手持式三维激光扫描仪
手持3d扫描仪怎么使用

三维扫描仪因其准确性、便携性、简单性等产品特性,广泛应用在逆向设计、质量检测、小型精细扫描、三维建模、数字存档、虚拟安装、干涉分析、变形检测、VR/AR、有限元分析、形位公差分析、回弹补偿检测、管路快速检测、绘制线图等诸多解决方案之中,在航天航空、汽车船舶等交通行业、风电水电、模具检测、模具制造、警用公共安全、文化遗传、影视模型、数字化工厂等行业中发挥着不可替代的作用。
接下来我们一起来看看常规的手持3D扫描仪是如何使用的。
一、手持3D扫描设备硬件示意图:二、3D扫描设备连接正确流程(以便确保设备物理完整性以及避免损坏任何设备。
)1、将电源插入插座;2.将电源线连接到USB3.0数据线;3.将USB 3.0数据线连接到电脑的USB 3.0端口;4.将USB 3.0数据线的另一端口连接到三维扫描仪。
5.将电源连接到扫描仪。
6.启动与设备配套的三维扫描软件(具体软件操作界面可联系沪敖获取)三、扫描仪自身校准由于环境的变化可能会影响扫描仪用于分析实际物体或环境以采集其形状或外观(例如,颜色)的相关数据的设备。
例如,采集的数据随后可用于构建三维数字模型。
校准指一系列操作,用于在特定条件下,在测量仪或测量系统所指示的数量值或者材料测量或参考材料所表示的值与依据标准实现的相应值之间建立关系。
这些变化大多是由温度差异造成的,因而需要修改机械配置。
优化校准可以返回初始测量特性。
操作步骤为:在软件菜单栏找到配置|扫描仪|校准或单击主工具栏上的扫描仪校准按钮开始扫描的自身校准,该过程需要将扫描放置由三个绿色指示条表示的十四个位置(3D 查看器)。
对于前十次测量,请保持与校准板垂直的正常状态。
尽量使顶部条和左侧条的红色指示条居中。
对于右侧条而言,每次测量成功后,它都会上升。
对于后四次测量,从测量板倾斜移动扫描仪,使之与顶部条、左侧条和右侧条的红色指示条位置相符,尽量居中于绿色矩形区域。
蓝色圆圈指示条必须与用户校准板中心的绿色圆圈对齐相对于其他对象的某个对象的调整,或相对于其他对象的某些对象或一组对象的静态方向。
Handyscan 3D手持式三维激光扫描仪——无需测量臂定位的三维激光扫描仪

a d s a D n y c n3
手持 式 三维 激 光扫描仪
— —
无需测量臂定位 的三维激光扫描仪
] 大 C mp g a汽车 拿 a an
一
数模 ,其二 ,车身的对称性效果一直不尽
人意 ,但没有 3 D数模 ,无法实现工程优 化分析 。 T- x项 目组发现~个 有着 “ Re 快枪
要外接跟踪定位系统 ( 如测量臂等 ) 。 () Ha d s n 3 2使用 n yc D扫描时电脑同 m
时显示实体图示 , 并能自动表面优化处理。
空、汽车、摩托车 、汽车、摩托车零部件
也能带给用户奇迹般的发展 !
( 座椅 , 仪表台 , 车灯等 ) 模具 、 、 医学 、 考
中的新成员 :它的专业设计在于 为整个制
造 业 提 供 在 线 自动 检 测 的 质 量 控 制 工 具 。 T 0系 列 测量 机 既 能 够 用 于 研发 和 工 程 0R
构和模块化设计 ,便于进行单臂和双 臂两 种配置 ,从而将 测量 机 的灵活 性和 可编 程特 性与测量 工具 的速 度和简 易操 作功 能 融合为一体 。水平臂 式测量 机所 特有
手 ”之 称 的 手 持 式 三 维 激 光 扫 描 仪 一
Ha d s a D! n y cn 3
仪表板 、座位、轮胎等各部件的数字化设 计 !问题一个个地得到解决 ,H n yc n a d sa
3 成 了 T Re 救 星 ! D — x的 为 什 么手 持 式 三 维 激 光 扫 描 仪 一
() 3使用Ha d sa D扫描可以中途 n yc n 3
停 止 ,继续 扫 描 时 扫 描 仪 能 自动定 位继 续 进 行 中止 前 的 扫 描 !
