高中数学大招手卡80招
武功心法秘籍,助你笑傲数学江湖

武功心法秘籍,助你笑傲数学江湖杨舒雯“扎扎实实地打好基础,练好基本功,我认为这是学好数学的‘秘诀。
”苏步青老师曾这么说。
由此可见,学习如同习武,打好基础至关重要。
在你想要成为“一剑封喉”的武林高手之前,学会扎好马步是必不可少的前提。
接下来,我就以“怎样夯实基础”为引,为大家介绍一些学好数学的法门,希望能助学弟学妹们早日实现菜鸟变大侠的梦想,笑傲数学江湖!心法口诀:精读目录,疏通脉络天下武功门派各异,不同的武学自然有着不同的奥义。
令江湖人士闻风丧胆的高中数学便是一门绝世武学,它包含六册课本秘籍,要想学好它绝非易事。
若是只进行囫囵吞枣、杂乱无章的填鸭式学习,肯定收效甚微。
在高三进行第一轮复习期间,同学们应将课本上的章节和专题根据方便自己复习的方式进行分类,各个击破。
在这里我建议大家将全部复习内容分为代数和几何两大类,以及一些可以快速攻破的小要点。
如:1.代数占据了高中数学的大部分内容,如集合、函数、三角比和数列等;2.几何包括解析几何和立体几何两大部分;3.其余的例如排列组合与二项式定理、概率论初步、基本统计方法,以及高三文科拓展专题中的线性规划和三视图等,则可以作为小要点进行快速攻破。
这样,高中数学就被整理划分成了三大板块,同学们可根据具体的知识点构建知识网络图,进行快速记忆和复习。
思维拓展:不同的省份“门派”有不同的“习武”教材,同学们只需根据教材的具体内容进行分类,便可以迅速找到突破口。
心法口诀:熟读课本,打好基础“根深才能叶茂”,千万不要忽视课本,一味地到一些辅导书上去寻求难题、偏题和怪题的解答技巧。
缘木求鱼,好高骛远,那样练出来的武功只会是“花架子”——中看却不中用。
所以,一定要先安心练习扎马步,打好自身基础。
《考试大纲》是高中三年很重要的一本秘籍,上边清楚地指明了考试的出题方向,因此同学们一定要予以重视。
根据这本秘籍可知,基础题占了高考数学的最大比例,中等难度的能力题次之,需要学会灵活运用数学思维解答的难题则占了最小的比例。
2024年全国普通高中九省联考仿真模拟数学试题(三)

2024年高考仿真模拟数学试题(三)试卷+答案本套试卷根据九省联考题型命制,题型为8+3+3+5模式,适合黑龙江、吉林、安徽、江西、甘肃、河南、新疆、广西、贵州等省份考生模拟练习.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校高三年级一共有1200名同学参加数学测验,已知所有学生成绩的第80百分位数是103分,则数学二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.非空集合A具有如下性质:①若x,y∈A,则;②若x,y∈A,则x+y∈A下列判断中,正确的有()A.﹣1∉A B.C.若x,y∈A,则xy∈A D.若x,y∈A,则x﹣y∈A三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)两个安全设备间由一组对接码进行“握手”连接,对接码是一个由“1,2,3,4”4个数字组成的六位数,每个数字至少出现一次. (1)求满足条件的对接码的个数;(2)若对接密码中数字1出现的次数为X ,求X 的分布列和数学期望.16.(15分)已知函数()()ln 1f x x a x =−−. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.2024年高考仿真模拟数学试题(三)试卷+答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校高三年级一共有1200名同学参加数学测验,已知所有学生成绩的第80百分位数是103分,则数学二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.非空集合A具有如下性质:①若x,y∈A,则;②若x,y∈A,则x+y∈A下列判断中,正确的有()A.﹣1∉A B.C.若x,y∈A,则xy∈A D.若x,y∈A,则x﹣y∈A答案ABC解析:对于A,假设﹣1∈A,则令x=y=﹣1,则=1∈A,x+y=﹣2∈A,令x=﹣1,y=1,则=﹣1∈A,x+y=0∈A,令x=1,y=0,不存在,即y≠0,矛盾,∴﹣1∉A,故A对;对于B,由题,1∈A,则1+1=2∈A,2+1=3∈A,…,2022∈A,2023∈A,∴∈A,故B对;对于C,∵1∈A,x∈A,∴∈A,∵y∈A,∈A,∴=xy∈A,故C对;对于D,∵1∈A,2∈A,若x=2,y=1,则x﹣y=1∈A,故D错误.故选ABC.的部分图三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)两个安全设备间由一组对接码进行“握手”连接,对接码是一个由“1,2,3,4”4个数字组成的)连接当5k ≥时,可得()111k k ii a a a i k −+−=≤≤−, (∗) ②设32i k ≤≤−,则112k i k k a a a a a −−+>+=,所以{}1k i n a a a −+∉, 由111213320k k k k k k k a a a a a a a a a −−−−−−=−<−<<−<−= , 又由12320k k a a a a −−≤<<<< ,可得111122133133,,k k k k k k k k a a a a a a a a a a a a −−−−−−−−−=−=<−=−= , 所以1(13)k k ii a a a i k −−−=≤≤−, 因为5k ≥,由以上可知:111k k a a a −−−=且122k k a a a −−−=, 所以111k k a a a −−−=且122k k a a a −−−=,所以1(11)k k ii a a a i k −−−=≤≤−,(∗∗) 由(∗)知,()111k k ii a a a i k −+−=≤≤− 两式相减,可得()1111k k i i a a a a i k −+−=−≤≤−, 所以当5k ≥时,数列{}n a 为等差数列. ……………17分.。
高考数学大招秒杀压轴版

超强圆锥曲线结论总结结论1:过圆2222x y a +=上任意点P 作圆222x y a +=的两条切线,则两条切线垂直.结论2:过圆2222x y a b +=+上任意点P 作⿰木阴圆22221(0)x y a b a b+=>>的两条切线,则两条切线垂直.结论3:过圆2222(0)x y a b a b +=->>上任意点P 作双曲线22221x y a b-=的两条切线,则两条切线垂直.结论4:过圆222x y a +=上任意不同两点,A B 作圆的切线,如果切线垂直且相交于P ,则动点P 的轨迹为圆:2222x y a +=.结论5:过椭圆22221(0)x y a b a b+=>>上任意不同两点,A B 作椭圆的切线,如果切线垂直且相交于P ,则动点P 的轨迹为圆2222x y a b +=+.结论6:过双曲线22221(0)x y a b a b-=>>上任意不同两点,A B 作双曲线的切线,如果切线垂直.且相交于P ,则动点P 的轨迹为圆2222x y a b +=-.结论7:点()00,M x y 在椭圆22221(0)x y a b a b +=>>上,过点M 作椭圆的切线方程为00221x x y ya b+= 结论8:点()00,M x y 在椭圆22221 0x y a b a b+=>>()外,过点M 作椭圆的两条切线,切点分别为 ,A B 则切点弦AB 的直线方程为00221x x y ya b+=. 结论8:(补充)点()00,M x y 在椭圆22221 0x y a b a b+=>>()内,过点M 作椭圆的弦AB (不过椭圆中心),分别过,A B 作椭圆的切线,则两条切线的交点P 的轨迹方程为直线:00221x x y ya b+=. 结论9:点()00,M x y 在双曲线22221(0,0)x y a b a b -=>>上,过点M 作双曲线的切线方程为00221x x y ya b-= 结论10:点()00,M x y 在双曲线22221(0,0)x y a b a b-=>>外,过点M 作双曲线的两条切线,切点分别为,A B 则切点弦AB 的直线方程为00221x x y ya b-=. 结论10:(补充)点()00,M x y 在双曲线22221(0,0)x y a b a b-=>>内,过点M 作双曲线的弦AB (不过双曲线中心),分别过,A B 作双曲线的切线,则两条切线的交点P 的轨迹方程为直线:00221x x y ya b-= 结论11:点()00,M x y 在抛物线22(0)y px p =>上,过点M 作抛物线的切线方程为()00y y p x x =+.