DSP-通用异步串行口(UART)实验
UART串口通信实验报告

实验四UART串口通信学院:研究生院学号:1400030034姓名:张秋明一、实验目的及要求设计一个UART串口通信协议,实现“串<-->并”转换功能的电路,也就是“通用异步收发器”。
二、实验原理UART是一种通用串行数据总线,用于异步通信。
该总线双向通信,可以实现全双工传输和接收。
在嵌入式设计中,UART用来主机与辅助设备通信,如汽车音响与外接AP之间的通信,与PC机通信包括与监控调试器和其它器件,如EEPROM通信。
UART作为异步串口通信协议的一种,工作原理是将传输数据的每个字符一位接一位地传输。
其中各位的意义如下:起始位:先发出一个逻辑”0”的信号,表示传输字符的开始。
资料位:紧接着起始位之后。
资料位的个数可以是4、5、6、7、8等,构成一个字符。
通常采用ASCII码。
从最低位开始传送,靠时钟定位。
奇偶校验位:资料位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验),以此来校验资料传送的正确性。
停止位:它是一个字符数据的结束标志。
可以是1位、1.5位、2位的高电平。
由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。
因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。
适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。
空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。
波特率:是衡量资料传送速率的指标。
表示每秒钟传送的符号数(symbol)。
一个符号代表的信息量(比特数)与符号的阶数有关。
例如资料传送速率为120字符/秒,传输使用256阶符号,每个符号代表8bit,则波特率就是120baud,比特率是120*8=960bit/s。
这两者的概念很容易搞错。
三、实现程序library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_arith.all;use ieee.std_logic_unsigned.all;entity uart isport(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_rx: in std_logic; --RS232接收数据信号;rs232_tx: out std_logic --RS232发送数据信号;); end uart;architecture behav of uart iscomponent uart_rx port(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_rx: in std_logic; --RS232接收数据信号clk_bps: in std_logic; --此时clk_bps的高电平为接收数据的采样点bps_start:out std_logic;--接收到数据后,波特率时钟启动置位rx_data: out std_logic_vector(7 downto 0); --接收数据寄存器,保存直至下一个数据来到rx_int: out std_logic --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送);end component;component speed_select port(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号clk_bps: out std_logic; --此时clk_bps 的高电平为接收或者发送数据位的中间采样点bps_start:in std_logic --接收数据后,波特率时钟启动信号置位);end component;component uart_tx port(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_tx: out std_logic; --RS232接收数据信号clk_bps: in std_logic; --此时clk_bps 的高电平为接收数据的采样点bps_start:out std_logic;--接收到数据后,波特率时钟启动置位rx_data: in std_logic_vector(7 downto 0); --接收数据寄存器,保存直至下一个数据来到rx_int: in std_logic --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送模块,使得串口正在进行接收数据的时候,发送模块不工作,避免了一个完整的数据(1位起始位、8位数据位、1位停止位)还没有接收完全时,发送模块就已经将不正确的数据传输出去);end component;signal bps_start_1:std_logic;signal bps_start_2:std_logic;signal clk_bps_1:std_logic;signal clk_bps_2:std_logic;signal rx_data:std_logic_vector(7 downto 0);signal rx_int:std_logic;beginRX_TOP: uart_rx port