高考数学模拟复习试卷试题模拟卷214 6

合集下载

高考模拟复习试卷试题模拟卷高三数学数学试卷文科

高考模拟复习试卷试题模拟卷高三数学数学试卷文科

高考模拟复习试卷试题模拟卷高三数学数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=15.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.17.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.18.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}【分析】根据题意,将集合B用列举法表示出来,可得B={1,3,5},由交集的定义计算可得答案.【解答】解:根据题意,集合A={1,2,3},而B={y|y=2x﹣1,x∈A},则B={1,3,5},则A∩B={1,3},故选:A.【点评】本题考查集合的运算,注意集合B的表示方法.2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.【分析】利用互斥事件的概率加法公式即可得出.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=.故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.【分析】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解答】解:由主视图和俯视图可知切去的棱锥为D﹣AD1C,棱CD1在左侧面的投影为BA1,故选:B.【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于基础题.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,求出几何量a,b,c,即可求出双曲线的方程.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,∴c=,∵双曲线的一条渐近线与直线2x+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.5.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]【分析】函数f(x)=,由f(x)=0,可得=0,解得x=∉(π,2π),因此ω∉∪∪∪…=∪,即可得出.【解答】解:函数f(x)=+sinωx﹣=+sinωx=,由f(x)=0,可得=0,解得x=∉(π,2π),∴ω∉∪∪∪…=∪,∵f(x)在区间(π,2π)内没有零点,∴ω∈∪.故选:D.【点评】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为 1 .【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为3 .【分析】先求导,再带值计算.【解答】解:∵f(x)=(2x+1)ex,∴f′(x)=2ex+(2x+1)ex,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为 4 .【分析】根据循环结构,结合循环的条件,求出最后输出S的值.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.【点评】本题主要考查程序框图,循环结构,注意循环的条件,属于基础题.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为(x﹣2)2+y2=9 .【分析】由题意设出圆的方程,把点M的坐标代入圆的方程,结合圆心到直线的距离列式求解.【解答】解:由题意设圆的方程为(x﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2x﹣y=0的距离为,得,解得a=2,r=3.∴圆C的方程为:(x﹣2)2+y2=9.故答案为:(x﹣2)2+y2=9.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是[,).【分析】由减函数可知f(x)在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|f(x)|和y=2﹣的图象,根据交点个数判断3a与2的大小关系,列出不等式组解出.【解答】解:∵f(x)是R上的单调递减函数,∴y=x2+(4a﹣3)x+3a在(﹣∞.,0)上单调递减,y=loga(x+1)+1在(0,+∞)上单调递减,且f(x)在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f(x)|和y=2﹣的函数草图如图所示:由图象可知|f(x)|=2﹣在[0,+∞)上有且只有一解,∵|f(x)|=2﹣恰有两个不相等的实数解,∴x2+(4a﹣3)x+3a=2﹣在(﹣∞,0)上只有1解,即x2+(4a﹣)x+3a﹣2=0在(﹣∞,0)上只有1解,∴或,解得a=或a<,又≤a≤,∴.故答案为[,).【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【分析】(Ⅰ)设出变量,建立不等式关系,即可作出可行域.(Ⅱ)设出目标函数,利用平移直线法进行求解即可.【解答】解:(Ⅰ)由已知x,y满足不等式,则不等式对应的平面区域为,(Ⅱ)设年利润为z万元,则目标函数为z=2x+3y,即y=﹣x+,平移直线y=﹣x+,由图象得当直线经过点M时,直线的截距最大,此时z最大,由得,即M(20,24),此时z=40+72=112,即分别生产甲肥料20车皮,乙肥料24车皮,能够产生最大的利润,最大利润为112万元.【点评】本题主要考查线性规划的应用,根据条件建立约束条件,作出可行域,利用平移法是解决本题的关键.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.【分析】(1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;(2)根据余弦定理求出BD=,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;(3)先判断出直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,再根据余弦定理和解直角三角形即可求出答案.【解答】证明:(1)BD的中点为O,连接OE,OG,在△BCD中,∵G是BC的中点,∴OG∥DC,且OG=DC=1,又∵EF∥AB,AB∥DC,∴EF∥OG,且EF=OG,即四边形OGEF是平行四边形,∴FG∥OE,∵FG⊄平面BED,OE⊂平面BED,∴FG∥平面BED;(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,仅而∠ADB=90°,即BD⊥AD,又∵平面AED⊥平面ABCD,BD⊂平面ABCD,平面AED∩平面ABCD=AD,∴BD⊥平面AED,∵BD⊂平面BED,∴平面BED⊥平面AED.(Ⅲ)∵EF∥AB,∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,过点A作AH⊥DE于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB与平面BED所成的角为∠ABH,在△ADE,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,∴sin∠ADE=,∴AH=AD•,在Rt△AHB中,sin∠ABH==,∴直线EF与平面BED所成角的正弦值【点评】本题考查了直线与平面的平行和垂直,平面与平面的垂直,直线与平面所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.18.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.【分析】(1)根据等比数列的通项公式列方程解出公比q,利用求和公式解出a1,得出通项公式;(2)利用对数的运算性质求出bn,使用分项求和法和平方差公式计算.【解答】解:(1)设{an}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴an=2n﹣1.(2)∵bn是log2an和log2an+1的等差中项,∴bn=(log2an+log2an+1)=(log22n﹣1+log22n)=n﹣.∴bn+1﹣bn=1.∴{bn}是以为首项,以1为公差的等差数列.设{(﹣1)nbn2}的前2n项和为Tn,则Tn=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a的方程,解方程求得a值,则椭圆方程可求;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,得,整理得到M的坐标与k的关系,由∠MOA=∠MAO,得到x0=1,转化为关于k的等式求得k的值.【解答】解:(1)由+=,得+=,即=,∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.∴椭圆方程为;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),设B(x1,y1),M(x0,k(x0﹣2)),∵∠MOA=∠MAO,∴x0=1,再设H(0,yH),联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.由根与系数的关系得,∴,,MH所在直线方程为y﹣k(x0﹣2)=﹣(x﹣x0),令x=0,得yH=(k+)x0﹣2k,∵BF⊥HF,∴,即1﹣x1+y1yH=1﹣[(k+)x0﹣2k]=0,整理得:=1,即8k2=3.∴k=﹣或k=.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a>0,且x0≠0,由f′(x0)=0求出x0,分别代入解析式化简f (x0),f(﹣2x0),化简整理后可得证;(3)设g(x)在区间[﹣1,1]上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||}=max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。