结论12:点()00,M x y 在抛物线22(0)y px p =>外,过点M 作抛物线的两条切线,切点分别为,A B 则切点弦AB 的直线方程为()00y y p x x =+.结论12:(补充)点()00,M x y 在抛物线22(0)y px p =>内,过点M 作抛物线的弦AB ,分别过,A B 作抛物线的切线,则两条切线的交点P 的轨迹方程为直线:()00y y p x x =+.结论13:点()00,M x y 在椭圆2222()()1x m y n a b--+=上,过点M 作椭圆的切线方程为()()0022()()1x m x m y n y n a b ----+=结论14:点()00,M x y 在双曲线2222()()1x m y n a b---=上,过点M 作双曲线的切线方程为()()0022()()1x m x m y n y n a b -----=结论15:点()00,M x y 在抛物线2()2()y n p x m -=-上,过点M 作抛物线的切线方程为()()00()2y n y n p x x m --=+-.结论16:点()00,M x y 在椭圆2222()()1x m y n a b --+=外,过点M 作椭圆的两条切线,切点分别为,A B 则切点弦AB 的直线方程为()()0022()()1x m x m y n y n a b ----+=.结论17:点()00,M x y 在双曲线2222()()1x m y n a b---=外,过点M 作双曲线的两条切线,切点分别为,A B ,则切点弦AB 的直线方程为()()0022()() 1.x m x m y n y n ab-----=结论18:点()00,M x y 在抛物线2()2()y n p x m -=-外,过点M 作抛物线的两条切线,切点分别为,A B 则切点弦AB 的直线方程为()()00()2y n y n p x x m --=+-.结论16:(补充)点()00,M x y 在椭圆2222()()1x m y n a b --+=内,过点M 作椭圆的弦AB (不过椭圆中心),分别过,A B 作椭圆的切线,则两条切线的交点P 的轨迹方程为直线:()()0022()()1x m x m y n y n ab----+=.结论17:(补充)点()00,M x y 在双曲线2222()()1x m y n a b ---=内,过点M 作双曲线的弦AB (不过双曲线中心),分别过,A B 作双曲线的切线,则两条切线的交点P 的轨迹方程为直线:()()0022()()1x m x m y n y n ab-----=结论18:(补充)点()00,M x y 在抛物线2()2()y n p x m -=-内,过点M 作抛物线的弦AB ,分别过,A B 作抛物线的切线,则两条切线的交点P 的轨迹方程为直线:()()00()2y n y n p x x m --=+-.结论19:过椭圆准线上一点M 作椭圆的两条切线,切点分别为,A B ,则切点弦AB 的直线必过相应的焦点F ,且MF 垂直切点弦AB .结论20:过双曲线准线上一点M 作双曲线的两条切线,切点分别为,A B 则切点弦AB 的直线必过相应的焦点F ,且MF 垂直切点弦AB .结论21:过抛物线准线上一点M 作抛物线的两条切线,切点分别为,A B ,则切点弦AB 的直线必过焦点F ,且MF 垂直切点弦AB .结论22:AB 为椭圆的焦点弦,则过,A B 的切线的交点M 必在相应的准线上. 结论23:AB 为双曲线的焦点弦,则过,A B 的切线的交点M 必在相应的准线上. 结论24:AB 为抛物线的焦点弦,则过,A B 的切线的交点M 必在准线上.结论25:点M 是椭圆准线与长轴的交点,过点M 作椭圆的两条切线,切点分别为,A B ,则切点弦AB 就是通径.结论26:点M 是双曲线准线与实轴的交点,过点M 作双曲线的两条切线,切点分别为,A B ,则切点弦AB 就是通径.结论27:M 为抛物线的准线与其对称轴的交点,过点M 作抛物线的两条切线,切点分别为,A B ,则切点弦AB 就是其通径.结论28:过抛物线22(0)y px p =>的对称轴上任意一点(,0)(0)M m m ->作抛物线的两条切线,切点分别为,A B 则切点弦AB 所在的直线必过点(,0)N m .结论29:过椭圆22221(0,0)x y a b a b+=>>的对称轴上任意一点(,)M m n 作⿰木阴圆的两条切线,切点分别为,A B .(1)当0,||n m a =>时,则切点弦AB 所在的直线必过点2,0a P m ⎛⎫⎪⎝⎭; (2)当0,||m n b =>时,则切点弦AB 所在的直线必过点20,b Q n ⎛⎫⎪⎝⎭.结论30:过双曲线22221(0,0)x y a b a b-=>>的实轴上任意一点(,0)(||)M m m a <作双曲线(单支)的两条切线,切点分别为,A B ,则切点弦AB 所在的直线必过点2,0a P m ⎛⎫⎪⎝⎭. 结论31:过抛物线22(0)y px p =>外任意一点M 作抛物线的两条切线,切点分别为,A B ,弦AB 的中点为N ,则直线MN 必与其对称轴平行.结论32:若椭圆22221(0)x y a b a b +=>>与双曲线22221(0,0)x y m n m n-=>>共焦点,则在它们交点处的切线相互垂直.结论33:过椭圆外一定点P 作其一条割线,交点为,A B ,则满足||||||||AP BQ AQ BP ⋅=⋅的动点Q 的轨迹就是过P 作椭圆两条切线形成的切点弦所在的直线方程上.结论34:过双曲线外一定点P 作其一条割线,交点为,A B 则满足||||||||AP BQ AQ BP ⋅=⋅的动点Q 的轨迹就是过P 作双曲线两条切线形成的切点弦所在的直线方程上.结论35:过抛物线外一定点P 作其一条割线,交点为,A B 则满足||||||||AP BQ AQ BP ⋅=⋅的动点Q 的轨迹就是过P 作抛物线两条切线形成的切点弦所在的直线方程上.结论36:过双曲线外一点P 作其一条割线,交点为,A B ,过,A B 分别作双曲线的切线相交于点Q ,则动点Q 的轨迹就是过P 作双曲线两条切线形成的切点弦所在的直线方程上. 结论37:过椭圆外一点P 作其一条割线,交点为,A B 过,A B 分别作椭圆的切线相交于点Q ,则动点Q 的轨迹就是过P 作椭圆两条切线形成的切点弦所在的直线方程上.结论38:过抛物线外一点P 作其一条割线,交点为,A B ,过,A B 分别作抛物线的切线相交于点Q ,则动点Q 的轨迹就是过P 作抛物线两条切线形成的切点弦所在的直线方程上.结论39:从椭圆22221(0)x y a b a b +=>>的右焦点向椭圆的动切线引垂线,则垂足的轨迹为圆:222x y a +=.结论40:从双曲线22221(0,0)x y a b a b-=>>的右焦点向双曲线的动切线引垂线,则垂足的轨迹为圆:222x y a +=.结论41:F 是椭圆22221(0)x y a b a b +=>>的一个焦点,M 是椭圆上任意一点,则焦半径[,]MF a c a c ∈-+.结论42:F 是双曲线22221(0)x y a b a b-=>>的右焦点,M 是双曲线上任意一点.(1)当点M 在双曲线右支上,则焦半径MF c a ≥-;(2)当点M 在双曲线左支上,则焦半径MF c a ≥+.结论43:F 是抛物线22(0)y px p =>的焦点,M 是抛物线上任意一点,则焦半径022p p MF x =+≥. 结论44:椭圆上任一点M 处的法线平分过该点的两条焦半径的夹角(或者说M 处的切线平分过该点的两条焦半径的夹角的外角),亦即椭圆的光学性质.结论45:双曲线上任一点M 处的切线平分过该点的两条焦半径的夹角(或者说M 处的法线平分过该点的两条焦半径的夹角的外角),亦即双曲线的光学性质.结论46:抛物线上任一点M 处的切线平分该点的焦半径与该点向准线所作的垂线的夹角,亦即抛物线的光学性质.结论47:椭圆的准线上任一点M 处的切点弦PQ 过其相应的焦点F ,且MF PQ ⊥. 结论48:双曲线的准线上任一点M 处的切点弦PQ 过其相应的焦点F ,且MF PQ ⊥. 结论49:抛物线的准线上任一点M 处的切点弦PQ 过其焦点F ,且MF PQ ⊥.结论50:椭圆上任一点P 处的切线交准线于,M P 与相应的焦点F 的连线交椭圆于Q ,则MQ 必与该椭圆相切,且MF PQ ⊥.结论51:双曲线上任一点P 处的切线交准线于,M P 与相应的焦点F 的连线交双曲线于Q ,则MQ 必与该双曲线相切,且MF PQ ⊥.结论52:抛物线上任一点P 处的切线交准线于,M P 与焦点F 的连线交抛物线于Q ,则MQ 必与该抛物线相切,且MF PQ ⊥.结论53:焦点在x 轴上的椭圆(或焦点在y 轴)上三点,,P Q M 的焦半径成等差数列的充要条件为,,P Q M 的横坐标(纵坐标)成等差数列.