map(clk=>clk,rst_n=>rst_n,rs232_rx=>rs232_rx,clk_bps=>clk_bps_1,bps_start=>bps_start_1,rx_data=>rx_data,rx_int=>rx_int);SPEED_TOP_RX: speed_select port map(clk=>clk,rst_n=>rst_n,clk_bps=>clk_bps_1,bps_start=>bps_start_1);TX_TOP:uart_tx port map(clk=>clk, --系统时钟rst_n=>rst_n, --复位信号rs232_tx=>rs232_tx, --RS232发送数据信号clk_bps=>clk_bps_2, --此时clk_bps 的高电平为发送数据的采样点bps_start=>bps_start_2,--接收到数据后,波特率时钟启动置位rx_data=>rx_data, --接收数据寄存器,保存直至下一个数据来到rx_int=>rx_int --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送模块,使得串口正在进行接收数据的时候,发送模块不工作,避免了一个完整的数据(1位起始位、8位数据位、1位停止位)还没有接收完全时,发送模块就已经将不正确的数据传输出去);SPEED_TOP_TX: speed_select port map(clk=>clk,rst_n=>rst_n,clk_bps=>clk_bps_2,bps_start=>bps_start_2);end behav;-----------------------------------------------------------------------------------------------------------------------3个子模块------------------------------------------------------------------------------异步接收模块-------------------------------------------library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity uart_rx isport(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_rx: in std_logic; --RS232接收数据信号clk_bps: in std_logic; --此时clk_bps的高电平为接收数据的采样点bps_start:out std_logic;--接收到数据后,波特率时钟启动置位rx_data: out std_logic_vector(7 downto 0); --接收数据寄存器,保存直至下一个数据来到rx_int: out std_logic --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送模块,使得串口正在进行接收数据的时候,发送模块不工作,避免了一个完整的数据(1位起始位、8位数据位、1位停止位)还没有接收完全时,发送模块就已经将不正确的数据传输出去); end uart_rx;architecture behav of uart_rx issignal rs232_rx0: std_logic;signal rs232_rx1: std_logic;signal rs232_rx2: std_logic;signal rs232_rx3: std_logic;signal neg_rs232_rx:std_logic;signal bps_start_r:std_logic;signal num:integer;signal rx_data_r:std_logic_vector(7 downto 0); --串口接收数据寄存器,保存直至下一个数据到来beginprocess(clk,rst_n)beginif (rst_n='0')thenrs232_rx0<='0';rs232_rx1<='0';rs232_rx2<='0';rs232_rx3<='0';elseif (rising_edge(clk)) thenrs232_rx0<=rs232_rx;rs232_rx1<=rs232_rx0;rs232_rx2<=rs232_rx1;rs232_rx3<=rs232_rx2;end if;end if;neg_rs232_rx <=rs232_rx3 and rs232_rx2 and not(rs232_rx1)and not(rs232_rx0);end process;process(clk,rst_n)beginif (rst_n='0')thenbps_start_r<='0';rx_int<='0';elseif (rising_edge(clk)) thenif(neg_rs232_rx='1') then--接收到串口数据线rs232_rx 的下降沿标志信号bps_start_r<='1'; --启动串口准备数据接收rx_int<='1';--接收数据中断信号使能else if((num= 15) and (clk_bps='1')) then --接收完有用数据信息bps_start_r<='0'; --数据接收完毕,释放波特率启动信号rx_int<='0';--接收数据中断信号关闭end if;end if;end if;end