A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。

所以A∩B={x|x=6k,k∈Z},故选B。

2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。

根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。

故选A。

3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。

又因为S6-S3=24,得到a4+a5+a6=24。

由等差数列的性质,a3+a6=a4+a5。

将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。

解方程组a1+a3=12和a4+a5=16,得到a4=8。

故选B。

二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。

再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。

5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。

【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。

三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。

2024年高考第二次模拟考试数学(新高考专用01)含答案

2024年高考第二次模拟考试数学(新高考专用01)含答案

2024年高考第二次模拟考试高三数学(答案在最后)全解全析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.A .B . C.1x x ≤-,或3x >D .【答案】B【分析】先化简集合,再利用集合的交并补运算求解即可,【详解】由题意得{}3A x x =>,{}1B x x =≤-,又{}1B x x =>-R ð则(){}1A B x x ⋃=>-R ð,故选:B.【分析】利用复数的概念及四则运算法则运算即可求解.【详解】因为i z a b =+,所以()2222(i)2i z a b a b ab =+=-+,又因为2z 为纯虚数,所以22020a b ab ⎧-=⎨≠⎩,即0a b =≠(舍)或0a b =-≠,所以i z a a =-,所以i z a a =+,所以2i 1i (1i)i i 1i (1i)(1i)z a a a a z ---====-+++-.故选:D3.已知向量()2,4a =- ,()1,b t = ,若a 与b 共线,则向量a b +在向量()0,1j = 上的投影向量为()A.jB.j -C.2jD.2j- 【答案】C 【解析】【分析】根据a 与b 共线,可得240t --=,求得2t =-,再利用向量a b +在向量()0,1j = 上的投影向量为()a b jjjj+⋅⋅ ,计算即可得解.【详解】由向量()2,4a =-,()1,b t = ,若a与b共线,则240t --=,所以2t =-,(1,2)a b +=-,所以向量a b +在向量()0,1j = 上的投影向量为:()(1,2)(0,1)21a b jj j j jj+⋅-⋅⋅=⋅=,故选:C4.“1ab >”是“10b a>>”()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义判断.【详解】当0a >时,由1ab >,可得10b a>>,当a<0时,由1ab >,得10b a<<;所以“1ab >”不是“10b a>>”的充分条件.因为01010a b ab a a>⎧⎪>>⇔-⎨>⎪⎩,所以1ab >,所以“1ab >”是“10b a>>”的必要不充分条件.故选:B.【点睛】本题考查不等式性质与充分、必要条件的判定,还考查了理解辨析问题的能力,属于基础题.5.有甲、乙等五人到三家企业去应聘,若每人至多被一家企业录用,每家企业至少录用其中一人且甲、乙两人不能被同一家企业录用,则不同的录用情况种数是()A.60B.114C.278D.336【答案】D【解析】命题意图本题考查排列与组合的应用.录用3人,有353360C A =种情况;录用4人,有4232354333162C C A C A -=种情况;录用5人,有12323331345333333225)4(C C A C A (C A C A )11A -+-=种情况.所以共有336种.6.已知D :222210x y ax a +---=,点()3,0P -,若D 上总存在M ,N 两点使得PMN 为等边三角形,则a 的取值范围是()A.()5,11,3⎡⎫--⋃-+∞⎪⎢⎣⎭ B.[)5,1,3⎛⎤-∞-⋃+∞ ⎥⎝⎦C.(][) ,21,-∞-⋃+∞D.[)()2,11,---+∞ 【答案】B 【解析】【分析】D 的圆心坐标为(),0D a ,半径为1r a =+,要使D 上总存在M ,N 两点使得PMN 为等边三角形,则D 上存在一点M ,使得30MPD ∠=︒,当PM 与D 相切时,MPD ∠最大,故sin sin 30rMPD PD∠=≥︒,由此可求解.【详解】D 的标准方程为()()2221x a y a -+=+,圆心坐标为(),0D a ,半径为1r a =+.因为,PM PN MD ND ==,所以PMD PND ≅△△.所以30MPD NPD ∠=∠=︒.要使D 上总存在M ,N 两点使得PMN 为等边三角形,则D 上存在一点M ,使得30MPD ∠=︒,当PM 与D 相切时,MPD ∠最大,此时30MPD ∠≥︒,故1sin sin 302r MPD PD ∠=≥︒=,即()1132a a +≥+,整理得23250a a +-≥,解得[)5,1,3a ⎛⎤∈-∞-⋃+∞ ⎥⎝⎦.故选:B.7.已知ABC 中,60BAC ∠=︒,2AB =,Q 是边BC 上的动点.若PA ⊥平面ABC ,PA =,且PQ与面ABC 所成角的正弦值的最大值为3,则三棱锥-P ABC 的外接球的表面积为()A.4πB.6πC.8πD.9π【答案】B 【解析】【分析】根据题意得PQ AQ 的最小值是1,即A 到BC 的距离为1,则∠ACB =90°,结合图形找出△ABC 的外接圆圆心与三棱锥-P ABC 外接球的球心,求出外接球的半径,再计算它的表面积.【详解】三棱锥-P ABC 中,PA ⊥平面ABC ,设直线PQ 与平面ABC 所成角为θ,∵sin θ的最大值是63,∴sin 3PA PQ PQ θ==≤,解得PQ ≥即PQ AQ 的最小值是1,即A 到BC 的距离为1,直角三角形△ABQ 中,AB =2,所以∠BAQ =60°,又∠BAC =60°,所以,A Q 重合,则∠ACB =90°,则△ABC 的外接圆圆心M 为AB 的中点,又PA ⊥平面ABC ,从而外接球的球心O 为PB 的中点,外接球的半径2R OB =====,∴三棱锥-P ABC 的外接球的表面积2264π4π6π2S R ⎛==⨯= ⎝⎭.故选:B .B.椭圆M的蒙日圆方程为D.长方形G的面积的最大值为【分析】由椭圆标准方程求得,a b后再求得c,从而可得离心率,利用特殊的长方形(即边长与椭圆的轴平行)求得蒙日圆方程,从而可得长方形边长的关系,结合基本不等式得面积最大值,并得出长方形为正方形时的边长.【详解】由椭圆方程知a2b=,则c==e==A正确;当长方形G的边与椭圆的轴平行时,长方形的边长分别为4,=因此蒙2210x y+=,B正确;设矩形的边长分别为,m n,因此22402m n mn+=≥,即20mn≤,当且仅当m n=时取等号,所以长方形G的面积的最大值是20,此时该长方形G为正方形,边长为C正确,D错误.故选:D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【分析】A,根据12||=MN x x p++结合基本不等式即可判断;B,由抛物线定义知当,,P M A三点共线时MF MP+;C,D,设直线方程,联立抛物线,应用韦达定理即可求解.【详解】对A,设112212(,),(,),(,0)M x y N x y x x>,因为这些MN倾斜角不为0,则设直线MN的方程为32x ky=+,联立抛物线得2690y ky--=,则12126,9y y k y y+=⋅=-,所以()()221212121212399363,244k x x k y y k x x k y y y y ∴+=++=+=+++=,则212||=3666MN x x k ++=+≥(当且仅当0k =时等号成立),A 正确;对B ,如图MA ⊥抛物线准线,MF MP MA MP +=+要使其最小,即,,P M A 三点共线时取得最小值,即53||422MF MP MA MP PA +=+==+=,B 正确;对C ,由()121212311||||239||||||||324x x NF MF MF NF MF NF x x x x ++++===+++,C 错误;对D ,1212123339(()()2224MF NF x x x x x x ⋅=+⋅+=+++2293993(63)(63)1842422k k =+++=++=,解得1k =±,D 正确故选:ABD.10.已知双曲线()222:102x y E a a -=>的左、右焦点别为1F ,2F ,过点2F 的直线l 与双曲线E 的右支相交于,P Q 两点,则()A.若E的两条渐近线相互垂直,则a =B.若EE 的实轴长为1C.若1290F PF ∠=︒,则124PF PF ⋅=D.当a 变化时,1F PQ周长的最小值为【答案】ACD 【解析】【分析】根据双曲线的渐近线、离心率、定义、三角形的周长等知识对选项进行分析,从而确定正确答案.【详解】依题意,b =,A选项,若双曲线的两条渐近线相互垂直,所以1,ba b a===A 正确;B 选项,若E的离心率为c e a =====,解得1a =,所以实轴长22a =,故B 错误;C 选项,若1290F PF ∠=︒,则122221224PF PF aPF PF c⎧-=⎪⎨+=⎪⎩,整理得222121224448,4PF PF c a b PF PF ⋅=-==⋅=,故C 正确;D 选项,根据双曲线的定义可知,121222PF PF aQF QF a ⎧-=⎪⎨-=⎪⎩,两式相加得11114,4PF QF PQ a PF QF a PQ +-=+=+,所以1F PQ 周长为42a PQ +,当12PQ F F ⊥时,PQ 取得最小值224b a a=,所以8424a PQ a a +≥+≥=,当且仅当84a a=,即a =所以1F PQ周长的最小值为D 正确.故选:ACD【分析】A 选项,建立空间直角坐标系,根据112B D EF = 得到11B D 与EF 平行;B 选项,先求出242,,333P ⎛⎫⎪⎝⎭,得到平面1APB 的法向量()1,0,1m =- ,根据数量积为0得到BC m ⊥,得到BC //平面1APB ;C 选项,先求出1A F 与平面1B EB 所成角的正弦值,进而求出余弦值;D 选项,求出平面1A EF 的法向量,根据点到平面距离公式求出答案.【详解】A 选项,以A 作坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴,建立空间直角坐标系,()()()()()()()1112,0,2,0,2,2,2,1,0,1,2,0,0,0,2,2,0,0,2,2,0B D E F A B C ,则()()112,2,0,1,1,0B D EF =-=- ,由于112B D EF =,故11B D 与EF 平行,A 错误;B 选项,设(),,P x y z ,因为12A P PF =,所以()()2,,21,2,x y z x y z ----=,即224222x xy y z z=-⎧⎪=-⎨⎪-=-⎩,解得242,,333x y z ===,故242,,333P ⎛⎫ ⎪⎝⎭,设平面1APB 的法向量为(),,m a b c =,则()()()1242242,,,,0333333,,2,0,2220m AP a b c a b c mAB a b c a c ⎧⎛⎫⋅=⋅=++= ⎪⎪⎝⎭⎨⎪⋅=⋅=+=⎩ ,令1a =,则0,1b c ==-,则()1,0,1m =-,因为()()0,2,01,0,10BC m ⋅=-= ,故BC m ⊥,BC //平面1APB ,故存在点P ,使得12A P PF =,且BC //平面1APB ,B 正确;C 选项,平面1B EB 的法向量为()1,0,0n =r,故1A F 与平面1B EB 所成角的正弦值为1113A F n A F n ⋅==⋅,则1A F 与平面1B EBC 正确;D 选项,设平面1A EF 的法向量为()1111,,n x y z =,则()()()()11111111111111,,2,1,2220,,1,1,00n A E x y z x y z n EF x y z x y ⎧⋅=⋅-=+-=⎪⎨⋅=⋅-=-+=⎪⎩ ,令11x =,则1131,2y z ==,故131,1,2n ⎛⎫= ⎪⎝⎭ ,则点1B 到平面1A EF的距离为111141717A B n n ⋅=,D 错误.故选:BC三、填空题:本题共3小题,每小题5分,共15分.12.若二项式2nx x ⎛+ ⎝的展开式中二项式系数之和为64,则二项展开式中系数最大的项为【答案】240【解析】【详解】因为二项式2nx x ⎛+ ⎝的展开式中二项式系数之和为64,所以264n =,得6n =,所以二项式为6x x ⎛+ ⎝,则二项式展开式的通项3662166C (C 2r r rr r rr T xx x--+==,令第1r +项的系数最大,则11661166C 2C 2C 2C 2r r r r r r r r --++⎧≥⎨≥⎩,解得111433r ≤≤,因为N r ∈,所以4r =,则二项展开式中系数最大的项为36444256C 2240T x-⨯==,所以填24013.若函数()sin f x ax x =+的图像上存在两条互相垂直的切线,则实数a 是__________.【答案】0【解析】【详解】注意到,()cos f x a x =+'.若函数()f x 上存在两条切线垂直,则存在1x 、2x R ∈,使得()()()()12121cos cos 1f x f x a x a x ''=-⇔++=-()21212cos cos cos cos 10a a x x x x ⇔+++⋅+=221212cos cos cos cos 1022x x x x a +-⎛⎫⎛⎫⇔++-= ⎪ ⎪⎝⎭⎝⎭12cos cos 1,0x x a ⇔=-=±=.故答案为014.若过点()0,1的直线l 自左往右交抛物线214y x =及圆()22114x y +-=于,,,A B C D 四点,则3AB CD +的最小值为________.【答案】2+【解析】【分析】根据抛物线的定义求得求出11,22A D AB y CD y =+=+,当l y ⊥轴时,则1D A y y ==,可求3AB CD +的值;当直线方程为()1x n y =-时,代入抛物线方程,根据韦达定理结合基本不等式求得此时3AB CD +的最小值,即可得结论.【详解】解:如图,其中抛物线214y x =的焦点坐标为()0,1F ,抛物线的准线方程为:1y =-,圆()22114x y +-=的半径12r =又抛物线的定义可得:1,1A D AF y DF y =+=+,又11,22A D AB AF BF y CD DF CF y =-=+=-=+,当l y ⊥轴时,则1A D y y ==,所以113131622AB CD ⎛⎫+=+++= ⎪⎝⎭;当l 不垂直于y 轴时,设l 的方程为:()1x n y =-,代入抛物线方程得:()2222240n y n y n -++=,所以2224,1A D A D n y y y y n++=⋅=。

