车载移动互联网为基础,按照约定的通信协议和数据交互 标准,在车与车、车与路边单元、车与互联网之间进行无线通信和信息交换,以实现智能交 通管理控制、车辆智能化控制和智能动态信息服务的一体化网络,是物联网技术在智能交通 系统领域的延伸。与普通的物联网技术不同,车联网技术主要面向道路交通,为交通管理者 提供决策支持,为车与车之间提供协同控制,为交通参与者提供信息服务。车联网在系统上 具备物联网的物理结构,在功能上可满足智能交通对安全、环保和效率的要求。 具体地,为了通过车联网技术实现智能交通中车辆碰撞预警、事故上报及救援等安全辅 助功能,可构建如下的车联网系统: 2.1车辆信息采集: 通过各车辆终端处的传感器采集相应车辆的运行数据信息,例如速度数据、加速度数据、本车位置数据、运动方向信息等; 通过各车辆终端处的传感器采集相应车辆的事故信息碰撞感应信息、火灾信息、按钮报 警信息等; 实时采集交管部门和救援部门的相关车辆位置信息。 2.2网络拓扑结构: 在城市道路沿途设置网络节点,网络节点用于上述各种车辆信息的收集、处理和上传; 各网络节点均连接至远程服务中心,实现车辆运行数据信息的共享和管理。 图2车辆碰撞预警场景示意图 具体地,在碰撞概率计算时,可采用多种计算方法,例如计算车辆之间的距离、计算车 辆之间的靠近速度、前车是否有刹车/变道操作等,下面分别以车辆之间的距离、前车是否有刹车操作为例进行具体说明: 1)车辆之间的距离:获取本车和本车对应的预设范围内的其它车辆的相对位置数据;根 据该相对位置数据,确定本车与其它车辆的碰撞概率(此处,可事先根据车辆速度建立相对 位置数据与碰撞概率的对应关系);如果碰撞概率大于预设概率阈值,则触发报警操作。 2)前车是否有刹车操作:获取本车和本车对应的预设范围内的其它车辆的相对位置数据;获取本车对应的预设范围内的前方车辆是否有刹车操作;在前方车辆有刹车操作时,根据二 者的相对位置数据,确定本车与前方车辆的碰撞概率(此处,可事先根据车辆速度建立相对 位置数据与碰撞概率的对应关系,相对于前车正常行驶的情况,在前车有刹车动作时,则相 对地,应在较大的相对位置时即有较大的碰撞概率);如果碰撞概率大于预设概率阈值,则 触发报警操作。 3.2事故上报

基于物联网视频感知技术的关键技术研究

基于物联网视频感知技术的关键技术研究 摘要:摄像机是获取视频信息的主要工具。随着物联网的普及,摄像机越来越多地进入到生活中,已经成为公安、社会活动中重要的感知工具。文章针对摄像机的一些特性,结合物联网的技术,对视频感知中的几个关键技术进行分析和研究。 关键词:物联网;视频处理;视频感知 视频处理是图像处理技术的一种延伸,因为它基于时间的动态特性,又衍生了一些图像上不具有的独特性质。常用的视频处理包括对视频压缩、对兴趣区的捕捉、边缘提取等。对于一些实际的应用,往往需要综合多种的基本处理方法。 1 视频感知系统硬件组成 视频处理系统主要包含视频采集装置和视频处理装置。视频采集设备主要是摄像机,常规的摄像机主要是获取视频信号并保存到存储卡中,新兴的网络摄像机除了具有常规摄像机的功能,还能将信息通过网络传送到其他设备。视频处理装置是将采集到的视频进行一定的处理并存储到本地或 者网络上其他位置的装置。摄像机一般使用ARM架构,适合视频处理,很多公司如TI、海思等提供了的摄像机解决方案,也都采用了ARM架构。

2 视频处理的特点 2.1 直接操作图像域 视频处理的元操作是对每帧图像进行处理。图像处理是信号处理在二维信号(图像域)上的一个应用。大多数的图像是以数字形式存储,二维的数字图像在计算机上反映出来的形式一般是一个二维矩阵。整幅图像是被分割成N*M个叫做像素点的最小单位,每个点保存了图像的一部分信息。图像处理往往是对图像像素点的属性进行操作,处理。 2.2 大数据量处理 计算机的高效率、无疲劳特性非常适合处理图像的矩阵数据,尤其适合图像矩阵的大数据量和处理过程的大工作量的处理。 2.3 多个域的处理 图像最基本的二维矩阵表现形式通常被称作图像域,但是在图像域上一些操作是难以实现的。图像处理中可以通过一些数学上的变换,将原本的图像域信息转换成能反映其他信息的新矩阵,这类操作被成为变换。该类变换函数中最常见的是傅立叶变换,最常见的变换域是图像域和频域之间的转换。 3 视频处理应用 目前,视频处理的应用领域很广,主要集中在农林业、医学、交通等领域。往往需要根据具体的情景运用不同的处