if;bps_start<=bps_start_r;end process;process(clk,rst_n)beginif (rst_n='0')thenrx_data_r<="00000000";rx_data<="00000000";num<=0;elseif (rising_edge(clk)) thenif(clk_bps='1')thennum<=num+1;case num iswhen 1=>rx_data_r(0)<=rs232_rx;--锁存第0bitwhen 2=>rx_data_r(1)<=rs232_rx;--锁存第0bitwhen 3=>rx_data_r(2)<=rs232_rx;--锁存第0bitwhen 4=>rx_data_r(3)<=rs232_rx;--锁存第0bitwhen 5=>rx_data_r(4)<=rs232_rx;--锁存第0bitwhen 6=>rx_data_r(5)<=rs232_rx;--锁存第0bitwhen 7=>rx_data_r(6)<=rs232_rx;--锁存第0bitwhen 8=>rx_data_r(7)<=rs232_rx;--锁存第0bitwhen 10=>rx_data<=rx_data_r;when 11=>num<=15;when others=>null;end case;if(num=15) thennum<=0;end if;end if;end if;end if;end process;end behav;---------------------------------波特率控制模块-----------------------------------------library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_arith.all;use ieee.std_logic_unsigned.all;entity speed_select isport(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号clk_bps: out std_logic; --此时clk_bps的高电平为接收或者发送数据位的中间采样点bps_start:in std_logic--接收数据后,波特率时钟启动信号置位或者开始发送数据时,波特率时钟启动信号置位);end speed_select;architecture behav of speed_select issignal cnt:std_logic_vector(12 downto 0);signal clk_bps_r:std_logic;constant BPS_PARA:integer:=5207;constant BPS_PARA_2:integer:=2603;beginprocess(clk,rst_n)beginif (rst_n='0')thencnt<="0000000000000";elseif (rising_edge(clk)) thenif((cnt=BPS_PARA)or(bps_start='0')) thencnt<="0000000000000"; --波特率计数器清零elsecnt<=cnt+'1';--波特率时钟计数启动end if;end if;end if;end process;process(clk,rst_n)beginif (rst_n='0')thenclk_bps_r<='0';elseif (rising_edge(clk)) thenif(cnt=BPS_PARA_2) thenclk_bps_r<='1'; --clk_bps_r高电平为接收数据位的中间采样点,同时也作为发送数据的数据改变点elseclk_bps_r<='0'; --波特率计数器清零end if;end if;end if;clk_bps<=clk_bps_r;end process;end behav;---------------------------------异步发送模块-------------------------------------------library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity uart_tx isport(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_tx: out std_logic; --RS232接收数据信号clk_bps: in std_logic; --此时clk_bps的高电平为接收数据的采样点bps_start:out std_logic;--接收到数据后,波特率时钟启动置位rx_data: in std_logic_vector(7 downto 0); --接收数据寄存器,保存直至下一个数据来到rx_int: in std_logic --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送模块,使得串口正在进行接收数据的时候,发送模块不工作,避免了一个完整的数据(1位起始位、8位数据位、1位停止位)还没有接收完全时,发送模块就已经将不正确的数据传输出去); end uart_tx;architecture behav of uart_tx issignal rx_int0: std_logic;signal rx_int1: std_logic;signal