模拟高考数学试题及答案

模拟高考数学试题及答案

模拟高考数学试题及答案一、选择题(每题5分,共30分)1. 若函数f(x) = 2x^2 + 3x - 5的图像与x轴有两个交点,则这两个交点的横坐标之和为:A. -3/2B. 3/2C. -1D. 12. 已知向量a = (3, -1)和向量b = (2, 4),则向量a与向量b的数量积为:A. 10B. 8C. -2D. 23. 已知双曲线的方程为x^2/a^2 - y^2/b^2 = 1,其中a > 0,b > 0,若该双曲线的渐近线方程为y = ±(2/3)x,则a与b的比值为:A. 2:3B. 3:2C. 3:4D. 4:34. 函数f(x) = ln(x+1) - x在区间(0, +∞)上单调递减的充分不必要条件是:A. x > 0B. x ≥ 1C. x > 1D. x ≥ 05. 已知数列{an}满足a1 = 1,an+1 = 2an + 1,求数列{an}的前n项和Sn的最大值:A. 2^n - 1B. 2^(n+1) - 1C. 2^(n+1) - 2D. 2^(n+2) - 36. 已知圆C的方程为(x-2)^2 + (y+1)^2 = 9,直线l的方程为y = x + m。

若圆C与直线l相切,则m的值为:A. 4B. -4C. 2D. -2二、填空题(每题5分,共20分)7. 若函数f(x) = ax^3 + bx^2 + cx + d(a ≠ 0)的图像关于点(1, 2)对称,则a + b + c + d = _______。

8. 已知等差数列{an}的首项a1 = 2,公差d = 3,若Sn为数列{an}的前n项和,则S5 = _______。

9. 已知抛物线y^2 = 4x的焦点F(1, 0),点P(2, 4)在抛物线上,求过点P且与抛物线相切的直线方程为:y = _______(x - 1) + 4。

10. 已知函数f(x) = x^3 - 3x^2 + 2,若f(x)在区间[a, b]上单调递增,则a的取值范围为:a ≤ _______。

陕西省西安高新唐南中学2025届高考数学全真模拟密押卷含解析

陕西省西安高新唐南中学2025届高考数学全真模拟密押卷含解析

陕西省西安高新唐南中学2025届高考数学全真模拟密押卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设实数满足条件则的最大值为( ) A .1B .2C .3D .42.已知双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别为12,F F ,O 为坐标原点,P 为双曲线在第一象限上的点,直线PO ,2PF 分别交双曲线C 的左,右支于另一点12,,3M N PF PF =若,且260MF N ∠=,则双曲线的离心率为( ) A 5B .3C .2D .723.抛物线23x ay =的准线方程是1y =,则实数a =( ) A .34-B .34C .43-D .434.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = )A .85B .65C .45D .255.已知集合{}2{|23,},|1=-<<∈=>A x x x N B x x A ,则集合A B =( )A .{2}B .{1,0,1}-C .{2,2}-D .{1,0,1,2}-6.若复数z 满足(2)(1)z i i =+-(i 是虚数单位),则||z =( )A .102B 10C 5D 57.记n S 为等差数列{}n a 的前n 项和.若25a =-,416S =-,则6a =( ) A .5B .3C .-12D .-138.函数()22xf x a x=--的一个零点在区间()1,2内,则实数a 的取值范围是( ) A .()1,3B .()1,2C .()0,3D .()0,29.已知抛物线2()20C x py p :=>的焦点为1(0)F ,,若抛物线C 上的点A 关于直线22l y x +:=对称的点B 恰好在射线()113y x ≤=上,则直线AF 被C 截得的弦长为( ) A .919B .1009C .1189D .127910.一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半.若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )A .1B .2C .3D .2211.已知函数()f x 是定义在R 上的偶函数,且在(0,)+∞上单调递增,则( ) A .()()0.63(3)log 132f f f -<-<B .()()0.63(3)2log 13f f f -<<-C .()()0.632log 13(3)ff f <-<- D .()()0.632(3)log 13ff f <-<-12.若某几何体的三视图如图所示,则该几何体的表面积为( )A .240B .264C .274D .282二、填空题:本题共4小题,每小题5分,共20分。