手持式三维扫描仪原理是什么

和其他别的产品一样,三维扫描仪的种类也是非常丰富的,不同种类的三维扫描仪工作原理有差别,应用的范围也不同。
下面我们就先从三维扫描仪的种类出发,来看看这个大家族里的非接触式的手持式三维扫描仪的原理是怎样的。
对于三维扫描仪来说,大体分为两种:接触式三维扫描仪和非接触式三维扫描仪。
其中非接触式三维扫描仪又分为光栅三维扫描仪(也称拍照式三维描仪)和激光扫描仪。
而光栅三维扫描又有白光扫描或蓝光扫描等,激光扫描仪又有点激光、线激光、面激光的区别。
三维扫描仪通过扫描收集到的这些模型数据具有相当广泛的用途,工业设计、瑕疵检测、逆向工程、机器人导引、地貌测量、医学信息、生物信息、刑事鉴定、数字文物典藏、电影制片、游戏创作素材等等都可见其应用。
接下来我们就言归正传一起来看看非接触式里的手持式三维扫描仪它的作用和原理。
根据光源的不同手持三维扫描仪又可手持式白光扫描仪、手持式激光扫描仪、手持红外光扫描仪,以下分别介绍一下。
手持式激光三维扫描仪用来侦测并分析现实世界中物体或环境的形状(几何构造)与外观数据(如颜色、表面反照率等性质)。
搜集到的数据常被用来进行三维重建计算,在虚拟世界中创建实际物体的数字模型。
其原理是基于拍照式三维扫描仪原有基础上设计的产品,扫描创建物体表面的点云图,这些点可用来插补成物体的表面形状,点云越密集创建的模型更精准,可进行三维重建。
若扫描仪能够取得表面颜色,则可进一步在重建的表面上粘贴材质贴图,亦即所谓的材质印射(texture mapping)。
手持式激光三维扫描仪是分析和报告几何尺寸与公差(GD&T)的一种完美检测设备。
直接生成的stl文件,易于导入检测软件加以快速编辑和后续处理。
一般来说,激光的扫描精度会更高,所以更适合用工业行业使而手持式白光三维扫描仪采用的是新一代面结构光光栅扫描技术,技术上来说, 光栅扫描的技术无论从精度还是速度都有提升。
光栅式扫描一次性完成一个面的扫描, 面内数据非常规整, 手持式白光三维扫描仪的支持标记点拼接和特征拼接、纹理拼接等多种拼接方式,手持式白光三维扫描仪也可以支持一台机器多色光。
三维激光扫描仪参数设置指南

三维激光扫描仪参数设置指南1. 前言嘿,朋友们!今天咱们来聊聊三维激光扫描仪,听起来高大上对吧?别担心,我们会把这个复杂的东西说得简单易懂。
就像喝水一样,轻轻松松就能搞定!那么,准备好了吗?咱们开始吧!2. 了解三维激光扫描仪2.1 什么是三维激光扫描仪?三维激光扫描仪就像你手里的“魔法相机”,它能瞬间把现实世界的三维数据记录下来。
你只需把它摆好,轻轻一按,咔嚓,整个场景都在它的“脑海”里了。
这就像你拍照一样,不过这个相机可不简单,能捕捉到更详细的深度信息,帮你生成超精准的三维模型。
2.2 用途有哪些?说到用途,那可是多得数不清!不管是建筑设计、文化遗产保护,还是工业测量,三维激光扫描仪都能派上大用场。
想象一下,在一个古老的寺庙里,扫描一下就能完美记录下所有细节,真是太酷了吧!而且,未来再复原的时候就方便多了,简直就是时间旅行者的必备良品!3. 参数设置的基本要领3.1 扫描模式的选择好啦,进入正题,咱们得开始调整参数了。
首先,要选择合适的扫描模式。
这里有几个常见的选择:快速模式、高清模式和室内/室外模式。