rx_int2: std_logic;signal neg_rx_int:std_logic;signal bps_start_r:std_logic;signal num:integer;signal tx_data:std_logic_vector(7 downto 0); --串口接收数据寄存器,保存直至下一个数据到来beginprocess(clk,rst_n)beginif (rst_n='0')thenrx_int0<='0';rx_int1<='0';rx_int2<='0';elseif (rising_edge(clk)) thenrx_int0<=rx_int;rx_int1<=rx_int0;rx_int2<=rx_int1;end if;end if;neg_rx_int <=not(rx_int1)and (rx_int2);end process;process(clk,rst_n)beginif (rst_n='0')thenbps_start_r<='0';tx_data<="00000000";elseif (rising_edge(clk)) thenif(neg_rx_int='1') then--接收到串口数据线rs232_rx的下降沿标志信号bps_start_r<='1'; --启动串口准备数据接收tx_data<=rx_data;--接收数据中断信号使能else if((num= 15) and (clk_bps='1')) then --接收完有用数据信息bps_start_r<='0'; --数据接收完毕,释放波特率启动信号end if;end if;end if;end if;bps_start<=bps_start_r;end process;process(clk,rst_n)beginif (rst_n='0')thenrs232_tx<='1';num<=0;elseif (rising_edge(clk)) thenif(clk_bps='1')thennum<=num+1;case num iswhen 1=>rs232_tx<='0';when 2=>rs232_tx<=tx_data(0);--发送第1bitwhen 3=>rs232_tx<=tx_data(1);--发送第2bitwhen 4=>rs232_tx<=tx_data(2);--发送第3bitwhen 5=>rs232_tx<=tx_data(3);--发送第4bitwhen 6=>rs232_tx<=tx_data(4);--发送第5bitwhen 7=>rs232_tx<=tx_data(5);--发送第6bitwhen 8=>rs232_tx<=tx_data(6);--发送第7bitwhen 9=>rs232_tx<=tx_data(7);--发送第8bitwhen 10=>rs232_tx<='1';when 11=>num<=15;when others=>null;end case;if(num=15) thennum<=0;end if;end if;end if;end if;end process;end behav;四、实验步骤1、建立新工程UART,选择芯片,型号为cyclone ii EP2C35F484C8。
快速傅里叶变换(含详细实验过程分析)

一、实验目的1、掌握FFT 算法和卷积运算的基本原理;2、掌握用C 语言编写DSP 程序的方法;3、了解利用FFT 算法在数字信号处理中的应用。
二、实验设备 1. 一台装有CCS 软件的计算机; 2. DSP 实验箱的TMS320C5410主控板; 3. DSP 硬件仿真器。
三、实验原理 (一)快速傅里叶变换傅里叶变换是一种将信号从时域变换到频域的变换形式,是信号处理的重要分析工具。
离散傅里叶变换(DFT )是傅里叶变换在离散系统中的表示形式。
但是DFT 的计算量非常大, FFT 就是DFT 的一种快速算法, FFT 将DFT 的N 2步运算减少至 ( N/2 )log 2N 步。
离散信号x(n)的傅里叶变换可以表示为∑=-=10][)(N N nk N W n x k X , Nj N e W /2π-=式中的W N 称为蝶形因子,利用它的对称性和周期性可以减少运算量。
一般而言,FFT 算法分为时间抽取(DIT )和频率抽取(DIF )两大类。
两者的区别是蝶形因子出现的位置不同,前者中蝶形因子出现在输入端,后者中出现在输出端。
本实验以时间抽取方法为例。
时间抽取FFT 是将N 点输入序列x(n) 按照偶数项和奇数项分解为偶序列和奇序列。
偶序列为:x(0), x(2), x(4),…, x(N-2);奇序列为:x(1), x(3), x(5),…, x(N-1)。
这样x(n) 的N 点DFT 可写成:()()∑++∑=-=+-=12/0)12(12/02122)(N n kn NN n nkNW n x Wn x k X考虑到W N 的性质,即2/)2//(22/)2(2][N N j N j N W e e W ===--ππ因此有:()()∑++∑=-=-=12/02/12/02/122)(N n nkN k NN n nkN W n x WWn x k X或者写成:()()12()kN X k X k W X k =+由于X 1(k) 与X 2(k) 的周期为N/2,并且利用W N 的对称性和周期性,即:k N N k N W W -=+2/可得:()()12(/2)kN X k N X k W X k +=-对X 1(k) 与X 2(k)继续以同样的方式分解下去,就可以使一个N 点的DFT 最终用一组2点的DFT 来计算。
