高考数学专题:导数应用-极值最值问题

合集下载

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析1.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值2.已知a≤+lnx对任意的x∈[,2]恒成立,则a的最大值为________.【解析】令f(x)=+lnx,f′(x)=,当x∈[,1)时,f′(x)<0,当x∈(1,2]时,f′(x)>0,∴f(x)=f(1)=0,∴a≤0,故a最大值为0.min3.一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O 为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.【答案】(1);(2);(3)是.【解析】(1)本题求直四棱柱的体积,关键是求底面面积,我们要用底面半径1和表示出等腰梯形的上底和高,从图形中可知高为,而,因此面积易求,体积也可得出;(2)我们在(1)中求出,这里的最大值可利用导数知识求解,求出,解出方程在上的解,然后考察在解的两边的正负性,确定是最大值点,实质上对应用题来讲,导数值为0的那个唯一点就是要求的极值点);(3),上(2)我们可能把木梁的表面积用表示出来,,由于在体积中出现,因此我们可求的最大值,这里可不用导数来求,因为,可借助二次函数知识求得最大值,如果这里取最大值时的和取最大值的取值相同,则结论就是肯定的.试题解析:(1)梯形的面积=,. 2分体积. 3分(2).令,得,或(舍).∵,∴. 5分当时,,为增函数;当时,,为减函数. 7分∴当时,体积V最大. 8分(3)木梁的侧面积=,.=,. 10分设,.∵,∴当,即时,最大. 12分又由(2)知时,取得最大值,所以时,木梁的表面积S最大. 13分综上,当木梁的体积V最大时,其表面积S也最大. 14分【考点】(1)函数解析式;(2)用导数求最值;(3)四棱柱的表面积及其最值.4.已知常数a,b,c都是实数,f(x)=ax3+bx2+cx-34的导函数为f′ (x),f′(x)≤0的解集为{x|-2≤x≤3},若f(x)的极小值等于-115,则a的值是()A.-B.C.2D.5【答案】C【解析】依题意得f′(x)=3ax2+2bx+c≤0的解集是[-2,3],于是有3a>0,-2+3=-,-2×3=,解得b=-,c=-18a,函数f(x)在x=3处取得极小值,于是有f(3)=27a+9b+3c-34=-115,-a=-81,a=2,故选C.5.已知函数f(x)的导函数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的取值范围是________.【答案】(-1,0)【解析】根据函数极大值与导函数的关系,借助二次函数图象求解.因为f(x)在x=a处取到极大值,所以x=a为f′(x)的一个零点,且在x=a的左边f′(x)>0,右边f′(x)<0,所以导函数f′(x)的开口向下,且a>-1,即a的取值范围是(-1,0).6.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是().A.(0,2]B.(0,2)C.[,2)D.(,2)【答案】D【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2,故选D.7.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴f(1)不是极值,故A,B错;当k=2时,f′(x)=(x-1)(x e x+e x-2),显然f′(1)=0,且x在1的左侧附近f′(x)<0,x在1的右侧附近f′(x)>0,∴f(x)在x=1处取到极小值.故选C.8.设函数,则函数的各极小值之和为()A.B.C.D.【答案】D【解析】,令,则,令,则,所以当时,取极小值,其极小值为所以函数的各极小值之和,故选D.【考点】1.函数的极值求解;2.数列的求和.9.设函数,其中.(1)若在处取得极值,求常数的值;(2)设集合,,若元素中有唯一的整数,求的取值范围.