结论54:焦点在x 轴上的双曲线(或焦点在y 轴)上三点,,P Q M 的焦半径成等差数列的充要条件为,,P Q M 的横坐标(纵坐标)成等差数列.结论55:焦点在x 轴上的抛物线(或焦点在y 轴)上三点,,P Q M 的焦半径成等差数列的充要条件为,,P Q M 的横坐标(纵坐标)成等差数列.结论56:椭圆上一个焦点2F 关于椭圆上任一点P 处的切线的对称点为Q ,则直线PQ 必过该椭圆的另一个焦点1F .结论57:双曲线上一个焦点2F 关于双曲线上任一点P 处的切线的对称点为Q ,则直线PQ 必过该双曲线的另一个焦点1F .结论58:椭圆上任一点P (非顶点),过P 的切线和法线分别与短轴相交于£, ?Q S 则有,,P Q S 及两个焦点共于一圆上.结论59:双曲线上任一点P (非顶点),过P 的切线和法线分别与短轴相交于,Q S ,则有,P Q ,S 及两个焦点共于一圆上.结论60:椭圆上任一点P (非顶点)处的切线与过长轴两个顶点,A A '的切线相交于,M M ',则必得到以MM '为直径的圆经过该椭圆的两个焦点.结论61:双曲线上任一点P (非顶点)处的切线与过实轴两个顶点,A A '的切线相交于,M M ',则必得到以MM '为直径的圆经过该双曲线的两个焦点.结论62:以椭圆的任一焦半径为直径的圆内切于以长轴为直径的圆. 结论63:以双曲线的任一焦半径为直径的圆外切于以实轴为直径的圆. 结论64:以抛物线的任一焦半径为直径的圆与非对称轴的轴相切.结论65:焦点在x 轴上的椭圆(或焦点在y 轴上)上任一点M (非短轴顶点)与短轴的两个顶点B ,B '的连线分别交x 轴(或y 轴)于,P Q ,则2P Q x x a =(或)2P Q y y a =.结论66:焦点在x 轴上的双曲线(或焦点在y 轴上)上任一点M (非顶点)与实轴的两个顶点,B B '的连线分别交y 轴(或x 轴)于,P Q ,则(2P Q y y b =-或)2P Q x x b =-.结论67:P 为焦点在x 轴上的椭圆上任一点(非长轴顶点),则12PF F ∆与边2PF (或1PF )相切的旁切圆与x 轴相切于右顶点A (或左顶点A ').结论68:P 为焦点在x 轴上的双曲线右支(或左支)上任一点,则12PF F ∆的内切圆与x 轴相切于右顶点A (或左顶点A ').结论69:AB 是过椭圆22221(0)x y a b a b+=>>的焦点F 的一条弦(非通径),弦AB 的中垂线交x 轴于N ,则||2||AB NF e=. 结论70:AB 是过双曲线22221(0,0)x y a b a b-=>>的焦点F 的一条弦(非通径,且为单支弦),弦AB 的中垂线交x 轴于M ,则||2||AB MF e=. 结论71:AB 是过抛物线22(0)y px p =>的焦点F 的一条弦(非通径),弦AB 的中垂线交x 轴于M ,则||2||AB MF =. 结论72:AB 为抛物线的焦点弦,分别过,A B 作抛物线的切线,则两条切线的交点P 在其准线上.结论73:AB 为椭圆的焦点弦,分别过,A B 作椭圆的切线,则两条切线的交点P 在其相应的准线上.结论74:AB 为双曲线的焦点弦,分别过,A B 作双曲线的切线,则两条切线的交点P 在其相应的准线上.结论75:AB 为过抛物线焦点F 的焦点弦,以AB 为直径的圆必与其准线相切.结论76:AB 为过椭圆焦点F 的焦点弦,以AB 为直径的圆必与其相应的准线相离(当然与另一条准线更相离).结论77:AB 为过双曲线焦点F 的焦点弦,以AB 为直径的圆必与其相应的准线相交,截得的圆弧度数为定值,且为12arccos e. 结论78:以圆锥曲线的焦点弦AB 为直径作圆,若该圆与其相应的准线相切,则该曲线必为抛物线.结论79:以圆雉曲线的焦点弦AB 为直径作圆,若该圆与其相应的准线相离,则该曲线必为椭圆.结论80:以圆锥曲线的焦点弦AB 为直径作圆,若该圆与其相应的准线相交,则该曲线必为双曲线,此时截得的圆弧度数为定值,且为12arccose结论81:AB 为过抛物线22(0)y px p =>焦点F 的焦点弦,()()1122,,,A x y B x y ,则||AB =12x x p ++结论82:AB 为过椭圆22221(0)x y a b a b +=>>焦点F 的焦点弦,()()1122,,,A x y B x y ,则||AB 122a e x x =-+结论83:AB 为过双曲线22221(0,0)x y a b a b-=>>焦点F 的焦点弦,()()1122,,,A x y B x y .若AB 为单支弦,则12||2AB e x x a =+-;若AB 为双支弦,则|12|||2AB e x x a =++ 结论84:F 为抛物线的焦点,,A B 是抛物线上不同的两点,直线AB 交其准线l 于M ,则FM 平分AFB ∠的外角.结论85:F 为椭圆的一个焦点,,A B 是椭圆上不同的两点,直线AB 交其相应的准线l 于M ,则FM 平分AFB ∠的外角.结论86:F 为双曲线的一个焦点,,A B 是双曲线上不同的两点(同一支上),直线AB 交其相应的准线l 于M ,则FM 平分AFB ∠的外角.结论87:F 为双曲线的一个焦点,,A B 是双曲线上不同的两点(左右支各一点),直线AB 交其相应的准线l 于M ,则FM 平分AFB ∠.结论88:AB 是椭圆22221(0)x y a b a b+=>>过焦点F 的弦,点P 是椭圆上异于,A B 的任一点,直线PA PB 、分别交相应于焦点F 的准线l 于M N 、,则点M 与点N 的纵坐标之积为定值,且为42b c-.结论89:AB 是双曲线22221(0,0)x y a b a b-=>>过焦点F 的弦,点P 是双曲线上异于,A B任一点,直线PA 、PB 分别交相应于焦点F 的准线l 于M N 、,则点M 与点N 的纵坐标之积为定值,且为42b c-.结论90:AB 是抛物线22(0)y px p =>过焦点F 的弦,点P 是抛物线上异于,A B 的任一点,直线PA PB 、分别交准线l 于M N 、,则点M 与点N 的纵坐标之积为定值,且为2p -.结论91:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,P 为椭圆任一点(非长轴顶点),若直线PA PB 、分别交直线2(0)a x m a m=<<于M N 、,则M N y y ⋅为定值,且有()2222M N b m a y y m -⋅=结论92:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EM FN ⋅为定值,且有()()222222a m a mb EM FN m -+-⋅=.结论93:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆上任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EN FM ⋅为定值,且有()()222222a m a mb EN FM m -+-⋅=结论94:,A B 为椭圆22221(0)x y a b a b+=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则FM FN ⋅为定值,且有()()222222a m a mb FM FN m -+-⋅=结论95:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EM EN ⋅为定值,且有()()2222222a mb a m EM EN m +--⋅=结论96:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则BM FN ⋅为定值,且有()()22222a m a amb BM FN m -+-⋅=结论97:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则AM FN ⋅为定值,且有()()22222a m a amb AM FN m ---⋅=结论98:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则AM BN ⋅为定值,且有()()22222a m ab AM BN m --⋅=结论99:,A B 为双曲线22221(0,0)x y a b a b-=>>的顶点,(,0),(,0),(0)E m F m m a -<<,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则M N y y ⋅为定值,且有()2222M N b m a y y m -⋅=.