USART通信接口设计实验

UART_Data = 0; } } }
四、实验现象和结果
1、把串口线和 PC 机连接起来,运行程序后,通过串口调试软件发送 ASCII 码字符(需 要以回车键结尾)到单片机实验板,单片机实验板接收到从串口调试软件发送过来的 ASCII
实验四 UART 通信接口设计实验
一、实验目的
1、理解用异步串行通信进行 RS232 通信的原理并能掌握其方法及编程;
2、学习使用定时器 T1 做波特率发生器,掌握计算波特率的方法。
二、实验仪器
1、自制的 C8051f410 实验开发板 1 块
2、直流稳压电源、示波器
各1台
3、仿真器(U-EC6)
1只
码字符后,又将同样的字符回送给串口调试软件,这样串口调试软件可以看到返回同样的字
符,如果收发的字符相同,则说明 PC 机与单片机实验板之间的通信成功,如下图所示。
注: 串口通信波特率、位数据位、停止位、校验等参数设置值参考上图。
五、预习要求
1、读懂程序; 2、预先给出修改代码,以便更快更好的得出实验结果;
4、PC 机
1台
三、实验内容
实验任务:编写程序将单片机的 P0.4、P0.5 口配置为串口 0 通信口,将 PC 机发送给
c8051f410 的数据原样发回 PC 机,程序中用“0x0d”作为帧尾标志。
PC 端发送、接收可采用串口接收软件“串口调试助手 V2.1”。
在程序中通过交叉开关配置 TX0,RX0 分别到 P0.4、P0.5 引脚,由于 I/O 口是 TTL 电 平信号,需要通过 MAX232 转换为 RS-232 电平后才能与 PC 机连接,连接电路如上图所示。
RS-485/422标准的UART在DSP系统中的实现

南京 209) 1 6 0
( 东南大学仪器科学与工程系
摘
要: Ⅱ公 司的 T S2 V 5 1 D P投有片上 的通用异 步串 口( A T , 要在 T 30 C 4 6为 C U的系 统 中使 M 30 C 46型 S U R )若 MS2V 5 1 P
用 UR , A T 必须 另行 设计 。在 分析 T S2 V 5 1 M 30 C 46的多 通道同步缓 冲串 口( c S ) M B P 与通用 串 口芯 片 MA 3d X1 O接 口原理的基
匝五] - - . 匝互卜 一
T S2V 5 1 系统 中实现 的 U R M 30 C46 A T设计方 案 , 该 U R 是 R 一 8/ S 42电气标准的, AT S 45R 一 2 波特率高
” k 垂 : “ n 匝 卜- ?
.
达 20 , 3K 适合远距离的高速全双工串口通信。
在设计惯性组件 ( 陀螺仪 和加速度计 ) A D 的 /
模式进行设计的, 以有必要以适 当的篇幅介绍一 所
下 Mc S 。 B P
转换板时 , 因为要并行 的高速采集 6 个通道 ( 个 3 陀螺仪 和 3 个加速 度计 ) 的模 拟量 , 以要求 C U 所 P
有较 高 的 运 行 速 度 , 者 采 用 了 r 笔 l 1公 司 的 S2V 5 1 型 D P 3O C46 S 。在该 A D转换板上 , / 必不 可少地要进行 通信接 口的设计 , T S2V 51 但 M 30 C46 没有像大多数单片机一样提供片上 的通用异步串
( eam n o s u et c ne&E g erg otes U i rt,Nni 2 09 ) D pr et fnt m n Si c t I r e ni i ,Su a n e i n n h t v sy aj g 106 n
uart实验报告

uart实验报告
《UART实验报告》
实验目的:通过实验学习串行通信的基本原理,掌握UART通信协议的工作原理和使用方法。
实验设备:单片机开发板、串口调试助手、电脑。
实验原理:UART(Universal Asynchronous Receiver/Transmitter)是一种通用的异步串行通信协议,用于在计算机和外部设备之间进行数据传输。
UART通信协议包括数据位、停止位、奇偶校验位等参数,通过这些参数的设置可以实现不同的通信速率和数据传输方式。
实验步骤:
1. 连接单片机开发板和电脑,打开串口调试助手。
2. 在单片机开发板上编写UART通信程序,设置通信参数。
3. 将单片机开发板通过串口连接到电脑,打开串口调试助手。
4. 在串口调试助手上发送数据,观察单片机开发板接收到的数据。
5. 在单片机开发板上发送数据,观察串口调试助手接收到的数据。
实验结果:
经过实验,我们成功地实现了通过UART通信协议在单片机开发板和电脑之间进行数据传输。
在串口调试助手上发送的数据能够被单片机开发板正确接收,并且在单片机开发板上发送的数据也能够被串口调试助手正确接收。
通过调整通信参数,我们还验证了不同通信速率和数据传输方式对通信效果的影响。
实验总结:
通过本次实验,我们深入了解了UART通信协议的工作原理和使用方法,掌握
了串行通信的基本原理。
在今后的学习和工作中,我们将能够更加熟练地应用UART通信协议进行数据传输,为实际工程应用打下了坚实的基础。
利用TL16C550B实现DSP与PC机的异步串行通信

利用TL16C550B实现DSP与PC机的异步串行通信
郭先树
【期刊名称】《华东交通大学学报》
【年(卷),期】2003(020)002
【摘要】TL16C550B是TI公司生产的单路通用异步收发器UART,文中介绍了在分布式RTU系统研制中,利用TL16C550B代替8251实现数字信号处理器TMS320F240与PC机的异步串行通信.