【答案】(1);(2)【解析】(1)由在处取得极值,可得从而解得,此问注意结合极值定义检验所求值是否为极值点;(2)分,,和三种情况得出集合A,然后由元素中有唯一的整数,分析端点,从而求出的取值范围.试题解析:(1),又在处取得极值,故,解得.经检验知当时,为的极值点,故.(2),当时,,则该整数为2,结合数轴可知,当时,,则该整数为0,结合数轴可知当时,,不合条件.综上述,.【考点】1.利用导数处理函数的极值;2.集合元素的分析10.已知函数在处取得极值,则取值的集合为 .【答案】.【解析】,,依题意有,从而有,且有,即,解得或,当时,,此时,此时函数无极值,当时,,此时,此时函数有极值,故.【考点】函数的极值11.函数最小值是___________.【答案】【解析】函数求导得.当时,,即在上单调递减;当时,,即在上单调递增,因此函数在处取得最小值,即.【考点】利用导数求函数的最值.12.已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号;(2)若函数在区间上有最大值为,求的值.【答案】(1),;(2).【解析】(1)先求导数,因为切线与轴平行,所以导数为0,列出等式,判断出的符号;(2)求导数,令导数为0,解出方程的根,利用导数的正负判断出函数的单调性,通过分类讨论的方法找到最大值,让最大值等于,解出的值.试题解析:(1) 1分由图象在处的切线与轴平行,知,∴. 2分又,故,. 3分(2) 令,得或. 4分∵,令,得或令,得.于是在区间内为增函数,在内为减函数,在内为增函数.∴是的极大值点,是极小值点. 5分令,得或. 6分分类:①当时,,∴ .由解得, 8分②当时,, 9分∴.由得 . 10分记,∵, 11分∴在上是增函数,又,∴, 12分∴在上无实数根. 13分综上,的值为. 14分【考点】1.用导数求切线的斜率;2.用导数求函数最值.13.设函数,(1)求函数的极大值;(2)记的导函数为,若时,恒有成立,试确定实数的取值范围.【答案】(1);(2) .【解析】(1)由导函数或求得函数的单调区间,再找极大值;(2) 的导函数是一元二次函数,转化为一元二次函数在上的最值,再满足条件即可.试题解析:(1)令,且当时,得;当时,得或∴的单调递增区间为;的单调递减区间为和,故当时,有极大值,其极大值为 6分(2)∵ 7分①当时,,∴在区间内单调递减∴,且∵恒有成立∵又,此时, 10分②当时,,得因为恒有成立,所以,即,又得, 14分综上可知,实数的取值范围 . 15分【考点】1.函数的极值;2.一元二次函数的最值.14.已知函数.(Ⅰ)若在上的最大值为,求实数的值;(Ⅱ)若对任意,都有恒成立,求实数的取值范围;(Ⅲ)在(Ⅰ)的条件下,设,对任意给定的正实数,曲线上是否存在两点,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由.【答案】(Ⅰ).(Ⅱ).(Ⅲ)对任意给定的正实数,曲线上总存在两点,,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上.【解析】(Ⅰ)由,得,令,得或.当变化时,及的变化如下表:由,,,即最大值为,. 4分(Ⅱ)由,得.,且等号不能同时取,,即恒成立,即. 6分令,求导得,,当时,,从而,在上为增函数,,. 8分(Ⅲ)由条件,,假设曲线上存在两点,满足题意,则,只能在轴两侧,不妨设,则,且.是以为直角顶点的直角三角形,,,是否存在,等价于方程在且时是否有解. 10分①若时,方程为,化简得,此方程无解;②若时,方程为,即,设,则,显然,当时,,即在上为增函数,的值域为,即,当时,方程总有解.对任意给定的正实数,曲线上总存在两点,,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上. 14分【考点】利用导数研究函数的单调性、最值。

高考数学导函数极值最值问题-解析版

高考数学导函数极值最值问题-解析版