快速模式适合赶时间的朋友,反正结果也不要求太精细;高清模式呢,就像你的高清电视,细节满满,适合那些喜欢“看得仔细”的人。
室内和室外模式各有千秋,别搞混了哦!在室内扫描时,光线和反射会影响结果,得小心翼翼。
而室外就更要考虑天气情况,风一吹,数据可就飞了!3.2 分辨率与扫描范围接下来,咱们得聊聊分辨率和扫描范围。
这两个参数就像是给你的激光扫描仪穿衣服,得根据需求来选择。
分辨率越高,数据越细致,但扫描速度可能就会慢一些。
而扫描范围就像你拉开窗帘,看得越远,越能看到大千世界。
要是你只想扫描个小房间,范围就没必要设得太大,省电又省时间。
不过,记得适度哦,别像拿着放大镜看蚂蚁,哈哈!4. 实际操作小技巧4.1 数据存储与管理嘿,朋友们,数据存储也很重要!扫描完成后,数据会像一堆小星星,得好好管理。
建议你用外接硬盘,确保数据不丢失。
手持激光扫描仪的使用技巧与优势

手持激光扫描仪的使用技巧与优势近年来,随着科技的迅猛发展,激光扫描仪作为一种高效便捷的数字化设备,逐渐被广泛应用于各个领域。
特别是手持激光扫描仪的问世,大大提升了扫描的灵活性和便携性。
在本文中,将探讨手持激光扫描仪的使用技巧与优势。
使用技巧手持激光扫描仪在使用时需要注意一些技巧,以确保扫描质量和效果的最佳化。
首先,保持扫描仪与目标物距离适中。
太近会导致扫描图像过于模糊,太远则会造成图像的失真。
通过适当调整距离,我们可以获得清晰且准确的扫描结果。
其次,保持扫描仪的平稳移动。
手持激光扫描仪在扫描过程中需要以匀速移动,过快或过慢的移动都会对扫描结果产生不良影响。
我们可以通过扫描仪上的指示灯或屏幕来确认自己的移动速度,从而保持扫描的稳定性。
此外,避免遮挡和干扰也是使用手持激光扫描仪时需要注意的事项。
在扫描过程中,应尽量避免手指、摄像头或其他物体进入扫描区域,以免造成图像不清晰或畸变。
同时,在使用时要远离光线干扰,如直射阳光或强烈的背景光,以保证扫描仪的性能和扫描质量。
优势手持激光扫描仪相较于传统的扫描设备,具有许多独特的优势。
首先,手持激光扫描仪具备便携性。
传统的扫描设备通常体积庞大,使用起来不够灵活。
而手持激光扫描仪的设计紧凑轻便,方便携带。
不论在室内还是室外,使用者都可以轻松进行扫描工作。
其次,手持激光扫描仪操作简单。
传统扫描仪通常需要固定在特定位置进行扫描,而手持激光扫描仪能够随意移动进行扫描。
只需按下扫描按钮,即可完成扫描工作。
用户无需具备高级计算机技能即可操作,降低了使用门槛。
此外,手持激光扫描仪的扫描速度较快。
相较于传统扫描设备,手持激光扫描仪在扫描时间上具备明显的优势。
它可以在短时间内完成大量数据的获取和处理,提高了工作效率。
此外,手持激光扫描仪在多个行业中都有着广泛的应用。
无论是建筑、制造业还是文化遗产保护等领域,都能够见到手持激光扫描仪的身影。
它能够快速获取物体的三维数据,为后续的设计、制造和保护工作提供有力支持。
手持式和固定拍照式三维扫描仪对比

目前市面上的三维扫描仪(3D scanner)可谓是五花八门,各种款式多到足以让人眼花缭乱,在部分地区又被称为激光抄数机或者3D抄数机。
其实3D建模扫描仪基本可分为两大类,手持式和拍照式。
那么这两种基本的三维扫描仪又有什么样的区别呢?市场上三维扫描仪产品款式齐全,下面针对两种基本款式做了以下几点简单的概述。