结论100:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EM FN ⋅为定值,且有()()222222a m ab m EM FN m -++⋅=结论101:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EN FM ⋅为定值,且有()()222222a m ab m EN FM m -++⋅=结论102:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则FM FN ⋅为定值,且有()()222222a m ab m FM FN m -+-⋅=结论103:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点,若直线,AP BP 分别交直线2a x m=于M N 、,则EM EN ⋅为定值,且有()()2222222a mb a m EM EN m ++-⋅=结论104:,A B 为双曲线22221(0,0)x y a b a b-=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则BM FN ⋅为定值,且有()()22222a m ab amBM FN m -++⋅=结论105:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则AM FN ⋅为定值,且有()()22222a m ab amAM FN m -+-⋅=结论106:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),()E m F m m a ->,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则AM BN ⋅为定值,且有()()22222a m ab AM BN m -+⋅=结论107:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则AP BP k k ⋅为定值,且有2221AP BP AM BNb k k k k e a⋅=⋅=-=-结论108:,A B 为椭圆22221(0)x y a b a b +=>>长轴顶点,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则AN BM k k ⋅为定值,且有2221AN BM b k k e a ⋅=-=-结论109:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则AM AN k k ⋅为定值,且有()21AM AN a m k k e a m+⋅=--结论110:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则BM BN k k ⋅为定值,且有()21BM BN a m k k e a m-⋅=-+结论111:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),()E m F m m a ->,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EM FN k k ⋅为定值,且有222EM FNb k k a m ⋅=-+结论112:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),()E m F m m a ->,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则EN FM k k ⋅为定值,结论113:,A B 为椭圆22221(0)x y a b a b +=>>的任一直径(中心弦),P 为椭圆上任一点(不与,A B 点重合),则PA PB k k ⋅为定值,且有2221PA PBb k k e a⋅=-=-结论114:,A B 为椭圆22221(0)x y a b a b+=>>的任一弦(不过原点且不与对称轴平行),M为弦AB 的中点,若OM k 与AB k 均存在,则OM AB k k ⋅为定值,且有2221OM ABb k k e a⋅=-=-结论115:AB 为椭圆22221(0)x y a b a b+=>>的任一弦(不与对称轴平行),若平行于AB 的弦的中点的轨迹为直线PQ ,则有2221PQ ABb k k e a⋅=-=-结论116:过椭圆22221(0)x y a b a b +=>>上任意一点(P 不是其顶点)作椭圆的切线PA ,则有2221PA OPb k k e a⋅=-=-结论117:椭圆22221(0)x y a b a b +=>>及定点(,0),()F m a m a -<<,过F 的弦的端点为A ,B ,过点A ,B 分别作直线2a x m =的垂线,垂足分别为,DC ,直线2a x m=与x 轴相交于E ,则直线AC 与BD 恒过EF 的中点,且有0AE BE k k +=.结论118:椭圆22221(0)x y a b a b +=>>及定点(,0),()F m m c =±,过F 任作一条弦,AB E 为椭圆上任一点,连接,AE BE ,且分别与准线2a x m =相交于,P Q ,则有1FP FQ k k ⋅=-结论119:椭圆22221(0)x y a b a b +=>>及定点(,0),(,0)F m a m a m -<<≠,过F 任作一条弦,AB E 为椭圆上任一点,连接AE BE 、,且分别与直线2a x m =相交于,P Q ,则有222FP FQb k k m a⋅=- 结论120:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则AP BP k k ⋅为定值,且有2221AP BP AM BNb k k k k e a⋅=⋅=-=结论121:,A B 为双曲线22221(0)x y a b a b +=>>的顶点,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则AN BM k k ⋅为定值,且有21AN BM k k e ⋅=-结论122:,A B 双曲线22221(0)x y a b a b +=>>的顶点,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则AM AN k k ⋅为定值,且有()21AM AN a m k k e a m+⋅=--结论123:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,P 为双曲线上任一点(非实轴顶点),若直线AP BP 、分别交直线2a x m =于M N 、,则BM BN k k ⋅为定值,且有()21BM BN a m k k e a m-⋅=-+结论124:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EM FN k k ⋅为定值,且有222EM FNb k k a m ⋅=+ 结论125:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EN FM k k ⋅为定值,且有222EN FMb k k a m⋅=+ 结论126:AB 为双曲线22221(0,0)x y a b a b -=>>的任一直径,P 为双曲线上任一点(不与,A B 点重合),则PA PB k k ⋅为定值,且有2221PA PBb k k e a⋅==- 结论127:AB 为双曲线22221(0,0)x y a b a b-=>>的任一弦(不过原点且不与对称轴平行),M 为弦AB 的中点,若OM k 与AB k 均存在,则AB OM k k ⋅为定值,且有22AB OMb k k a⋅= 结论128:AB 为双曲线22221(0,0)x y a b a b-=>>的任一弦(不与对称轴平行),若平行于AB 的弦的中点的轨迹为直线PQ ,则有2221AB PQb k k e a⋅==- 结论129:过双曲线22221(0,0)x y a b a b-=>>上任意一点P (不是其顶点)作双曲线的切线PA ,则有2221PA OPb k k e a⋅==- 结论130:双曲线22221(0,0)x y a b a b -=>>及定点(,0),(F m m a >或)m a <-,过F 的弦的䇄山端点为,A B ,过,A B 分别作直线2a x m =的垂线,垂足分别为,D C ,直线2a x m=与x 轴相交于E ,则直线AC 与BD 恒过EF 的中点,且有0AE BE k k +=.