【总页数】4页(P63-66)
【作者】郭先树
【作者单位】华东交通大学,电气与电子工程学院,江西,南昌,330013
【正文语种】中文
【中图分类】TP87
【相关文献】
1.基于TL16C752B的DSP与PC机异步串行通信实现方法 [J], 肖捷;陈忠辉
2.用PComm实现DSP和PC机的异步串行通信 [J], 齐崇英;陈西宏;苏红潮
3.利用双口RAM实现DSP与PC机的高速通信 [J], 石雷
4.利用DSP的McBSP实现与PC机串行通信 [J], 陆志洋;陈宏巍;邰佑诚
5.利用VC++实现DSP与PC机间的串行通讯 [J], 谢立春
因版权原因,仅展示原文概要,查看原文内容请购买。
穿行口实验报告

一、实验目的1. 理解穿行口的工作原理和功能。
2. 掌握穿行口在单片机系统中的应用。
3. 学习如何通过编程控制穿行口实现数据传输。
4. 提高对单片机硬件资源和编程技术的应用能力。
二、实验原理穿行口(Serial Port)是单片机中用于串行通信的接口,它可以将单片机的并行数据转换为串行数据,或将串行数据转换为并行数据。
本实验主要涉及MCS-51单片机的串行口,其工作原理如下:1. 串行通信的基本概念:串行通信是指数据以一位一位的顺序传送,按照一定的顺序进行。
与并行通信相比,串行通信的传输速度较慢,但具有传输距离远、抗干扰能力强等优点。
2. MCS-51单片机的串行口:MCS-51单片机的串行口采用全双工通信方式,即同时可以进行发送和接收操作。
串行口的主要功能包括:- 数据发送:将并行数据转换为串行数据,通过串行口发送出去。
- 数据接收:接收串行数据,并将其转换为并行数据。
3. 串行口的工作模式:MCS-51单片机的串行口支持四种工作模式,分别是:- 模式0:同步移位寄存器方式。
- 模式1:8位UART(通用异步收发传输器)方式。
- 模式2:9位UART方式。
- 模式3:波特率可变UART方式。
三、实验器材1. 单片机实验板2. 连接线3. 示波器(可选)4. 编程器四、实验步骤1. 搭建实验电路:根据实验要求,将单片机实验板上的相关引脚与连接线连接好。
2. 编写程序:使用C语言编写程序,实现串行口的数据发送和接收功能。
3. 编译程序:使用编程器将程序烧录到单片机中。
4. 调试程序:通过示波器或其他测试工具观察串行口的数据传输情况,验证程序的正确性。
5. 实验结果分析:根据实验结果,分析程序的正确性和串行口的工作状态。
五、实验程序以下是一个简单的串行口发送和接收程序示例:```c#include <reg51.h>void main() {SCON = 0x50; // 设置串行口为模式1,8位UART方式TMOD |= 0x20; // 设置定时器1为方式2TH1 = 0xFD; // 设置波特率为9600TL1 = 0xFD; // 设置波特率为9600TR1 = 1; // 启动定时器1TI = 1; // 设置发送标志位while (1) {if (TI) { // 检查发送标志位TI = 0; // 清除发送标志位SBUF = 'A'; // 发送字符'A'}if (RI) { // 检查接收标志位RI = 0; // 清除接收标志位// 处理接收到的数据}}}```六、实验结果分析1. 在实验过程中,观察到串行口的数据发送和接收功能正常。
UART是什么-串口工作过程分析

UART是什么?串口工作过程分析一、UART是什么UART是通用异步收发传输器(Universal Asynchronous Receiver/Transmitter),通常称作UART,是一种异步收发传输器,是设备间进行异步通信的关键模块。
UART负责处理数据总线和串行口之间的串/并、并/串转换,并规定了帧格式;通信双方只要采用相同的帧格式和波特率,就能在未共享时钟信号的情况下,仅用两根信号线(Rx 和Tx)就可以完成通信过程,因此也称为异步串行通信。
若加入一个合适的电平转换器,如SP3232E、SP3485,UART 还能用于RS-232、RS-485 通信,或与计算机的端口连接。
UART 应用非常广泛,手机、工业控制、PC 等应用中都要用到UART。
UART使用的是异步,串行通信。