手持式三维扫描仪原理:线激光手持三维扫描仪,自带校准功能,配有一部激光发射器和两个工业相机,工作时将激光线照射到物体上,两个相机来捕捉这一瞬间的三维扫描数据,由于物体表面的曲率不同,光线照射在物体上会发生反射和折射,然后这些信息会通过第三方软件转换为3D图像。
在三维3D扫描仪移动的过程中,光线会不断变化,而软件会及时识别这些变化并加以处理。
光线投射到扫描对象上的频率可高达数百万点每秒,所以在三维扫描过程中移动三维扫描仪,哪怕扫描时动作很快,也同样可以获得很好的扫描效果,手持式三维扫描仪工作时使用反光型标记点贴,与三维扫描软件配合使用,支持摄影测量和自校准技术。
定位目标可以使操作员根据其需要的任何方式360°移动物体。
真正便携,手持三维扫描仪可装入手提箱,携带到作业现场或者工厂,使用十分方便。
手持三维扫描仪可实现激光扫描技术的一些高数据质量,保持较高解析度,同时在平面上保持较大三角形,从而生成较小的STL文件。
功能多样并方便用户使用,由于其尺寸小巧,所以可以在狭小空间内扫描几乎任何尺寸、形状或颜色的物体。
拍照式三维扫描仪扫描原理类似于照相机拍摄照片而得名,是为满足工业设计行业应用需求而研发的产品,,它集高速扫描与高精度优势,可按需求自由调整测量范围,从小型零件扫描到车身整体测量均能完美胜任,具备极高的性能价格比。
目前已广泛应用于工业设计行业中。
拍照式结构光三维扫描仪是一种高速高精度的三维扫描测量设备,采用的是结构光非接触照相测量原理。
结构光三维扫描仪的基本原理是:采用一种结合结构光技术、相位测量技术、计算机视觉技术的复合三维非接触式测量技术。
手持式3D扫描仪用于哪些方面?

手持式3D扫描仪用于哪些方面?
随着技术的不断进步,3D扫描技术也越来越成熟。
手持式3D扫描仪是一种便携、易于操作的工具,可以用于很多领域。
下面我们来探讨一下手持式3D扫描仪在哪些方面应用广泛。
工业制造领域
手持式3D扫描仪在工业制造领域中有很广泛的应用,它可以帮助制造商快速捕捉实体物体的3D成像,包括机械件、铸件、造型件等等。
手持式3D扫描仪可以准确测量出这些物体的细节、表面粗糙度、尺寸等等,这些数据可以帮助厂家进行反复的检测和验证,保证产品的质量。
艺术设计领域
手持式3D扫描仪在艺术设计领域中的应用也非常广泛。
艺术家和设计师可以使用这种工具来捕捉实际的实物,并将其转换成3D模型,这样可以方便他们进行修改、调整和改良。
手持式3D扫描仪还可以帮助设计师在创建原型时节省时间和成本。
医疗领域
在医疗领域中,手持式3D扫描仪也有着广泛的应用。
医生们可以使用这种工具来扫描患者的身体部位,生成3D图像,并进行定制生产手术物品,比如义肢、牙套和假体等等。
这样可以帮助医生提高患者手术的成功率,同时也可以减少手术风险。
建筑设计领域
在建筑设计领域中,手持式3D扫描仪也可以帮助设计师快速捕捉现实中的建筑物、景观和其他物体,并在计算机上生成3D模型。
这样设计师可以更加准确地模拟现实中的建筑风格,追求更佳的细节和效果。
文物保护领域
手持式3D扫描仪也可以用于文物保护领域,可以帮助专业人士将文物高精度地还原成数字模型,保护文物继承和文化传承工作。
总而言之,手持式3D扫描仪在多个领域中都有着广泛的应用,随着技术的不断进步,它将会在更多的领域中发挥更大的作用。
手持式3D扫描仪的工作原理,你了解多少?