高三数学模拟试题及答案

高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题(每题4分,共40分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)2. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B。

A. {1, 2, 3, 4}B. {1, 3, 4}C. {2, 3, 4}D. {1, 2, 3}3. 若sin(α) = 1/2,且α为锐角,求cos(α)的值。

A. √3/2B. -√3/2C. 1/2D. -1/24. 已知等差数列{an}的首项a1=2,公差d=3,求其第5项a5。

A. 17B. 14C. 11D. 85. 圆的方程为(x-3)^2 + (y-4)^2 = 25,求圆心坐标。

A. (3, 4)B. (-3, -4)C. (0, 0)D. (4, 3)6. 函数f(x) = x^2 - 4x + 4的最小值是多少?A. 0B. -4C. 4D. 17. 已知直线y = 2x - 3与抛物线y^2 = 4x相交于两点,求这两个点的坐标。

A. (1, -1), (3, 3)B. (1, 1), (3, -1)C. (1, 1), (3, 3)D. (1, -1), (3, -1)8. 已知向量a = (2, 3),b = (-1, 2),求a·b。

A. 4B. -1C. 1D. -49. 已知三角形ABC,∠A = 60°,a = 5,b = 7,求c的长度。

A. 3B. 4C. 6D. 810. 已知函数f(x) = x^3 - 3x^2 - 9x + 5,求f'(x)。

A. 3x^2 - 6x - 9B. x^2 - 6x - 9C. 3x^2 - 6x + 5D. x^3 - 3x^2 - 9二、填空题(每题4分,共20分)11. 已知等比数列{bn}的首项b1=8,公比q=2,求其第4项b4的值。

高考数学模拟复习试卷试题模拟卷214 6

高考数学模拟复习试卷试题模拟卷214 6

高考模拟复习试卷试题模拟卷【高频考点解读】1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.2.掌握数量积的坐标表达式,会进行平面向量数量积的运算.3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题.【热点题型】题型一 平面向量数量积的运算例1、(1)已知点A(-1,1)、B(1,2)、C(-2,-1)、D(3,4),则向量AB →在CD →方向上的投影为( ) A.322 B.3152 C.-322D .-3152(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.【提分秘籍】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.【举一反三】(1)已知平面向量a =(x1,y1),b =(x2,y2),若|a|=2,|b|=3,a·b =-6.则x1+y1x2+y2的值为( )A.23B .-23C.56D .-56(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A.2B .2C.6D .6 题型二 求向量的模与夹角例2、(1)若平面向量a 与平面向量b 的夹角等于π3,|a|=2,|b|=3,则2a -b 与a +2b 的夹角的余弦值等于( )A.126B .-126 C.112D .-112(2)已知向量a ,b 的夹角为45°,且|a|=1,|2a -b|=10,则|b|=________.(3)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若A P →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.【提分秘籍】(1)在数量积的基本运算中,经常用到数量积的定义、模、夹角等公式,尤其对|a|=a·a 要引起足够重视,它是求距离常用的公式.(2)要注意向量运算律与实数运算律的区别和联系.在向量的运算中,灵活运用运算律,就会达到简化运算的目的.【举一反三】(1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.(2)已知单位向量e1与e2的夹角为α,且cosα=13,向量a =3e1-2e2与b =3e1-e2的夹角为β,则cosβ=________.题型三 数量积的综合应用例3、已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△AB C 的面积.【提分秘籍】解决以向量为载体考查三角形问题时,正弦定理、余弦定理、面积公式的应用、边与角之间的互化是判断三角形形状的常用方法.【举一反三】已知向量m =(2sin(ωx +π3),1),n =(2cosωx ,-3)(ω>0),函数f(x)=m·n 的两条相邻对称轴间的距离为π2.(1)求函数f(x)的单调递增区间; (2)当x ∈[-5π6,π12]时,求f(x)的值域. 题型四向量在平面几何中的应用例4、如图所示,四边形ABCD 是正方形,P 是对角线DB 上的一点(不包括端点),E ,F 分别在边BC ,DC 上,且四边形PFCE 是矩形,试用向量法证明:PA =EF.【提分秘籍】用向量方法解决平面几何问题可分三步:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何关系. 【举一反三】(1)在边长为1的菱形ABCD 中,∠BAD =60°,E 是BC 的中点,则AC →·AE →等于( ) A.3+33 B.92 C.3D.94(2)在△ABC 所在平面上有一点P ,满足PA →+PB →+PC →=AB →,则△PAB 与△ABC 的面积的比值是( ) A.13B.12C.23D.34题型五向量在三角函数中的应用例5、已知在锐角△ABC 中,两向量p =(2-2sinA ,cosA +sinA),q =(sinA -cosA,1+sinA),且p 与q 是共线向量.(1)求A 的大小; (2)求函数y =2sin2B +cos ⎝⎛⎭⎫C -3B 2取最大值时,B 的大小. 【提分秘籍】解决平面向量与三角函数的交汇问题的关键:准确利用向量的坐标运算化简已知条件,将其转化为三角函数中的有关问题解决.【举一反三】(1)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cosA ,sinA).若m ⊥n ,且acosB +bcosA =csinC ,则角A ,B 的大小分别为( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3(2)△ABC 的三个内角A ,B ,C 所对的边长分别是a ,b ,c ,设向量m =(a +b ,sinC),n =(3a +c ,sinB -sinA),若m ∥n ,则角B 的大小为________.题型六平面向量在解析几何中的应用例6、(1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k),且A 、B 、C 三点共线,当k<0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y2=3的圆心,且圆上有一点M(x ,y)满足OM →·CM →=0,则y x =________.【提分秘籍】向量的共线和数量积在解析几何中可以解决一些平行、共线、垂直、夹角及最值问题,在解题中要充分重视数量积及其几何意义的作用.【举一反三】已知a ,b 是单位向量,a·b =0.若向量c 满足|c -a -b|=1,则|c|的最大值为________. 【高考风向标】1.【高考广东,文9】在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .52.【高考重庆,文7】已知非零向量,a b 满足||=4||(+)b a a a b ⊥,且2则a b 与的夹角为() (A)3π (B) 2π (C) 32π (D) 65π3.【高考福建,文7】设(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 的值等于( ) A .32-B .53-C .53D .324.【高考天津,文13】在等腰梯形ABCD 中,已知AB DC ,2,1,60,AB BC ABC ==∠=点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==则AE AF ⋅的值为. 5.【高考浙江,文13】已知1e ,2e 是平面单位向量,且1212e e ⋅=.若平面向量b 满足121b e b e ⋅=⋅=,则b =.1.(·北京卷)已知向量a ,b 满足|a|=1,b =(2,1),且λa +b =0(λ∈R),则|λ|=________. 2.(·湖北卷)设向量a =(3,3),b =(1,-1).若(a +λb)⊥(a -λb),则实数λ=________.3.(·江西卷)已知单位向量e1与e2的夹角为α,且cos α=13,向量a =3e1-2e2与b =3e1-e2的夹角为β,则cos β=________..4.(·全国卷)若向量a ,b 满足:=1,(a +b)⊥a ,(+b)⊥b ,则|=() A .2 B.2 C .1 D.225.(·新课标全国卷Ⅱ] 设向量a ,b 满足|a +b|=10,|a -b|=6,则=() A .1 B .2 C .3 D .56.(·山东卷)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______.7.(·天津卷)已知菱形AB CD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC.若AE →·AF →=1,CE →·CF →=-23,则λ+μ=()A.12B.23C.56D.7128.(高考湖北卷)已知点A(-1,1)、B(1,2)、C(-2,-1)、D(3,4),则向量AB →在CD →方向上的投影为() A.322B.3152C .-322D .-31529.(高考湖南卷)已知a ,b 是单位向量,a·b =0.若向量c 满足|c -a -b|=1,则|c|的取值范围是() A .[2-1,2+1] B.[]2-1,2+2C .[1,2+1]D .