“物联网与智慧城市关键技术及示范”重点专项2019年度项目申报指南

附件6 “物联网与智慧城市关键技术及示范”重点专项 2019年度项目申报指南 为落实《国家中长期科学和技术发展规划纲要(2006—2020年)》提出的任务,国家重点研发计划启动实施“物联网与智慧城市关键技术及示范”重点专项。根据本重点专项实施方案的部署,现发布2019年度项目申报指南。 本重点专项总体目标是:围绕网络强国战略与社会经济转型需求,重点突破智慧城市“感—联—知—用—融”的基础理论与关键技术,基于自主研发技术和产品构建物联网与智慧城市一体化服务系统,在京津冀、珠三角、长江经济带、一带一路等典型城市(群)开展集成创新与融合服务的示范应用,支撑具有中国城市特色的国家新型智慧城市分级分类示范建设,提升城市治理能力和公共服务水平,推动我国成为智慧城市技术创新与产业应用的全球引领者。推动物联网与智慧城市规模化发展和“三融五跨”共享,形成完善产业生态链,使我国物联网与智慧城市技术研究、标准规范与产业应用达到国际领先水平。 2019年,专项将以推动智慧城市集成应用示范创新、形成核心共性关键技术解决方案为主要目标,按照“特大城市”“城市群”“中小城市”“国家新区”等四类不同智慧城市重大需求,启动若 —1—

干应用示范任务,开展具有示范效应和辐射作用的集成创新应用示范;另按照智慧城市“感—联—知—用—融”的共性关键技术体系,启动若干共性关键技术与平台任务,支撑应用示范城市的集成创新。启动11个研究任务,拟安排国拨经费总概算为2.6亿元。共性关键技术类项目须自筹配套经费,配套经费总额与国拨经费总额比例不低于1:1;应用示范类项目须自筹配套经费,配套经费总额与国拨经费总额比例不低于2:1。 项目统一按指南二级标题(如1.1)的研究方向组织申报。项目实施周期不超过3年。申报项目的研究内容须涵盖该二级标题下指南所列的全部考核指标。除特殊说明外,拟支持项目数均为1~2项。项目下设课题数不超过5个,参与单位总数不超过10个。项目设1名项目负责人,项目中每个课题设1名课题负责人。 指南中“拟支持项目数为1~2项”是指:在同一研究方向下,申报项目评审结果前两位评价相近、技术路线明显不同的情况时,可考虑支持前两个项目,两个项目将采取分两个阶段支持的方式,第一阶段完成后将对两个项目执行情况进行评估,根据评估结果确定后续支持方式。 1.面向不同类型城市的重大场景应用示范 特大城市创新应用示范 1.1智慧城市物联泛在接入网关及平台应用示范(应用示范类) 研究内容:面向智慧城市精细化综合管理中众多设施物联化—2—

物联网的发展及其关键技术介绍

物联网的发展及其关键技术介绍

1. 物联网基础 ● 1.1物联网的定义及发展历程 ●物联网的概念于1999年提出,它的定义是:利用二维码,射频识别【RFID】, 各类传感器等技术设备,使物体与互联网等各类网络相连,获取无处不在的信息,实现物与物。物与人之间的信息交互,实现信息基础设施与物理基础设施的全面融合,最终形成统一的智能基础设施。 ●1999年,麻省理工学院实验室提出物联网概念,即把所有物品通过射频识别等信 息传感设备与互联网连接起来,实现智能化管理。 ●2004年,日本提出u-japan计划,希望将日本建设成一个任何时间,任何地点, 任何人都能上网的环境。 ●2005年,在突尼斯举行的信息社会世界峰会上,国际电信联盟【ITU】指出,无 所不在的“物联网”通信时代即将到来。射频识别【RFID】,传感器技术,纳米技术,智能嵌入式技术将得到广泛应用。 ●2008年,IBM提出“智慧的地球”概念,即“互联网+物联网=智慧的地球”,以此作 为经济发展战略。 ●2009年,我国国家领导人在无锡微纳物联网工程技术研究中心视察并发表讲话, 表示中国要抓住机遇,大力发展物联网技术。