手持式3D扫描仪的工作原理,你了解多少?引言随着科技的不断进步,3D扫描技术也随之发展。
手持式3D扫描仪是这种技术发展的一个重要方向,越来越多的人开始使用它来进行3D建模、复制等操作。
那么,手持式3D扫描仪的工作原理究竟是如何的呢?接下来,我们将会详细解析。
什么是手持式3D扫描仪?手持式3D扫描仪简单来说,就是一台可以使用手持或安装在移动支架上的设备,它能够扫描现实世界中的物体,将其转化为3D数字模型。
有很多不同的手持式3D扫描仪,但它们的工作原理基本相同。
手持式3D扫描仪的工作原理手持式3D扫描仪的原理可以分为三个步骤:1.采集扫描仪通过发出激光光线俯视场景,采集到周围环境中的物体表面点信息。
激光器把“点”的信息反射回来,我们能够确定空间中此“点”的坐标值,并通过坐标信息来绘制空间中实际对象的形状。
2.反馈采集到点数据后,它们会被传输到计算机中,计算机将数据转化为能够处理的文件格式。
3.后期处理处理阶段中,我们可以对采集到的3D模型进行后期加工处理,比如修补,优化,切片等。
这些工作将最终导出出成各种常见格式的文件,在3D打印、CAD建模、电影特效等领域应用。
手持式3D扫描仪的使用手持式3D扫描仪是很方便使用的工具,尤其在进行复杂的3D建模时受欢迎。
1.构造环境通常来说,对于手持式3D扫描仪来说,过于明亮或者过于黑暗的环境都不适合使用。
使用前,我们要调整好它的设置,如激光、分辨率等。
2.扫描场景将3D扫描仪指向场景,并使用稳定的手握方式进行扫描。
尽量避免重复扫描同一个区域,同时避免扫描过于快或过于慢所导致的呈现的数据不均匀。
3.后期处理将获取到的数据进行处理,并导出成数据类型为STL模型格式的文件。
导出模型后,再进行切片操作,最终将其传入3D打印机进行输出。
结论手持式3D扫描仪是一种非常使用便捷的工具,它可以帮助我们捕捉真实世界的3D信息。
通过本文,我们可以了解到手持式3D扫描仪的工作原理及其使用方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
手持式三维激光扫描仪
手持式三维扫描仪,是一种可以用手持扫描来获取物体表面三维数据的便携式三维扫描仪。
手持式三维扫描仪产生的技术背景
三维扫描技术是为了解决工业领域的设计和制造需求而诞生的,其主流技术从出现到现在,已经发展到了第四代。
第一代是接触式测量技术,第二代是线激光扫描技术,第三代是结构光扫描技术。
第三代技术与前两代相比,在效率、成本和使用方面有了明显提高,因而很快在世界范围内获得了推广。
但是,时至今日,随着用户对三维扫描的效率和易用性等指标要求的进一步提高,该技术的固有缺陷已使之渐显过时,从而催生了四代三维扫描技术——手持式三维扫描。
手持式三维扫描技术,它使用线激光来获取物体表面点云,用视觉标记来确定扫描仪在工作过程中的空间位置。
手持扫描具有灵活、高效、易用的优点,代表今后的发展方向。
手持扫描具有最大的灵活性,但由于手的运动是随意的,因此如何精确、实时的确定任意时刻手的空间位置便成为该技术的核心问题。
基于视觉标记点的空间定位技术是解决该问题的关键,目前全球范围内掌握该技术的只有两家,
一家在中国(华朗三维),另一家是国外公司。
手持式三维扫描技术优势
一般三维手持扫描仪系列使用传统的圆点标记来实现视觉定位。
由于视觉定位需要的是一个“理想点”——即没有大小,因此实际使用的是圆点的圆心,圆心的坐标通过提取圆点边界来拟合。
然而,由于透视投影和镜头畸变的存在,导致图像中的圆点边界即不是圆,也不是椭圆,而是一个不规则的自由形体,因此拟合圆心与真实圆心之间必定存在偏差。
与其他手持式三维扫描仪不同的是,我们舍弃了传统的圆点标记,使用一种新的不会导致偏差的视觉标记——角点标记。
角点标记的角点类似黑白棋盘格的交叉点,它满足“理想点”的要求——即没有大小。
在提取的时候,我们直接得到角点的坐标,而不是通过拟合来得到它,因此和真实角点之间不会存在偏差。
这不仅提高了定位精度,也保证了后续摄影测量的精度和可靠性。
与圆点标记相比,角点标记的提取要复杂得多,若仅靠软件实现,则难以实现实时流畅的扫描。
为此,我们将角点提取算法做入了硬件芯片,这样不仅保证了扫描的流畅性,也大大降低了对电脑配置的要求。