[1,2+2]10.(高考辽宁卷)设向量a =(3sin x ,sin x),b =(cos x ,sin x),x ∈⎣⎡⎦⎤0,π2.(1)若|a|=|b|,求x 的值;(2)设函数f(x)=a·b ,求f(x)的最大值.11.(高考陕西卷)已知向量a =⎝⎛⎭⎫cos x ,-12,b =(3sin x ,cos 2x),x ∈R ,设函数f(x)=a·b.(1)求f(x)的最小正周期;(2)求f(x)在⎣⎡⎦⎤0,π2上的最大值和最小值.【高考押题】1.若向量a ,b 满足|a|=|b|=|a +b|=1,则a·b 的值为( ) A .-12B.12C .-1D .12.已知向量a =(1,3),b =(-1,0),则|a +2b|等于( ) A .1B.2C .2D .43.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a)∥b ,c ⊥(a +b),则c 等于( ) A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 4.向量AB →与向量a =(-3,4)的夹角为π,|AB →|=10,若点A 的坐标是(1,2),则点B 的坐标为( ) A .(-7,8) B .(9,-4) C .(-5,10) D .(7,-6)5.在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( ) A.5B .25C .5D .106.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( )A.OM →B .2OM → C .3OM →D .4OM →7.平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( ) A .矩形B .梯形 C .正方形D .菱形8.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形B .等腰三角形 C .直角三角形D .等腰直角三角形9.已知点A(-2,0)、B(3,0),动点P(x ,y)满足PA →·PB →=x2-6,则点P 的轨迹是( ) A .圆B .椭圆 C .双曲线D .抛物线10.若函数y =Asin(ωx +φ)(A>0,ω>0,|φ|<π2)在一个周期内的图象如图所示,M ,N 分别是这段图象的最高点和最低点,且OM →·ON →=0(O 为坐标原点),则A 等于( )A.π6B.712πC.76πD.73π11.已知在△ABC 中,AB →=a ,AC →=b ,a·b<0,S △ABC =154,|a|=3,|b|=5,则∠BA C =________. 12.已知|a|=2|b|,|b|≠0且关于x 的方程x2+|a|x -a·b =0有两相等实根,则向量a 与b 的夹角是________.13.已知在平面直角坐标系中,O(0,0),M(1,1),N(0,1),Q(2,3),动点P(x ,y)满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________.14.已知△ABC 中,∠C 是直角,CA =CB ,D 是CB 的中点,E 是AB 上一点,且AE =2EB ,求证:AD ⊥CE.15.已知A ,B ,C 三点的坐标分别为A(3,0),B(0,3),C(cosα,sinα),其中α∈(π2,3π2). (1)若|AC →|=|BC →|,求角α的值. (2)若AC →·BC →=-1,求tan(α+π4)的值.16.已知向量p =(2sinx ,3cosx),q =(-sinx,2sinx),函数f(x)=p·q. (1)求f(x)的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f(C)=1,c =1,ab =23,且a>b ,求a ,b 的值.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【热点题型】题型一空间几何体的三视图和直观图例1、(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.答案(1)B(2)6 16a2解析(1)该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选B.(2)画出坐标系x′O′y′,作出△OAB的直观图O′A′B′(如图).D′为O′A′的中点.易知D′B′=12DB(D 为OA 的中点),∴S △O′A′B′=12×22S △OAB =24×34a2=616a2. 【提分秘籍】(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.【举一反三】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm ,O′C′=2cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形答案 (1)B (2)C解析 (1)如图,几何体为三棱柱.题型二 空间几何体的表面积与体积例2、(1)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13(2)一个多面体的三视图如图所示,则该多面体的体积为( )A.233B.476C .6D .7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为________.答案 (1)C (2)A (3)1∶2∶3解析 (1)由三视图可知几何体是如图所示的两个圆柱的组合体.其中左面圆柱的高为4cm ,底面半径为2cm ,右面圆柱的高为2cm ,底面半径为3cm ,则组合体的体积V1=π×22×4+π×32×2=16π+18π=34π(cm3),原毛坯体积V2=π×32×6=54π(cm3),则所求比值为54π-34π54π=1027.(2)该几何体是正方体去掉两个角所形成的多面体,其体积为V =2×2×2-2×13×12×1×1×1=233.(3)设正方体的棱长为a ,①正方体的内切球球心是正方体的中心,切点是六个面的中心,经过四个切点及球心作截面如图①所示,有2r1=a ,∴r1=a 2,S1=4πr 21=πa2.【提分秘籍】(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.【举一反三】(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A.48 B.32+817C.48+817 D.80(2)把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成三棱锥C-ABD的正视图与俯视图如图所示,则侧视图的面积为()A.12 B .22 C.14 D.24答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)因为C 在平面ABD 上的射影为BD 的中点O ,在边长为1的正方形ABCD 中,AO =CO =12AC =22,所以侧视图的面积等于S △AOC =12CO·AO =12×22×22=14,故选C.题型三 空间几何体的结构特征例3、 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.答案 ②③④⑤解析 ①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体AC1中的三棱锥C1-ABC,四个面都是直角三角形;⑤正确,由棱台的概念可知.【提分秘籍】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.【举一反三】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1 C.2 D.3答案A图1 图2【高考风向标】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()A .83cmB .123cmC .3233cmD .4033cm【答案】C【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )123π+ (B) 136π (C) 73π (D) 52π 【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B. 3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+【答案】D4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.5.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于()1112A.822+ B.1122+ C.1422+ D.15【答案】B6.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A)223π(B)423π()22π()42π【答案】B【解析】由题意知,该等腰直角三角形的斜边长为22,斜边上的高为2,所得旋转体为同底等高的全等圆锥,所以,其体积为2142(2)223ππ⨯⨯=,故选B.7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13+ (B )122+ (C )23+ (D )22【答案】C【解析】由该几何体的三视图可知,该几何体的直观图,如下图所示:其中侧面PAC ⊥底面ABC ,且PAC ∆≌ABC ∆,由三视图中所给数据可知: 2====BC AB PC PA ,取AC 中点,O 连接BO PO ,,则POB Rt ∆中,1==BO PO ⇒2=PB ∴3222212432+=⋅⋅+⋅⋅=S ,故选C. 8.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .【答案】8π3 【解析】该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,所以该几何体的体积为318π2π1π2(m )33⨯⨯⨯+⨯= . 9.【高考四川,文14】在三棱住ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B1C1的中点,则三棱锥P -A1MN 的体积是______.