串行通信是指利用一条传输线将资料一位位地顺序传送。
特点是通信线路简单,利用简单的线缆就可实现通信,降低成本,适用于远距离通信,但传输速度慢的应用场合。
异步通信以一个字符为传输单位,通信中两个字符间的时间间隔多少是不固定的,然而在同一个字符中的两个相邻位间的时间间隔是固定的。
数据传送速率用波特率来表示,即每秒钟传送的二进制位数。
例如数据传送速率为120字符/秒,而每一个字符为10位(1个起始位,7个数据位,1个校验位,1个结束位),则其传送的波特率为10×120=1200字符/秒=1200波特。
数据通信格式如下图:其中各位的意义如下:起始位:先发出一个逻辑”0”信号,表示传输字符的开始。
数据位:可以是5~8位逻辑”0”或”1”。
如ASCII码(7位),扩展BCD码(8位)。
小端传输校验位:数据位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验) 停止位:它是一个字符数据的结束标志。
可以是1位、1.5位、2位的高电平。
空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。
注:异步通信是按字符传。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级学号姓名同组人
实验日期室温大气压成绩
实验六通用异步串行口(UART)实验
一、实验目的
1、掌握异步串行通信协议;
2、掌握2812异步收发器模块的应用。
二、实验设备
1、一台装有CCS软件的计算机;
2、DSP试验箱的TMS320F2812主控板;
3、DSP硬件仿真器。
三、实验原理
1、异步串行通信协议
在传输数据前,数据线处于高电平状态,这称为表示态。
传输开始后,数据线由高电平转为低电平状态,这称为起始位;起始位后面接着5-8个信息位;信息为后面是校验位;校验位后是停止位“1”。
传输完毕后,可以立即开始下一个字符的传输;否则,数据线再次进入标识态。
上面提到的信息位的位数(5~8位)、停止位的位数(1位、1.5位或2位)、校验的方式(奇偶验、偶校验或不校验)等参数都可以根据不同需要进行设置,但对于同一个传输系统中的首发两端来说,这些参数必须保持一致。
异步串行通信方式中另一个重要的参数是波特率。
在一般的“0”“1”系统中,波特率就是每秒钟传输的位数。
国际上规定了一个标准波特率系列,他们是最常用的波特率。
标准波特率系列为110、300、600、1200、1800、2400、4800、9600
和19200。
发送端和接收端必须设置统一的波特率,否则无法正确接收数据。
2、电平转换
RS-232-C标准中规定-5V~-15V位逻辑“1”,+5V~+15V位逻辑“0”,因此要用专门的芯片完成TTL电平与RS-232电平的转换,如MAX3232。
3、串行口调试助手
该计算机端程序可以监测计算机串口接收和发送数据的情况。
本实验中需要用该程序帮助观察实验结果。
四、实验步骤
1、用串口线连接实验箱的 UART 模块与计算机串行口;
2、在 CCS 环境中打开本实验的工程Example_sci.pjt,编译,生成输出文件,通过仿真器把执行代码下载到DSP 芯片;
3、在计算机上运行串口调试助手程序,设置串口为Com1,波特率为9600,校验为None,停止位为1 位,十六进制显示,以待观察从DSP 往PC 串口发送的数据;
4、选择“View”->“memory”,起始地址设为“0x1000”,“Page”项设置为“I/O”,以待观察寄存器的值;
5、在串口调试助手程序的发送窗口键入任意字符(如“5A”)以待发送至DSP,并且选择手动发送模式(即不选中自动发送项)和十六进制发送;
五、实验总结
本实验为通用异步串行接口(UART)实验,运行程序后能通过在串口调试助手程序中,在接收窗口中可以观察正确接收到0X00~0XFF的数据。
有时却发现接收到数据不正常,都是乱码,经查证发现设置串口错误并且波特率有问题改正为Com1,波特率为9600可以正确接收到0X00~0XFF的数据。
在本实验中使我掌握了异步串行通信协议及其使用方法,掌握了2812异步收发器模块的应用方法,并能通过串口调试助手对主板的数据收发等功能。