高考数学导函数极值最值问题题型一:根据图像判断极值点情况【例1】.函数f(x)的导函数f′(x)的图象如图所示,则()A.x=1是最小值点B.x=0是极小值点C.x=2是极小值点D.函数f(x)在(1,2)上单调递增【答案】C【解析】由图象得:f(x)在(−∞,0)递增,在(0,2)递减,在(2,+∞)递增∴x=2是极小值点故选 C变式训练1.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点 ()A.1个B.2个C.3个D.4个【答案】A【解析】由f′(x)的图象可知,函数f(x)在区间(a,b)上的单调性依次是:增→减→增→减.由极小值点的定义可知,在区间(a,b)上有1个极小值点【备注】利用导数研究函数的极值.若在x0处函数的导数值为零,在x0左侧函数单减,右侧函数单增,则在x0处取得极小值.变式训练2.( 尖子班 ) 如下图,直线y=ax+2与曲线y=f(x)交于A、B两点,其中A是切点,记ℎ(x)=f(x),g(x)=f(x)−ax,则下列判断正确的是()xA.ℎ(x)只有一个极值点B.ℎ(x)有两个极值点,且极小值点小于极大值点C.g(x)的极小值点小于极大值点,且极小值为−2D.g(x)的极小值点大于极大值点,且极大值为2【答案】D【解析】设切点A的坐标为(x0,f(x0)),则由条件得f′(x0)=a 且当x<x0时,f′(x)>a;当x>x0时,f′(x)<a∵g(x)=f(x)−ax∴g′(x)=f′(x)−a∴当x<x0时,g′(x)=f′(x)−a>0,g(x)单调递增当x>x0时,g′(x)=f′(x)−a<0,g(x)单调递减∴当x=x0时g(x)有极大值,且极大值为g(x0)=f(x0)−ax0=2同理g(x)有极小值,结合图形可得g(x)的极小值点大于极大值点选 D题型二:利用导数讨论函数极值点与求极值【例2】.函数y=14x4−13x3的极值点的个数为()A.0B.1C.2D.3【答案】B【解析】因为y=14x4−13x3所以y′=x3−x2=x2(x−1)由y′=0得x1=0,x2=1,当x变化时,y′,y的变化情况如下表x(−∞,0)0(0,1)1(1,+∞) y′−0−0+ y减无极值减极小值增由表可知,函数只有一个极值点故选 B变式训练.已知函数f(x)=2mx+1+ln⁡x−m(m∈R),试讨论函数f(x)的极值点情况.【答案】当m≤2时,f(x)无极值点当m>2时,f(x)的极大值点为x=m−1−√m2−2m极小值点为x=m−1+√m2−2m 【解析】由题得,f(x)的定义域为(0,+∞)f′(x)=1x−2m(x+1)2=x2+2(1−m)x+1x(x+1)2(m∈R)设g(x)=x2+2(1−m)x+1Δ=4(1−m)2−4=4m(m−2)①当m≤0时,对称轴x=m−1<0故g(x)在区间(0,+∞)上单调递增则g(x)>g(0)=1所以f′(x)>0在区间(0,+∞)上恒成立所以f(x)在区间(0,+∞)上单调递增,f(x)无极值②当0<m≤2时,Δ≤0,g(x)=x2+2(1−m)x+1≥0恒成立故f′(x)≥0在区间(0,+∞)上恒成立所以f(x)在区间(0,+∞)上单调递增,f(x)无极值③当m>2时,令g(x)=0,得x1=m−1−√m2−2mx2=m−1+√m2−2m令f′(x)>0,得0<x<x1或x>x2令f′(x)<0,得x1<x<x2所以f(x)在区间(0,x1)上单调递增,在区间(x1,x2)上单调递减,在区间(x2,+∞)上单调递增故f(x)的极大值点为x=m−1−√m2−2m,极小值点为x=m−1+√m2−2m.综上所述,当m≤2时,f(x)无极值点当m>2时,f(x)的极大值点为x=m−1−√m2−2m,极小值点为x=m−1+√m2−2m 【备注】由题得,求得f′(x)=x2+2(1−m)x+1x(x+1)2设g(x)=x2+2(1−m)x+1由Δ=4m(m−2)分m≤0、0<m≤2、m>2三种情况讨论,即可得到函数极值点的情况本题主要考查利用导数求解函数的极值(点)和不等式的恒成立问题求解,考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题【例3】.已知x=−2是f(x)=(x2+ax−1)e x−1的极值点,则f(x)的极小值为()A.−1B.−2e−3C.5e−3D.1【答案】Ax3−4x+4的极大值为()变式训练.函数f(x)=13B.6A.283C.26D.73【答案】A【解析】定义域为R,f(x)=x2−4=(x+2)(x−2)f(x)在(−∞,−2)上单调递增在(−2,2)上单调递减在(2,+∞)上单调递增所以f(x)的极大值为f(−2)=283【备注】题目比较简单,直接求导,利用导数确定单调性求解函数极值即可题型三:已知极值求参数【例4】.