【答案】12410.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2 A.233 B.476 C .6 D .7【答案】A 【解析】如图所示,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其体积V =8-2×13×12×1×1×1=233.11.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .4【答案】B【解析】由三视图可知,石材为一个三棱柱(相对应的长方体的一半),故可知能得到的最大球为三棱柱的内切球.由题意可知正视图三角形的内切圆的半径即为球的半径,可得R =6+8-102=2. 12.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π【答案】C【解析】由题意可知,旋转体是一个底面半径为1,高为1的圆柱,故其侧面积为2π×1×1=2π.13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16πC .9π D.27π4【答案】A14.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形. 【解析】解:(1)由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.(2)证明:∵BC ∥平面EFGH ,平面EFGH∩平面BDC =FG ,平面EFGH∩ 平面ABC =EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH.同理EF ∥AD ,HG ∥AD ,∴EF ∥HG ,∴四边形EFGH 是平行四边形.又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG ,∴四边形EFGH 是矩形.【高考押题】1.下列结论中正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线答案 D解析 当一个几何体由具有相同的底面且顶点在底面两侧的两个三棱锥构成时,尽管各面都是三角形,但它不是三棱锥,故A 错误;若三角形不是直角三角形或是直角三角形但旋转轴不是直角边所在直线,所得几何体就不是圆锥,B 错误;若六棱锥的所有棱都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,则棱长必然要大于底面边长,故C 错误.2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有( )A .20B .15C .12D .10答案 D解析 如图,在五棱柱ABCDE -A1B1C1D1E1中,从顶点A 出发的对角线有两条:AC1,AD1,同理从B ,C ,D ,E 点出发的对角线均有两条,共2×5=10(条).3.已知底面边长为1,侧棱长为2的正四棱柱(底面是正方形的直棱柱)的各顶点均在同一个球面上,则该球的体积为( )A.32π3B .4πC .2πD.4π3答案 D解析 正四棱柱的外接球的球心为上下底面的中心连线的中点,所以球的半径r =222+222=1,球的体积V =4π3r3=4π3.故选D.4.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .72cm3B .90cm3C .108cm3D .138cm3答案 B解析 该几何体为一个组合体,左侧为三棱柱,右侧为长方体,如图所示.V =V 三棱柱+V 长方体=12×4×3×3+4×3×6=18+72=90(cm3).5.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()答案B解析由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故A不正确.6.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与表面积的比值为________.答案2π2π+17.一个几何体的三视图如图所示,其中侧视图与俯视图均为半径是2的圆,则这个几何体的体积是________.答案 8π解析 由三视图知该几何体是半径为2的球被截去四分之一后剩下的几何体,则该几何体的体积V =43×π×23×34=8π.8.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的正视图和俯视图是相同的正方形,求它们的表面积之比.9.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20cm 和30cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如图所示,三棱台ABC —A1B1C1中,O 、O1分别为两底面中心,D 、D1分别为BC 和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB =30,则OD =53,O1D1=1033,由S 侧=S 上+S 下,得 12×(20+30)×3DD1=34×(202+302),解得DD1=1333,在直角梯形O1ODD1中,O1O =DD21-OD -O1D12=43,所以棱台的高为43cm.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)一、选择题(共30题,每题2分,共60分)1. 已知函数 $ f(x) = x^2 4x + 3 $,则下列哪个选项是正确的?A. $ f(x) $ 在 $ x = 2 $ 处取得最小值B. $ f(x) $ 在 $ x = 2 $ 处取得最大值C. $ f(x) $ 在 $ x = 2 $ 处取得极值D. $ f(x) $ 在 $ x = 2 $ 处无极值2. 若 $ \log_2 8 = x $,则 $ x $ 的值为多少?A. 3B. 4C. 5D. 63. 已知等差数列 $ \{a_n\} $,若 $ a_1 = 3 $,$ a_3 = 9 $,则 $ a_5 $ 的值为多少?A. 12B. 15C. 18D. 214. 若 $ \sin^2 x + \cos^2 x = 1 $,则下列哪个选项是正确的?A. $ \sin x $ 和 $ \cos x $ 必须同时为正B. $ \sin x $ 和 $ \cos x $ 必须同时为负C. $ \sin x $ 和 $ \cos x $ 一正一负D. $ \sin x $ 和 $ \cos x $ 可以同时为零5. 若 $ \frac{a}{b} = \frac{c}{d} $,则下列哪个选项是正确的?A. $ a + c = b + d $B. $ ad = bc $C. $ a c = b d $D. $ \frac{a}{c} = \frac{b}{d} $6. 已知 $ a $、$ b $、$ c $ 是等边三角形的三边长,则下列哪个选项是正确的?A. $ a^2 + b^2 = c^2 $B. $ a^2 + c^2 = b^2 $C. $ b^2 + c^2 = a^2 $D. $ a = b = c $7. 若 $ \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 $,则下列哪个选项是正确的?A. 该方程表示椭圆B. 该方程表示双曲线C. 该方程表示抛物线D. 该方程表示圆8. 已知 $ \sqrt{3} $ 是方程 $ x^2 2x + 1 = 0 $ 的根,则该方程的另一根为多少?A. $ 1 \sqrt{3} $B. $ 1 + \sqrt{3} $C. $ 2 \sqrt{3} $D. $ 2 + \sqrt{3} $9. 若 $ a $、$ b $、$ c $ 是三角形的三边长,且 $ a^2 +b^2 = c^2 $,则下列哪个选项是正确的?A. 该三角形是等腰三角形B. 该三角形是等边三角形C. 该三角形是直角三角形D. 该三角形是钝角三角形10. 若 $ \frac{1}{x} + \frac{1}{y} = \frac{1}{z} $,则下列哪个选项是正确的?A. $ x + y = z $B. $ xy = z $C. $ \frac{1}{x} + \frac{1}{y} = z $D. $ x + y + z = 0 $二、填空题(共10题,每题2分,共20分)11. 已知 $ f(x) = 2x + 1 $,若 $ f(3) = 7 $,则 $ f(1)$ 的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟复习试卷试题模拟卷【高频考点解读】1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.2.掌握数量积的坐标表达式,会进行平面向量数量积的运算.3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题.【热点题型】题型一 平面向量数量积的运算例1、(1)已知点A(-1,1)、B(1,2)、C(-2,-1)、D(3,4),则向量AB →在CD →方向上的投影为( ) A.322 B.3152 C.-322D .-3152(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.【提分秘籍】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.【举一反三】(1)已知平面向量a =(x1,y1),b =(x2,y2),若|a|=2,|b|=3,a·b =-6.则x1+y1x2+y2的值为( )A.23B .-23C.56D .-56(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A.2B .2C.6D .6 题型二 求向量的模与夹角例2、(1)若平面向量a 与平面向量b 的夹角等于π3,|a|=2,|b|=3,则2a -b 与a +2b 的夹角的余弦值等于( )A.126B .-126 C.112D .-112(2)已知向量a ,b 的夹角为45°,且|a|=1,|2a -b|=10,则|b|=________.(3)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若A P →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.