结论131:双曲线22221(0,0)x y a b a b -=>>及定点(,0),()F m m c =±,过F 任作一条弦AB ,E 为双曲线上任一点,连接,AE BE ,且分别与准线2a x m =相交于,P Q ,则有1FP FQ k k ⋅=- 结论132:双曲线22221(0,0)x y a b a b -=>>及定点(,0),(F m m a >或)m a <-,过F 任作一条弦,AB E 为双曲线上任一点,连接,AE BE ,且分别与直线2a x m =相交于,P Q ,则有222FP FQb k k a m ⋅=- 结论133:抛物线22(0)y px p =>及定点(,0),(0)F m m >,过F 的弦的端点为,A B 过A ,B分别作直线x m =-的垂线,垂足分别为,D C ,直线x m =-与x 轴相交于E ,则直线AC 与BD 恒过EF 的中点,且有0AE BE k k +=.结论134:抛物线22(0)y px p =>及定点(,0),2p F m m ⎛⎫=⎪⎝⎭,过F 任作一条弦,AB E 为抛物线上任一点,连接AE BE 、,分别与准线x m =-相交,P Q ,则1FP FQ k k ⋅=-结论135:抛物线22(0)y px p =>及定点(,0),(0)F m m >,过F 任作一条弦,AB E 为抛物线上任一点,连接AE BE 、分别与直线x m =-相交,P Q ,则2FP FQ p k k m⋅=-结论136:过抛物线22(0)y px p =>的焦点,02p F ⎛⎫⎪⎝⎭的弦(焦点弦)与抛物线相交于A ,B ,过B 作直线BC 与x 轴平行,且交准线于C ,则直线AC 必过原点(即其准线与x 轴交点E 与焦点F 的线段的中点).结论137:AB 为椭圆22221(0)x y a b a b+=>>的焦点F 的弦,其相应的准线与x 轴交点为E ,过A ,B 作x 轴的平行线与其相应的准线分别相交于,M N ,则直线,AN BM 均过线段EF 的中点.结论138:AB 为双曲线22221(0,0)x y a b a b-=>>的焦点F 的弦,其相应的准线与x 轴交点为E ,过A ,B 作x 轴的平行线与其相应的准线分别相交于,M N ,则直线,AN BM 均过线段EF 的中点.结论139:过圆锥物线(可以是非标准状态下)焦点弦的一个䇄山端点向其相应的准线作垂线,垂足与另一个弦的端点的连线必经过焦点到相应的准线的垂线段的中点.结论140:AB 为垂直于椭圆22221(0,0,)x y a b a b a b+=>>≠长轴上的动弦,其准线与x 轴相交于Q ,则直线AF 与BQ (或直线BF 与AQ )的交点M 必在该椭圆上.结论141:AB 为垂直于双曲线2222(0)x y a bλλ-=≠实轴的动弦,其准线与x 轴相交于Q ,则直线AF 与BQ (或直线BF 与AQ )的交点M 必在该双曲线上.结论142:AB 为垂直于抛物线2y tx =或()2(0)x ty t =≠对称轴的动弦,其准线与x 轴相交于Q ,则直线AF 与BQ (或直线BF 与AQ )的交点M 必在该抛物线上.结论143:AB 为垂直于圆锥曲线的长轴(椭圆)(或实轴(双曲线)或对称轴(抛物线))的动弦,其准线与x 轴相交于Q ,则直线AF 与BQ (或直线BF 与AQ )的交点M 必在该圆锥曲线上.结论144:圆锥曲线的焦点弦AM (不为通径,若双曲线则为单支弦),则在x 轴上有且只有一点Q 使AQF MQF ∠=∠.结论145:过F 任作圆锥曲线的一条弦AB (若是双曲线则为单支弦),分别过,A B 作准线l 的垂线(Q 是其相应准线与x 轴的交点),垂足为11A B 、,则直线1AB 与直线1A B 都经过QF 的中点K ,即A 、1K B 、及1B K A 、、三点共线.结论146:若AM BM 、是圆锥曲线过点F 且关于长轴(椭圆)对称的两条动弦(或实轴(双曲线)或对称轴(抛物线)),则四线1111AM BN NB MA 、、、共点于K .结论147:,A B 分别为椭圆22221(0)x y a b a b +=>>的右顶点和左顶点,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于,M N ,则以线段MN 为直径的圆必过两个定点,且椭圆外定点为2,0a Q m ⎛⎫+ ⎪ ⎪ ⎪⎝⎭及椭圆内定点为2,0a R m ⎛⎫- ⎪⎪ ⎪⎝⎭结论148:,A B 分别为双曲线22221(0,0)x y a b a b -=>>的右顶点和左顶点,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2()a x m a m=>于,M N ,则以线段MN 为直径的圆必过两个定点,且双曲线内定点为2,0a Q m ⎛⎫+⎪ ⎪ ⎪⎝⎭及双曲线外定点为2,0a R m ⎛⎫- ⎪⎪ ⎪⎝⎭结论149:过直线(0)x m m =≠上但在椭圆22221(0)x y a b a b+=>>外一点M 向椭圆引两条切线,切点分别为,A B ,则直线AB 必过定点2,0a N m ⎛⎫ ⎪⎝⎭,且有()22222AB MN b m k k a a m ⋅=-.结论150:过直线(0)x m m =≠上但在双曲线222210,0) (x y a b a b-=>>外(即双曲线中心所在区域)一点M 向双曲线引两条切线,切点分别为,A B ,则直线AB 必过定点2,0a N m ⎛⎫⎪⎝⎭,且有()22222AB MNb m k k a m a⋅=-. 结论151:过直线 0x m m =≠()上但在抛物线22(0)y px p =>外(即抛物线准线所在区域)一点M 向抛物线引两条切线,切点分别为,A B ,则直线AB 必过定点(,0)N m -,且有2AB MN pk k m⋅=结论152:设点M 是圆锥曲线的准线上一点(不在双曲线的渐近线上),过点M 向圆锥曲线引两条切线,切点分别为,A B ,则直线AB 必过准线对应的焦点F ,且FM AB ⊥.结论153:过直线1mx ny +=上但在椭圆22221(0)x y a b a b+=>>外一点M 向椭圆引两条切线,切点分别为,A B 则直线AB 必过定点()22,N ma nb .结论154:过直线1mx ny +=上但在双曲线22221(0,0)x y a b a b-=>>外(即双曲线中心所在区域)一点M 向双曲线引两条切线,切点分别为,A B ,则直线AB 必过定点()22,N ma nb .结论155:过直线10 mx ny m +=≠)(上但在抛物线22(0)y px p =>外(即抛物线准线所在区域)一点M 向抛物线引两条切线,切点分别为,A B ,则直线AB 必过定点1,pn N m m ⎛⎫-- ⎪⎝⎭结论156:,A B ,是椭圆22221(0)x y a b a b+=>>的左右顶点,点P 是直线(||,0)x t t a t =≠≠上的一个动点(P 不在椭圆上),直线PA 及PB 分别与椭圆相交于,M N ,则直线MN 必与x轴相交于定点2,0a Q t ⎛⎫ ⎪⎝⎭.结论157:,A B 是在双曲线22221(0,0)x y a b a b-=>>的顶点,点P 是直线(||,0)x t t a t =≠≠上的一个动点(P 不在双曲线上),直线PA 及PB 分别与双曲线相交于,M N ,则直线MN 必与x 轴相交于定点2,0a Q t ⎛⎫ ⎪⎝⎭. 结论158:,A B 是抛物线22(0)y px p =>上异于顶点O 的两个动点,若直线AB 过定点(2,0)N p ,则OA OB ⊥,且A ,B 的横坐标之积及纵坐标之积均为定值.结论159:,A B 是抛物线22(0)y px p =>上异于顶点O 的两个动点,若OA OB ⊥,则直线AB 必过定点(2,0)N p ,且,A B 的横坐标之积及纵坐标之积均为定值.结论160:,A B 是抛物线22(0)y px p =>上异于顶点O 的两个动点,若OA OB ⊥,过O 作OM AB ⊥,则动点M 的轨迹方程为2220(0)x y px x +-=≠.结论161:,A B 是抛物线22(0)y px p =>上异于顶点O 的两个动点,若OA OB ⊥,则()2min 4AOB S p ∆=结论162:过抛物线22(0)y px p =>上任一点()00,M x y 作两条弦,MA MB ,则MA MB⊥的充要条件是直线AB 过定点()002,N x p y +-结论163:过抛物线22(0)y px p =>上任一点()00,M x y 作两条弦,MA MB ,则(0)MA MB k k λλ=≠的充要条件是直线AB 过定点002,p N x y λ⎛⎫-- ⎪⎝⎭结论164:过椭圆22221(0)x y a b a b+=>>上任一点()00,M x y 作两条弦,MA MB ,则MA MB ⊥的充要条件是直线AB 过定点2222002222,a b b a N x y a b a b ⎛⎫-- ⎪++⎝⎭特别地,(1)当M 为左、右顶点时,即00,0x a y =±=时,MA MB ⊥的充要条件是直线AB 过定点()2222,0a a b N a b ⎛⎫±- ⎪ ⎪+⎝⎭。