1.2 物联网与互联网的关系 物联网可用的基础网络有很多,其中互联网通常最适合作为物联网的基础网络,特别是当物物互联的范围超出局域网时。因此物联网的核心和基础目前任然是物联网,是在互联网基上延伸和扩展的网络。下表具体描述了互联网与物联网的比较。

1.3 运营商与物联网 完整的物联网产业链如图1-1所示,包括政府部门,科研院所,芯片生产商,终端生产商,系统集成商以及电信运营商等环节,涵盖了从标识,感知到信息传送,处理以及应用等方面。整个产业链的核心是芯片生产商,终端生产商,系统集成商以及电信运营商。

智能汽车车联网系统分析

智能汽车车联网系统分析 发表时间:2019-05-22T16:16:34.133Z 来源:《基层建设》2019年第5期作者:何晓蕊[导读] 摘要:作为车辆信息化与智能化的重要体系组成部分,车联网系统不仅能够实现车辆的远程控制、远程通讯、故障报警以及电子设备相互连接等诸多功能,更具备性能强、安全性高以及反应速度极快等优点,即使车辆行驶于较为偏远的地带,只要是处于网络信号覆盖下,车联网系统则都能搜索到相应的网络连接信号。 国能新能源汽车有限责任公司天津 300301 摘要:作为车辆信息化与智能化的重要体系组成部分,车联网系统不仅能够实现车辆的远程控制、远程通讯、故障报警以及电子设备相互连接等诸多功能,更具备性能强、安全性高以及反应速度极快等优点,即使车辆行驶于较为偏远的地带,只要是处于网络信号覆盖下,车联网系统则都能搜索到相应的网络连接信号。因此,在当前我国科技信息技术持续进步发展的时代背景下,车联网系统的重要性日益凸显。文中对智能汽车车联网系统进行了分析。 关键词:智能汽车;车联网;系统 1车联网系统概述 车联网系统是车辆智能化和信息化的重要体系之一,该系统提供必要的通信网络,实现车辆的远程通信、远程控制、故障报警、紧急事故报警等安防功能。同时该系统需提供车载WIFI热点,方便用户的其他便携式电子设备连接网络。该系统需提供足够快速、安全的通信网络,并且在全国所有网络信号已覆盖的地区能搜索到网络信号。 2对当前我国汽车车联网发展实际以及难点的分析当前,车联网实现了物联网与智能化汽车的有效连接,二者进行集成,这也是信息化与工业化相结合的重要方面。在新型车联网发展中红,发展了通信、控制以及智能技术的结合,对整个汽车行业,甚至交通运行也意义重大,带动了相关产品的智能化升级,生产方式得以创新,分工更加明确,使得汽车产业突破产品的束缚,更加倾向服务方向,是新型模式的发展。同时,在新一代车联网的发展中红,信息服务得以增强,安全性提高,能效性较强,使得汽车行业实现生态式的发展,立足设计、开发和制造,实现全生命周期的创新。当前,我国的汽车市场庞大,规模扩大。结合不同耳朵主导者,模式各异。首先,是以车厂为主体的模式,其自我进行平台的搭建,提供的是物联网中前装服务。其次,是以行业为主导的模式。主体是使用者或者集成商客户。再次,是电子消费品模式。第四,是移动互联网的模式。随着车联网的不断发展,其技术难点也十分突出,如,缺乏完善的标准和规范,互通性不强,需要不断进行平台和接口的建设。另外,数据安全性需要不断增啊,加强质量体系建设,强化行业可靠性。需要无线通信技术实现不同提升,强化性能,因此,要进行体制的不断创新,加大支持力度,推进车联网技术的不断发展。 3智能汽车车联网系统分析 在整个系统中,车载终端T-BOX是重要的通信设备,实现车内网络与移动网络的有效连接,实现用户在安防、信息获取以及娱乐方面的要求。作为通信的主要通道,其主要的载体是SIM卡,实现与运营商的有效通信,完成其诸多方面的作用和功能。在安防方面,能够实现对相关终端信息的有效接收,以独立终端的主体,实现与BCM的有效互通,主要涉及一些车辆的状态以及实时故障灯,将信号进行传输,达到对车辆的远控控制。另外,借助T-BOX,能够实现对车内新的预先定义,而后发送至相应的数据背景中,也能够实现对信息的接纳,达到及时反馈的目的。娱乐方面的功能主要是借助热点,与网络进行连接,能够进行网络娱乐的共享。 3.1车载终端 车载终端主要负责智能汽车车内网与车联网或者说移动网络之间的通信的重要功能,其次兼顾完成车内的信息收集、安全防护以及车内娱乐等部分功能,作为重要车载通信设备而存在。具体来说,车载终端内置SIM卡可与移动网络运营商通信,从而接通网络通道,进而实现上述娱乐、安防功能。在信息收集方面,车载终端与移动网络之间通信时可以同时将预先定义的车内网信息发送至数据中心,同样的,车载终端也能够直接接收到来自于数据中心所发送的反馈信号或控制信号。在安防功能实现方面,车载终端可以接收其他独立终端所发出的车辆信息、故障信息以及状态信息等,在处理远程控制信号时,也能够直接将其发送至不同相关终端,以实现车辆的远程控制功能。在娱乐方面,由于车载终端内设有WIFI热点,因此,车内人员直接以移动产品进行热点链接就可以进行网络连接。 3.2手机客户端 手机客户端,即手机APP,其功能主要包括用户登录、个人中心、车况显示以及相应的远程功能,通常情况下,为了保障用户信息的安全性,数据中心与手机客户端之间的通信一般采取加密方式,并且,客户端内可以设置相应的地图信息,如此一来,驾驶员就能够直接通过手机或其他设备清晰明确车辆位置的实时信息。 3.3数据中心 作为智能汽车车联网的核心部位,数据中心不仅承担着用户信息、车辆信息中转的重要枢纽作用,更多时候也充当着不同信息存储需求满足载体,其具体功能笔者现总结如下: 3.3.1具备网络通信功能 只有具有网络通信功能,数据中心才能够与用户的手机或其他移动设备进行相互连接,此时才能够实现数据与指令的相互传输与发送。其次,当数据中心社会有网页访问端口时,用户才能够在购买智能汽车后自行注册用户。 3.3.2具备保存用户车辆信息以及用户信息的功能 用户在购买智能汽车并注册用户后,数据中心则可以对用户信息(用户名、用户手机号码、车辆VIN码以及远程控制预设密码等)进行永久保存,且这些信息在任何情况下均不能对外泄露或盗取。另外,数据中还可以通过移动网络为用户显示相应的车辆信息,而用户运用手机客户端对车辆所发送的指令也可以被记录、储存于数据中心,通常情况下,这部分信息的保存期为1年。 3.3.3具备对车辆信息的分析计算功能 当数据中心具备这一功能后,汽车用户的日常驾驶习惯以及机动车近段时间内的油耗情况则可以通过数据中心的分析处理结果适时判断并提示用户是否存在危险驾驶或油耗较高现象,其次,在实际驾车时,所存储的车辆信息处理数据也可以给予用户相应的安全驾驶与经济驾驶建议。 3.3.4具体可拓展第三方应用与接收第三方信息的的功能