【提分秘籍】(1)在数量积的基本运算中,经常用到数量积的定义、模、夹角等公式,尤其对|a|=a·a 要引起足够重视,它是求距离常用的公式.(2)要注意向量运算律与实数运算律的区别和联系.在向量的运算中,灵活运用运算律,就会达到简化运算的目的.【举一反三】(1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.(2)已知单位向量e1与e2的夹角为α,且cosα=13,向量a =3e1-2e2与b =3e1-e2的夹角为β,则cosβ=________.题型三 数量积的综合应用例3、已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△AB C 的面积.【提分秘籍】解决以向量为载体考查三角形问题时,正弦定理、余弦定理、面积公式的应用、边与角之间的互化是判断三角形形状的常用方法.【举一反三】已知向量m =(2sin(ωx +π3),1),n =(2cosωx ,-3)(ω>0),函数f(x)=m·n 的两条相邻对称轴间的距离为π2.(1)求函数f(x)的单调递增区间; (2)当x ∈[-5π6,π12]时,求f(x)的值域. 题型四向量在平面几何中的应用例4、如图所示,四边形ABCD 是正方形,P 是对角线DB 上的一点(不包括端点),E ,F 分别在边BC ,DC 上,且四边形PFCE 是矩形,试用向量法证明:PA =EF.【提分秘籍】用向量方法解决平面几何问题可分三步:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何关系. 【举一反三】(1)在边长为1的菱形ABCD 中,∠BAD =60°,E 是BC 的中点,则AC →·AE →等于( ) A.3+33 B.92 C.3D.94(2)在△ABC 所在平面上有一点P ,满足PA →+PB →+PC →=AB →,则△PAB 与△ABC 的面积的比值是( ) A.13B.12C.23D.34题型五向量在三角函数中的应用例5、已知在锐角△ABC 中,两向量p =(2-2sinA ,cosA +sinA),q =(sinA -cosA,1+sinA),且p 与q 是共线向量.(1)求A 的大小; (2)求函数y =2sin2B +cos ⎝⎛⎭⎫C -3B 2取最大值时,B 的大小. 【提分秘籍】解决平面向量与三角函数的交汇问题的关键:准确利用向量的坐标运算化简已知条件,将其转化为三角函数中的有关问题解决.【举一反三】(1)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cosA ,sinA).若m ⊥n ,且acosB +bcosA =csinC ,则角A ,B 的大小分别为( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3(2)△ABC 的三个内角A ,B ,C 所对的边长分别是a ,b ,c ,设向量m =(a +b ,sinC),n =(3a +c ,sinB -sinA),若m ∥n ,则角B 的大小为________.题型六平面向量在解析几何中的应用例6、(1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k),且A 、B 、C 三点共线,当k<0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y2=3的圆心,且圆上有一点M(x ,y)满足OM →·CM →=0,则y x =________.【提分秘籍】向量的共线和数量积在解析几何中可以解决一些平行、共线、垂直、夹角及最值问题,在解题中要充分重视数量积及其几何意义的作用.【举一反三】已知a ,b 是单位向量,a·b =0.若向量c 满足|c -a -b|=1,则|c|的最大值为________. 【高考风向标】1.【高考广东,文9】在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .52.【高考重庆,文7】已知非零向量,a b 满足||=4||(+)b a a a b ⊥,且2则a b 与的夹角为() (A)3π (B) 2π (C) 32π (D) 65π3.【高考福建,文7】设(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 的值等于( ) A .32-B .53-C .53D .324.【高考天津,文13】在等腰梯形ABCD 中,已知AB DC ,2,1,60,AB BC ABC ==∠=点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==则AE AF ⋅的值为. 5.【高考浙江,文13】已知1e ,2e 是平面单位向量,且1212e e ⋅=.若平面向量b 满足121b e b e ⋅=⋅=,则b =.1.(·北京卷)已知向量a ,b 满足|a|=1,b =(2,1),且λa +b =0(λ∈R),则|λ|=________. 2.(·湖北卷)设向量a =(3,3),b =(1,-1).若(a +λb)⊥(a -λb),则实数λ=________.3.(·江西卷)已知单位向量e1与e2的夹角为α,且cos α=13,向量a =3e1-2e2与b =3e1-e2的夹角为β,则cos β=________..4.(·全国卷)若向量a ,b 满足:=1,(a +b)⊥a ,(+b)⊥b ,则|=() A .2 B.2 C .1 D.225.(·新课标全国卷Ⅱ] 设向量a ,b 满足|a +b|=10,|a -b|=6,则=() A .1 B .2 C .3 D .56.(·山东卷)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______.7.(·天津卷)已知菱形AB CD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC.若AE →·AF →=1,CE →·CF →=-23,则λ+μ=()A.12B.23C.56D.7128.(高考湖北卷)已知点A(-1,1)、B(1,2)、C(-2,-1)、D(3,4),则向量AB →在CD →方向上的投影为() A.322B.3152C .-322D .-31529.(高考湖南卷)已知a ,b 是单位向量,a·b =0.若向量c 满足|c -a -b|=1,则|c|的取值范围是() A .[2-1,2+1] B.[]2-1,2+2C .[1,2+1]D .[1,2+2]10.(高考辽宁卷)设向量a =(3sin x ,sin x),b =(cos x ,sin x),x ∈⎣⎡⎦⎤0,π2.(1)若|a|=|b|,求x 的值;(2)设函数f(x)=a·b ,求f(x)的最大值.11.(高考陕西卷)已知向量a =⎝⎛⎭⎫cos x ,-12,b =(3sin x ,cos 2x),x ∈R ,设函数f(x)=a·b.(1)求f(x)的最小正周期;(2)求f(x)在⎣⎡⎦⎤0,π2上的最大值和最小值.【高考押题】1.若向量a ,b 满足|a|=|b|=|a +b|=1,则a·b 的值为( ) A .-12B.12C .-1D .12.已知向量a =(1,3),b =(-1,0),则|a +2b|等于( ) A .1B.2C .2D .43.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a)∥b ,c ⊥(a +b),则c 等于( ) A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 4.向量AB →与向量a =(-3,4)的夹角为π,|AB →|=10,若点A 的坐标是(1,2),则点B 的坐标为( ) A .(-7,8) B .(9,-4) C .(-5,10) D .(7,-6)5.在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( ) A.5B .25C .5D .106.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( )A.OM →B .2OM → C .3OM →D .4OM →7.平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( ) A .矩形B .梯形 C .正方形D .菱形8.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形B .等腰三角形 C .直角三角形D .等腰直角三角形9.已知点A(-2,0)、B(3,0),动点P(x ,y)满足PA →·PB →=x2-6,则点P 的轨迹是( ) A .圆B .椭圆 C .双曲线D .抛物线10.若函数y =Asin(ωx +φ)(A>0,ω>0,|φ|<π2)在一个周期内的图象如图所示,M ,N 分别是这段图象的最高点和最低点,且OM →·ON →=0(O 为坐标原点),则A 等于( )A.π6B.712πC.76πD.73π11.已知在△ABC 中,AB →=a ,AC →=b ,a·b<0,S △ABC =154,|a|=3,|b|=5,则∠BA C =________. 12.已知|a|=2|b|,|b|≠0且关于x 的方程x2+|a|x -a·b =0有两相等实根,则向量a 与b 的夹角是________.13.已知在平面直角坐标系中,O(0,0),M(1,1),N(0,1),Q(2,3),动点P(x ,y)满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________.14.已知△ABC 中,∠C 是直角,CA =CB ,D 是CB 的中点,E 是AB 上一点,且AE =2EB ,求证:AD ⊥CE.15.已知A ,B ,C 三点的坐标分别为A(3,0),B(0,3),C(cosα,sinα),其中α∈(π2,3π2). (1)若|AC →|=|BC →|,求角α的值. (2)若AC →·BC →=-1,求tan(α+π4)的值.16.已知向量p =(2sinx ,3cosx),q =(-sinx,2sinx),函数f(x)=p·q. (1)求f(x)的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f(C)=1,c =1,ab =23,且a>b ,求a ,b 的值.