并使我进一步掌握用C语言编写 DSP 程序的方法,及编译、除错能力。
附页:实验原程序代码
#include "include/DSP281x_Device.h"
#include "include/DSP281x_Examples.h"
void scia_loopback_init(void);
void scia_fifo_init(void);
void scia_xmit(int a);
void error(int);
interrupt void scia_rx_isr(void);
interrupt void scia_tx_isr(void);
Uint16 LoopCount;
Uint16 ErrorCount;
void main(void)
{
Uint16 SendChar;
Uint16 ReceivedChar;
InitSysCtrl();
EALLOW;
GpioMuxRegs.GPFMUX.all=0x0030; // Select GPIOs to be Sci pins DINT;
IER = 0x0000;
IFR = 0x0000;
InitPieVectTable();
EnableInterrupts();
LoopCount = 0;
ErrorCount = 0;
scia_fifo_init(); // Initialize the SCI FIFO
scia_loopback_init(); // Initalize SCI for digital loop back
SendChar = 0;
for(;;)
{
scia_xmit(SendChar);
while(SciaRegs.SCIFFRX.bit.RXFIFST !=1) { } // wait for XRDY =1 for empty state ReceivedChar = SciaRegs.SCIRXBUF.all;
if(ReceivedChar != SendChar) error(1);
SendChar++;
SendChar &= 0x00FF;
LoopCount++;
if(LoopCount==256)
{
LoopCount=0;
SciaRegs.SCICCR.bit.LOOPBKENA =0; // Disable loop back
SciaRegs.SCICTL1.all =0x0023; // Relinquish SCI from Reset
while((ReceivedChar = SciaRegs.SCIRXBUF.all)!=0x0d);
scia_loopback_init(); // Initalize SCI for digital loop back }
}
}
void error(int ErrorFlag)
{
ErrorCount++;
}
void scia_loopback_init()
{
SciaRegs.SCICCR.all =0x0007;
SciaRegs.SCICTL1.all =0x0003;
SciaRegs.SCICTL2.all =0x0003;
SciaRegs.SCICTL2.bit.TXINTENA =1;
SciaRegs.SCICTL2.bit.RXBKINTENA =1;
SciaRegs.SCIHBAUD =0x0001;
SciaRegs.SCILBAUD =0x00e7;
SciaRegs.SCICCR.bit.LOOPBKENA =1; // Enable loop back
SciaRegs.SCICTL1.all =0x0023; // Relinquish SCI from Reset
}
// Transmit a character from the SCI'
void scia_xmit(int a)
{
SciaRegs.SCITXBUF=a;
}
// Initalize the SCI FIFO
void scia_fifo_init()
{
SciaRegs.SCIFFTX.all=0xE040;
SciaRegs.SCIFFRX.all=0x204f;
SciaRegs.SCIFFCT.all=0x0;
}。