浅谈车联网对智能交通的影响

浅谈车联网对智能交通的影响 车联网推动智能交通发展。作为智慧城市的重要组成部分。智能交通可以有效缓解道路拥堵,提高出行效率,并改善由于尾气排放造成的空气污染,受到ZF和民众的高度重视。但是现阶段智能交通还处于初级阶段,能够为民众提供的出行信息服务(TISS)还非常有限,且发布方式还仅局限于网站、广播电台、交通短信息、呼叫中心等传统手段。 表1:现阶段智能交通够为民众提供的出行信息服务还非常有限 日本道路交通情报中心负责进行道路交通情报的收集整理、分析和发布。中心在全国有142个分支机构,与全国所有交通管理机构实现信息在线实时传输。全国主要道路都安装了交通量微波检测器(高速公路每间隔300米一处)和图像监控设备,自动采集交通信息。中心将交通情况收集整理和分析后通过互联网、电话、广播、电视、手机短信以及车载导航系统等媒体向道路用户发布,包括交通堵塞、事故、施工、高速公路入口封闭、停车场车位、大型车车辆外廓尺寸和轴载限制、交通规制及迂回绕路、到达目的地的线路选择、运行距离和时间、异常气象和自然灾害等信息,便于司机选择正确路线,缩短运输时间到达目的降低运输成本。