55个绝密数学公式(万能心算口诀)

55个绝密数学公式(万能心算口诀)下面是向学霸进军为高中的学生们整理的2022高中数学必背之50个公式,50种快速做题方法,以供参考。
1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x 1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x k),则T=2k;(2)若f(x)=m/(x k)(m不为0),则T=2k;(3)若f(x)=f(x k) f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a x)=f(b-x)恒成立,对称轴为x=(ab)/2(2)函数y=f(a x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a x) f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n m)=S(m) q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an 1=pan q(n 1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1) x,这是一阶特征根方程的运用。
2021学年高中数学第3章概率32古典概型321古典概型322整数值随机数randomnumber

19
0.35 [ 抛 掷 这 枚 硬 币 三 次 恰 有 两 次 正 面 朝 上 的 有 010,010,100,100,010,001,100 共 7 组,则抛掷这枚硬币三次恰有两次 正面朝上的概率可以为270=0.35.]
20
合作 探究 释疑 难
21
基本事件及其计数问题
【例 1】 连续掷 3 枚硬币,观察落地后 3 枚硬币是正面向上还 是反面向上.
(1)写出这个试验的所有基本事件; (2)“恰有两枚正面向上”这一事件包含哪几个基本事件?
22
[解] (1)由树形图表示如下:
23
试验的所有基本事件为(正,正,正),(正,正,反),(正,反, 正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反, 反,反).
(2)“恰有两枚正面朝上”包含以下 3 个基本事件:(正,正,反), (正,反,正),(反,正,正).
(2)若把所取出卡片的标号之和作为基本事件,则共有多少个基 本事件?是古典概型吗?
(3)求所取卡片标号之和小于 4 的概率.
30
思路点拨:先列举出基本事件,紧扣古典概型的特点加以判断, 再用古典概型概率公式求相应概率.
31
[解] (1)基本事件为(红 1,红 2),(红 1,红 3),(红 1,蓝 1),(红 1,蓝 2),(红 2,红 3),(红 2,蓝 1),(红 2,蓝 2),(红 3,蓝 1),(红 3,蓝 2),(蓝 1,蓝 2)共 10 种,由于基本事件个数有限,且每个基 本事件发生的可能性相同,所以是古典概型.
3.理解用模拟方法估计概率的实质, 率,提升数学抽象素养.
会用模拟方法估计概率.(重点)
4
自主 预习 探新 知
2017届高中数学(理)常用小结论及温馨提示

2017 届高考数学(理)常用小结论及温馨提示 图难于其易,为大于其细 重庆一中 李红林 有利于提高单位时间的效益。一般地,考试解题必须进行“兴奋灶” 转移,思考必须进行代数学科与几何学科的 相互换位, 必须进行从这一章节到那一章节的跳跃, 但“先同后异”可以避免“兴奋灶”过急、 过频和过陡的跳跃。 三先三后,要结合实际,要因人而异,谨防“高分题久攻不下,低分题无暇顾及”。 F、一细一实 就是说,审题要细,做题要实。 题目本身是“怎样解这道题”的信息源,所以审题一定要逐字逐句看清楚,力求从语法结构、逻辑关系、数学 含义等各方面真正看清题意。解题实践表明,条件预示可知并启发解题手段,结论预告需知并诱导解题方向。凡是 题目未明显写出的,一定是隐蔽给予的,只有细致的审题才能从题目本身获得尽可能多的信息,这一步不要怕慢。 找到解题方法后,书写要简明扼要,快速规范,不要拖泥带水,啰嗦重复,尤忌画蛇添足。一般来说,一个原 理写一步就可以了,至于不是题目考查的过渡知识,可以直接写出结论。高考允许合理省略非关键步骤。 为了提高书写效率,应尽量使用数学语言、符号,这比文字叙述要节省而严谨。 G、分段得分 对于同一道题目,有的人理解得深,有的人理解得浅,有的人解决得多,有的人解决得少。为了区分这种情况, 高考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识 点就得分,踩得多就多得分。 鉴于这一情况,高考中对于难度较大的题目采用“分段得分”的策略实为一种高招儿。其实,考生的“分段得 分”是高考“分段评分”的逻辑必然。“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争 多得分。 1.对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最 终答案却是错的——会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤——对而不 全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。 经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分。 2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略, 就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。 ① 缺步解答 如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个 个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那 些解题层次明显的题目, 或者是已经程序化了的方法, 每进行一步得分点的演算都可以得分, 最后结论虽然未得出, 但分数却已过半,这叫“大题拿小分”,确实是个好主意。 ②跳步答题 解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不 能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。 由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续 有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面, “事实上, 某步可证明或演算如下”, 以保持卷面的工整。 若题目有两问, 第一问想不出来, 可把第一问作“已知”, “先做第二问”,这也是跳步解答。 ③退步解答 “以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象 退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。 为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法 提供有意义的启发。 ④辅助解答 题目的完整解答,既有主要实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的 步骤是明智之举,既必不可少而又不困难。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数 等。书写也是辅助解答。“书写要工整、卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应:书写 认真—学习认真—成绩优良—给分偏高。 有些选择题, “大胆猜测”也是一种辅助解答, 实际上猜测也是一种能力。
【秒杀大招】高中数学导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转,唯手熟尔! (1)

如图所示,又点 Q a,2 a 到直线 x 0 的距离为 a ,
自然想到转化为动点 Q 到抛物线准线 x 1 的距离,
结合抛物线的概念可得 D
x a2
ex 2
a
2
a 2
PQ QH 1 PQ QF 1 ,所以 D PQ QF 1 PF 1 ,当且仅当 P,Q, F 共线,
bn
1
n n 1
,
-2-
慧学上进
所以只需证明
an
n
1
1 n
2
ln2
n 1 n
bn
n
1
n 1
.