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第02节 等差数列及其前n 项和一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【高三第一次五校联考】在等差数列{}n a 中,53a =,62a =-,则348a a a ++等于( )A. 1B. 2C. 3D. 4 【答案】C. 【解析】试题分析:∵等差数列{}n a ,∴3847561a a a a a a +=+=+=,∴3483a a a ++=.2.【沈阳市东北育才学校高三八模】等差数列{}n a 中,564a a +=,则10122log (222)a a a⋅= ( )A.10B.20C.40D.22log 5+ 【答案】B3. 【龙岩市一中高三下学期考前模拟】数列{}n a 为等差数列,满足242010a a a +++=,则数列{}n a 前21项的和等于( )A .212B .21C .42D .84 【答案】B 【解析】试题分析:根据等差数列的求和公式,可知22010()102a a +=,即2202a a +=,所以数列{}n a 前21 项的和为1212121()212a a S +==,故答案为B .4.【东北师大附中高三第四次模拟】各项均为正数的等差数列}{n a 中,4936a a =,则前12项和12S 的最小值为( )(A )78 (B )48 (C )60 (D )72【答案】D5.【改编题】已知n S 是等差数列{}n a 的前n 项和,则=-nnn S S S 32( ) A. 30 B. 3 C. 300 D. 31 【答案】D【解析】因为)(2)(231212n n n n n a a na a n S S +=+=-+,)(23313n n a a n S +=,所以3132=-n n nS S S . 6.【改编题】已知n S 是公差d 不为零的等差数列}{n a 的前n 项和,且83S S =,k S S =7(7≠k ),则k 的值为( )A. 3B.4C.5D.6 【答案】B7.【金华十校高三下学期4月联考】设等差数列{}n a 的前n 项和为n S ,且满足19200,0S S ><,则使n S 取得最大项的n 为A .8B .9C .10D .11 【答案】C8.【西安市高新一中高三5月模考】已知等比数列{m a }中,各项都是正数,且1a ,321,22a a 成等差数列,则91078a a a a +=+A .12+B .12-C .322+D .322-【答案】C9.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n N *∈年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( ) A.4 B.5 C.6 D.7 【答案】A【解析】设该设备第()n n N*∈的营运费用为na 万元,则数列{}n a 是以2为首项,以2为公差的等差数列,则2n a n =,则该设备到第()n n N *∈年的营运费用总和为12242n a a a n +++=+++=()2222n n n n +=+,设第()n n N *∈的盈利总额为n S 万元,则()22119109n S n n n n n =-+-=-+-()2516n =--+,因此,当5n =时,n S 取最大值16,故选B.10.【原创题】已知等差数列}{n a 中,59914,90a a S +==, 则12a 的值是( ) A . 15 B .12-C .32-D .32【答案】B11.【原创题】已知等差数列765)1()1()1(53}{x x x n a a n n +++++-=,则,的展开式中4x 项的系数是数列}{n a 中的 ( )A .第9项B .第10项C .第19项D .第20项 【答案】D .【解析】由二项式定理得567(1)(1)(1)x x x +++++的展开式中4x 项的系数为44456776551555123C C C ⨯⨯++=++=⨯⨯,由3555n -=,得20n =,故选D .12.【太原市五中高三5月月考】已知数列{}n a 的前n 项和为n S ,且)(,*N n S a a n n ∈+==+12111,在等差数列{}n b 中,52=b ,且公差2=d .使得n b a b a b a n n 602211>+++ 成立的最小正整数n 为( )A .2B .3C .4D .5 【答案】C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【北京市第四中学高三上学期期中考试】已知实数0a >且1a ≠,函数, 3,(), 3.x a x f x ax b x ⎧<=⎨+≥⎩若数列{}n a 满足()n a f n =*()n ∈N ,且{}n a 是等差数列,则___,____.a b == 【答案】2,014.如图,有一个形如六边形的点阵,它的中心是一个点(算第1层),第2层每边有两个点,第3层每边有三个点,依次类推.(1) 试问第n 层()2n N n *∈≥且的点数为___________个; (2) 如果一个六边形点阵共有169个点,那么它一共有_____层.【答案】(1)()61n -;(2)8.15.【盐城市高三第三次模拟考试】设n S 是等差数列{}n a 的前n 项和,若数列{}n a 满足2n n a S An Bn C +=++且0A >,则1B C A+-的最小值为. 【答案】2316.【宁波市镇海中学高三5月模考】已知{}n a 是公差不为0的等差数列,{}n b 是等比数列,其中1122432,1,,2,a b a b a b ====且存在常数,αβ,使得log n n a b αβ=+对每一个正整数n 都成立,则βα=.【答案】4.三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【惠州市高三第一次调研考试】已知{}n a 为等差数列,且满足138a a +=,2412a a +=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,若31,,k k a a S +成等比数列,求正整数k 的值. 【答案】(Ⅰ)2n a n =;(Ⅱ)2k =18.【宁夏银川一中高三上学期第一次月考】等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =(1)求n a 与n b ; (2)求nS S S 11121+++ . 【答案】(1)n n a n 3)1(33=-+=,13-=n n b (2)23(1)n nS n =+【解析】试题分析:(1)由{}n b 的公比22S q b =及2212bS +=可解得3,q =由11b =则n b 可求,又由22S q b = 可得3,6,91222=-===a a d a S 则n a 可求;(2)由(1)可得3(1)2n n n S +=则12211()3(1)31)n S n n n n ==-++,故由裂项相消法可求n S S S 11121+++19.【武汉华中师大附中高三5月联考】已知等差数列{}n a 的公差为1-,前n 项和为n S ,且27126a a a ++=-.(1)求数列{}n a 的通项公式n a 与前n 项和n S ;(2)将数列{}n a 的前四项抽取其中一项后,剩下三项按原来顺序恰为等比数列{}n b 的前三项,记数列{}n n a b 的前n 项和为n T ,若存在*m N ∈,使得对任意*n N ∈,总有n m S T λ<+成立,求实数λ的取值范围.【答案】(1)295,22n n n n a n S =-=-;(2)29(,)2-+∞. 试题解析:(1)因为{}n a 为等差数列,且27126a a a ++=-,所以736a =-, 即72a =-,又因为公差1d =-,所以7(7)275n a a n d n n =+-=--+=-,21()(45)92222n n n a a n n n n S ++-===-;(2)由(1)知{}n a 的前4项为4,3,2,1,所以等比数列{}n b 的前3项为4,2,1,114()2n n b -∴=⋅,114(5)()2n n n a b n -∴=-⋅,02111114[4()3()(6)()(5)()]2222n n n T n n --∴=⋅+⋅++-⋅+-⋅21111114[4()3()(6)()(5)()]22222n n n T n n -∴=⋅+⋅++-⋅+-⋅, 21111114[4[()()()]4(5)()22222n nn T n -∴=-+++--⋅1112[1()]112164(5)()12(26)()12212n n n n n ---=---⋅=+-⋅-1124(412)()2n n T n -∴=+-⋅,11214124(1)12204222n n n n n n n nT T --------∴-=-=,12345T T T T T ∴<<<=,且56T T >>,所以*n N ∈时,max 4549()2n T T T ===, 又因为2922n n n S =-,所以*n N ∈时,max 45()10n S S S ===, 因为存在*m N ∈,使得对任意*n N ∈,总有n m S T λ<+成立, 所以max max ()()n m S T λ<+,所以49102λ<+, 所以实数λ的取值范围为29(,)2-+∞. 20.【盐城市高三第三次模拟考试】设函数21()1+f x px qx=+(其中220p q +≠),且存在无穷数列{}n a ,使得函数在其定义域内还可以表示为212()1n n f x a x a x a x =+++++.(1)求2a (用,p q 表示); (2)当1,1p q =-=-时,令12n n n n a b a a ++=,设数列{}n b 的前n 项和为n S ,求证:32n S <;(3)若数列{}n a 是公差不为零的等差数列,求{}n a 的通项公式.【答案】(1)22a p q =-;(2)证明见解析;(3)1n a n =+.(3)由(2)120n n n a pa qa --++=,因数列{}n a 是等差数列,所以1220n n n a a a ---+=,所以12(2+)(1)n n p a q a --=-对一切3n ≥都成立,然后排出数列为常数列的情况,再结合数列的前两项即可得数列{}n a的通项公式.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

相关文档
最新文档