图1:出现信息通过多种网络媒体向道路用户发布 图2:出现信息服务体现以人为本 TISS需要底层的指挥诱导系统提供实时海量数据;此外“大交通”互联互通需要整合机场、铁路数据以及车管所车辆信息等等。现阶段中国刚刚在发达省份的主要公路上实现设备部署,可以进行信息采集,未来还需要进行信息的汇总及处理,从而形成有效的出行服务建议。随着公路、机场、铁路的不断新建,以及汽车保有量的持续攀升,交通的数据量将越来越大,因此基于互联网模式的采集和发布将成为主流模式。 表2:“大交通”互联互通将产生海量数据

物联网的关键技术汇总

物联网的关键技术 摘要 物联网是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络,是新一代信息技术的重要组成部分,近年来发展迅速,具有广阔的应用前景[1]。作为动态的全球网络基础设施,它的根本是物与物、人与物之间的信息传递与控制。物联网技术是一项综合性的技术,涵盖了从信息获取、传输、存储、处理直至应用的全过程,其关键在于传感器和传感网络技术的发展和提升,根据侧重点不同物联网技术的划分标准也不同,国际电信联盟的报告分为四大关键性技术:标签物品的RFID、感知事物的传感网络技术、思考事物的智能技术、微缩事物的纳米技术[2]。本文首先介绍这些技术的基本原理和发展,并就其中的几个核心技术进行详细的认识和探究,同时分析技术应用背后面临的问题和挑战,为物联网的发展提出更具前瞻性的建议。 关键词:物联网关键技术 RFID

Abstract The Internet of things is a based on the information such as the Internet, the traditional telecommunication network bearer, so that all can be independently addressable ordinary physical objects to achieve interoperability of networks is an important part of the new generation of information technology, the rapid development in recent years, with a broad Prospects. As a dynamic global network infrastructure, it is simply the transmission of information and control things and things, between persons and things. Things technology is an integrated technology, covering the information obtained from the transmission, storage, processing until the whole process of the application, the key lies in the sensor and sensor network technology development and promotion, according to the different focus of networking technology different criteria for the classification, the International Telecommunication Union report is divided into four key technologies: label items RFID, sensor network technology perceive things, think about things smart technology, miniature things nanotechnology. This paper describes the basic principles and development of these technologies and a detailed understanding and exploring on a few of the core technology, and analyzes the problems and challenges facing the technology behind the application, put forward more proactive proposals for the development of things. Key words:Web of Things,key technology,RFID

2019年智能汽车(ADAS)和车联网(V2X)的发展路径分析

2019年智能汽车(ADAS)和车联网(V2X)的发展路径分析

写在前面的 (6) 当前是无人驾驶的关键时点 (6) 智能汽车(ADAS)和车联网(V2X)分别是实现无人驾驶的内部和外部要求 (9) ADAS——车内智能的开端 (9) ADAS的原理、构成和分类 (10) 市场空间:全球市场规模众说纷纭,测算国内千亿前装规模 (12) 产业链公司发展现状及推荐标的 (15) 车联网——通向无人驾驶高级阶段的核心技术 (16) 广义车联网包含车内、车际和车云网 (16) 车际网是车联网之魂,其核心在于V2X技术 (16) 车联网市场空间:预计到2025年市场规模接近万亿级别 (19) 车联网标的推荐 (21) 展望:无人驾驶发展之路 (22) 短期关注ADAS渗透率提高带动传感器产业链发展 (23) 中期关注车联网伴生的智慧交通基础设施建设 (30) 长期关注L4级别成熟后共享汽车引领的出行方式颠覆 (38) 问题 (40) 安全问题或成为拖慢自动驾驶发展的重要因素 (41) 多传感器融合成为趋势的同时也将带来算法挑战 (41) 5G商用速度或影响车联网应用进度 (41) 标准法规制定 (42) 无人驾驶产业链标的推荐 (42) 华域汽车——龙头转型,业务结构持续优化 (42) 中国汽研——掌握核心技术,前瞻布局5G以及智能检索检测业务 (42) 德赛西威——国内车机龙头,智能驾驶推进有序 (43) 保隆科技——中国TPMS龙头,汽车电子新贵 (44) 星宇股份——好行业+好格局+好公司,具备全球车灯龙头潜质 (44) 拓普集团——智能刹车系统切入ADAS执行层 (45)

相关文档
最新文档