由(1)知 a 1 时,有 x ln x x 1 ,即 ln x x 1 . x
令
x
n
n
1
1
,则
ln
n
n
1
n
1
1
,
所以
ln2
n 1 n
n
1
12
n
1
1 n
2
1 n 1
n
1
2
,
所以 ln2 2 ln2 3 ln2 n 1 1 1 n ;
命题角度 1 构造函数
【典例1】(赣州市2018届高三摸底考试)已知函数
f
x 1
ln x , g(x) x
ae ex
1 x
bx
,若曲线
y
f
x 与曲
线 y g x 的一个公共点是 A1,1 ,且在点 A 处的切线互相垂直.
(1)求 a,b 的值;
(2)证明:当 x 1 时, f x g(x) 2 .
缩法进行放缩解决问题.
命题角度 4 二元或多元不等式的解证思路 【典例 6】(皖南八校 2018 届高三第三次联考)若 x, a,b 均为任意实数,且 a 22 b 32 1 ,则
高中数学高一上学期第三章函数模型章节练习及答案

高中数学高一上学期第三章函数模型章节练习及答案一、选择题1、某厂日产手套总成本y(元)与手套日产量x(副)的关系式为y=5x+4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( )A.200副 B.400副C.600副 D.800副2、某厂原来月产量为a,一月份增产10%,二月份比一月份减产10%,设二月份产量为b,则( )A.a=b B.a>bC.a<b D.无法比较a、b的大小3、下列函数中,随x的增大,增长速度最快的是( )A.y=50x B.y=x50x(x∈N*)C.y=50x D.y=log504、拟定从甲地到乙地通话m分钟的电话费f(m)=1.06·(0.50×[m]+1),其中m>0,[m]是大于或等于m的最小整数(如[3]=3,[3.7]=4,[5.1]=6),则从甲地到乙地通适时间为5.5分钟的通话费为( )A.3.71 B.3.97C.4.24 D.4.775、1992年底世界人口数达到54.8亿,若人口的年平均增长率为x%,设2010年底世界人口数为y(亿),那么y与x的函数解析式为( )A.y=54.8(1+x%)18 B.y=54.8(1+x%)19C.y=54.8(x%)18 D.y=54.8(x%)196、今有一组实验数据如表所示:t 1.99 3.0 4.0 5.1 6.12 u1.54.047.51218.01则最佳体现这些数据关系的函数模型是( ) A .u =log 2t B .u =2t -2 C .u =t 2-12D .u =2t -27、若x ∈(0,1)则下列结论正确的是( ) A .2x>x 12>lgx B .2x>lgx>x 12C .x 12>2x >lgxD .lgx>x 12>2x8、某商店某种商品进货价为每件40元,当售价为50元时,一个月能卖出500件.通过市场调查发现,若每件商品的单价每提高1元,则该商品一个月的销售量会减少10件.商店为使销售商品的月利润最高,应将该商品每件定价为( )A .70元B .65元C .60元D .55元9、向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状是( )10、已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t 的函数,表达式是( )A .x =60tB .x =60t +50tC .x =⎩⎨⎧60t (0≤t ≤2.5)150 (2.5<t ≤3.5)150-50(t -3.5) (3.5<t ≤6.5)D .x =⎩⎨⎧60t (0≤t ≤2.5)150-50t (t>3.5)11、某林区的森林蓄积量每一年比上一年平均增长10.4%,那么经过x 年可增长到原来的y 倍,则函数y =f(x)的图象大致为( )12、某动物数量y(只)与时间x(年)的关系为y =alog 3(x +1),设第二年有100只,则到第八年它们发展到( )A .200只B .400只C .500只D .600只二、填空题13、某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个.14、将进价为8元的商品,按10元一个销售,每天可卖出100个,若这种商品的销售价每个上涨1元,日销售量就减少10个,为了获得最大利润,此商品的销售价应为每个________元.15、某工厂12月份的产量是1月份产量的7倍,那么该工厂这一年中的月平均增长率是________.16、某商品前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来的价格比较,变化情况是________.17、某地区居民生活用电分为高峰和低谷两个时间段进行分时计价,该地区的电网销售电价表如下:若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为________元(用数字作答).三、解答题18、为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费y(元)的关系如图所示.(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;(2)请帮助用户计算,在一个月内使用哪种卡便宜.19、某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下面的问题:(1)写出该城市人口总数y(万人)与年份x(年)的函数关系式;(2)计算10年以后该城市人口总数(精确到0.1万人);(1.01210=1.127)20、(10分)根据总的发展战略,第二阶段,我国工农业生产总值从2000年到2020年间要翻两番,问这20年间,每年平均增长率至少要多少,才能完成这一阶段构想?21、(10分)某公司通过报纸和电视两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与报纸广告费用x1(万元)及电视广告费用x2(万元)之间的关系有如下经验公式:R=-2x12-x22+13x1+11x2-28.(1)若提供的广告费用共为5万元,求最优广告策略.(即收益最大的策略,其中收益=销售收入-广告费用)(2)在广告费用不限的情况下,求最优广告策略.22、商场销售某一品牌的豆浆机,购买人数是豆浆机标价的一次函数,标价越高,购买人数越少,把购买人数为零时的最低标价称为无效价格,已知无效价格为每台300元.现在这种豆浆机的成本价是100元/台,商场以高于成本价的相同价格(标价)出售.问:(1)商场要获取最大利润,豆浆机的标价应定为每台多少元?(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么豆浆机的标价应为每台多少元?23、为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比.药物释放完毕后,y 与t 的函数关系式为y =⎝ ⎛⎭⎪⎫116t -a (a 为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为 ;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过 小时后,学生才能回到教室.24、为了保护环境,实现城市绿化,某房地产公司要在拆迁地如图所示长方形ABCD 上规划出一块长方形地面建住宅小区公园(公园的一边落在CD 上),但不超过文物保护区△AEF 的红线EF.问如何设计才能使公园占地面积最大?并求出最大面积(已知AB =CD =200 m ,BC =AD =160 m ,AE =60 m ,AF =40 m).25、养鱼场中鱼群的最大养殖量为m t ,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留出适当的空闲量.已知鱼群的年增长量y t 和实际养殖量x t 与空闲率的乘积成正比,比例系数为k(k>0).(1)写出y 关于x 的函数关系式,并指出这个函数的定义域; (2)求鱼群年增长量的最大值;(3)当鱼群的年增长量达到最大值时,求k 的取值范围.26、依法纳税是每个公民应尽的义务,国家征收个人工资、薪金所得税是分段计算的:总收入不超过2 000元的,免征个人工资、薪金所得税;超过2 000元部分需征税,设全月纳税所得额(所得额指工资、薪金中应纳税的部分)为x,x=全月总收入-2 000元,税率如表所示:(1)(2)某人2008年10月份工资总收入为4 200元,试计算这个人10月份应纳个人所得税多少元?参 考 答 案一、选择题1、【解析】 由5x +4 000≤10x ,解得x ≥800,即日产手套至少800副时才不亏本.故选D.【答案】 D2、【解析】 ∵b =a(1+10%)(1-10%), ∴b =a[1-(10%)2]=a ⎝ ⎛⎭⎪⎫1-1100,∴b =a ×99100, ∴a>b.故选B. 【答案】 B3、C 【解析】 由于指数函数的增长是爆炸式的,则当x 越来越大时,函数y =50x 的增长速度最快.故选C.4、【解析】 5.5分钟的通话费为f(5.5)=1.06×(0.50×[5.5]+1)=1.06×(0.50×6+1)=1.06×4=4.24,故选C. 【答案】 C5、【解析】 由题意,1993年底人口为54.8(1+x%),1994年底人口为54.8(1+x%)2,…,故2010年底人口为54.8(1+x%)18.故选A.【答案】 A6、【解析】 图象不符合直线的特征,排除D ;图象不符合对数函数的特征,排除A ;当t =3时,2t-2=23-2=6,t 2-12=32-12=4,由表格知当t =3时,u =4.04.模型u =t 2-12能较好体现这些数据.故选C.【答案】 C7、 当0<x<1时,2x >1,0<x 12<1,lgx<0,∴2x >x 12>lgx.故选A.【答案】 A8、【解析】 设该商品每件单价提高x 元,销售该商品的月利润为y 元,则y =(10+x)(500-10x) =-10x 2+400x +5 000 =-10(x -20)2+9 000 ∴当x =20时,y max =9 000,此时每件定价为50+20=70元,故选A. 【答案】 A9、【解析】 图反映随着水深h 的增加,注水量V 增长速度越来越慢,这反映水瓶中水上升的液面越来越小,故选B.【答案】 B10、C 【解析】 应分三段建立函数关系,当0≤t ≤2.5时,x =60t ;当2.5<t ≤3.5时,离开A 地的距离不变是150;当3.5<t ≤6.5时,x =150-50(t -3.5).故选C.11、D 【解析】 设原来的蓄积量为a ,则a(1+10.4%)x=a ·y ,∴y=1.104x,故选D.12、A【解析】由已知第二年有100只,得100=alog33,∴a=100,将a=100,x=8代入得y=100×log3(8+1)=200.故选A.二、填空题13、【解析】当t=0.5时,y=2,∴2=e 12 k,∴k=2ln2,∴y=e2tln2,当t=5时,∴y=e10ln2=210=1 024.【答案】2ln2 1 02414、【解析】设每个上涨了x元,利润为y元,则y=(10+x-8)(100-10x)=-10x2+80x+200=-10(x-4)2+360,当x=4时,y有最大值360,即每个售价为10+4=14(元).【答案】1415、【解析】设1月份产量为a,则12月份的产量为7a,∴a×(1+x)11=7a,∴x=117-1【答案】117-116、【解析】设原来商品价格为1个单位,则1×(1+20%)2×(1-20%)2=0.921 6=92.16%,∴减少了7.84%.【答案】减少了7.84%17、【解析】高峰时段电费a=50×0.568+(200-50)×0.598=118.1(元).低谷时段电费b=50×0.288+(100-50)×0.318=30.3(元).故该家庭本月应付的电费为a+b=148.4(元).【答案】148.4元三、解答题18、【解析】(1)由图象可设y1=k1x+29,y2=k2x,把点B(30,35)、C(30,15)分别代入y1,y2得k1=1/5,k2=1/2.∴y1=1/5x+29(x≥0),y2=1/2x(x≥0).(2)令y1=y2,即1/5x+29=1/2x,则x=962/3.当x=962/3时,y1=y2,两种卡收费一致;当x<962/3时,y1>y2,即便民卡便宜;当x>962/3时,y1<y2,即如意卡便宜.19、【解析】(1)1年后该城市人口总数为y=100+100×1.2%=100×(1+1.2%).2年后该城市人口总数为y=100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2.3年后该城市人口总数为y=100×(1+1.2%)2+100×(1+1.2%)2×1.2%=100×(1+1.2%)2×(1+1.2%)=100×(1+1.2%)3.…x年后该城市人口总数为y=100×(1+1.2%)x(x∈N).(2)10年后人口数为100×(1+1.2%)10≈112.7(万).20、【解析】 设平均每年增长率为x.从2000年到2020年共21年,若记2000年工农业总产值为1,则2001,2002,2003,……的年总产值分别为(1+x),(1+x)2,(1+x)3,…,第n 年为(1+x)n -1.根据题意,有(1+x)20=22,两边取对数得20lg(1+x)=2lg2,即lg(1+x)=110lg2, ∴lg(1+x)=0.030 1,∴1+x ≈1.072,∴x ≈0.072=7.2%.即平均每年增长7.2%,即可完成第二阶段的任务.21、【解析】 (1)依题意x 1+x 2=5,∴x 2=5-x 1,∴R =-2x 12-x 22+13x 1+11x 2-28=-2x 12-(5-x 1)2+13x 1+11(5-x 1)-28=-3x 12+12x 1+2(0≤x 1≤5),∴收益y =R -5=-3x 12+12x 1-3=-3(x 1-2)2+9≤9,当且仅当x 1=2时取等号.∴最优广告策略是报纸广告费用为2万元,电视广告费用为3万元.(2)收益y =R -(x 1+x 2)=-2x 12-x 22+13x 1+11x 2-28-(x 1+x 2)=-2(x 1-3)2-(x 2-5)2+15≤15,当且仅当x 1=3,x 2=5时取等号.∴最优广告策略是报纸广告费用为3万元,电视广告费用为5万元.22、【解析】 设购买人数为z ,标价为x ,则z 是x 的一次函数,有z =ax +b(a<0).又当x =300时,z =0,∴0=300a +b ,∴b =-300a ,∴有z =ax -300a.(1)设商场要获得最大利润,豆浆机的标价为每台x 元,此时,所获利润为y.则y=(x-100)(ax-300a)=a(x2-400x+30 000)(100<x<300).又∵a<0,∴当x=200时,y最大.所以,标价为每台200元时,所获利润最大.(2)当x=200时,y=-10 000a,max令y=-10 000a×75%,即a(x2-400x+30 000)=-10 000a×75%,解得x=150,或x=250.所以定价为每台150元或250元时,所获利润为最大利润的75%.23、24、【解析】如右图所示,设P为EF上一点,矩形CGPH为划出的公园,PH=x,则PN=200-x.又∵AE=60,AF=40,∴由最大面积为24 0662/3 m 2.25、【解析】 (1)由题意得y =kx ⎝ ⎛⎭⎪⎫m -x m =kx ⎝⎛⎭⎪⎫1-x m (0≤x<m). (2)y =-k mx 2+kx =-k m ⎝ ⎛⎭⎪⎫x -m 22+km 4. ∴当x =m 2时,y 最大=km 4, 即鱼群年增长量的最大值为km 4t. (3)由题意可得0≤x +y<m ,即0≤m 2+km 4<m ,∴-2≤k<2, 又∵k>0,∴0<k<2.26、【解析】 (1)第1级:f(x)=x·5%=0.05x第2级:f(x)=500×5%+(x -500)×10%=0.1x -25第3级:f(x)=500×5%+1 500×10%+(x -2 000)×15%=0.15x -125.∴f(x)=⎩⎨⎧ 0.05x (0<x ≤500)0.1x -25 (500<x ≤2 000)0.15x -125 (2 000<x ≤5 000).(2)这个人10月份的纳税所得额为4 200-2 000=2 200(元),∴f(2 200)=2 200×0.15-125=205(元),即这个人10月份应纳个人所得税205元.。