已知函数f(x)=x(e x−2a)−ax2,若f(x)有极小值且极小值为0,求a的值.【答案】a=12【解析】f′(x)=(e x−2a)+xe x−2ax=(x+1)(e x−2a),x∈R①若a≤0,则由f′(x)=0解得x=−1当x∈(−∞,−1)时,f′(x)<0,f(x)递减当x∈(−1,+∞)上,f′(x)>0,f(x)递增故当x=−1时,f(x)取极小值f(−1)=a−e−1(舍去)令a−e−1=0,得a=1e若a>0,则由e x−2a=0,解得x=ln(2a)时a.若ln⁡(2a)<−1,即0<a<12e当x∈(−∞,ln(2a))上,f′(x)>0,f(x)递增当x∈(ln⁡(2a),−1)上,f′(x)<0,f(x)递增故当x=−1时,f(x)取极小值f(−1)=a−e−1(舍去)令a−e−1=0,得a=1e时,f′(x)≥0,f(x)递增不存在极值b.若ln⁡(2a)=−1,即a=12e时c.若ln⁡(2a)>−1,即a>12e当x∈(−∞,−1)上,f′(x)>0,f(x)递增x∈(−1,ln(2a))上,f′(x)<0,f(x)递减当x∈(ln⁡(2a),+∞)上,f′(x)>0,f(x)递增故当x=ln(2a)时,f(x)取极小值f(ln⁡(2a))=−aln2(2a)=0得a=12满足条件故当f(x)有极小值且极小值为0时,a=12【备注】求出导函数f′(x)=(x+1)(e x−2a),通过研究f′(x)=0的解,确定f′(x)>0和f′(x)<0的解集,以确定f(x)的单调性,从而确定f(x)是否有极小值,在有极小值时,由极小值为0,解得a值,如符合上述范围,即为所求【例5】.已知函数f(x)=x3+3mx2+nx+m2,在x=−1时极值为0,则mn为()A.29B.13C.29或13D.不存在【答案】A【解析】∵f(x)=x3+3mx2+nx+m2∴f′(x)=3x2+6mx+n由题意{−1+3m−n+m2=03−6m+n=0且(6m)2−4×3×n>0解得m=2,n=9则mn =29故选 A变式训练.已知函数f(x)=x3+3mx2+nx+m2在x=−1处取得极值0,则m+ n=________ .【答案】11【解析】由f(x)=x3+3mx2+nx+m2,得:f′(x)=3x2+6mx+n 因为函数f(x)=x3+3mx2+nx+m2在x=−1处取得极值0所以{f′(−1)=0 f(−1)=0所以{−1+3m−n+m2=0 3−6m+n=0解得:{m1=1n1=3或{m2=2n2=9当{m1=1n1=3时,f′(x)=3x2+6x+3=3(x+1)2≥0所以函数在R上为单调递增函数,与在x=−1处取得极值0相矛盾所以{m1=1n1=3不合题意,舍去当{m2=2n2=9时,f′(x)=3x2+12x+9=2(x+1)(x+3)所以,f′(−1)=0,且当−3<x<−1时,f′(−1)<0,函数f(x)在区间(−3,−1)上为减函数当x>−1时,f′(−1)>0,函数f(x)在区间(−1,+∞)上为增函数所以函数f(x)在x=−1处取得极值,所以符合题意所以m+n=2+9=11所以答案应填:11题型四:已知极值求参数范围【例6】.已知f(x)=x3+3ax2+3(a+2)x+1有极大值又有极小值,则a的取值范围是________.【答案】(−∞,−1)∪(2,+∞)【解析】f(x)有极大值又有极小值,故f′(x)=3x2+6ax+3(a+2)=0有两个不同的解即Δ=36a2−4×3×3(a+2)>0∴a∈(−∞,−1)∪(2,+∞)变式训练1.若函数f(x)=ax−x2−ln⁡x存在极值,且这些极值的和不小于4+ln⁡2,则a的取值范围为()A.[2,+∞)B.[2√2,+∞)C.[2√3,+∞)D.[4,+∞)【答案】C【解析】f(x)=ax−x2−ln⁡x,x∈(0,+∞),则f′(x)=a−2x−1x =−2x2−ax+1x,∵函数f(x)存在极值,∴f′(x)=0在(0,+∞)上有根,即2x2−ax+1=0在(0,+∞)上有根,∴Δ=a2−8⩾0,显然当Δ=0时,f(x)无极值,不合题意;∴方程必有两个不等正根,记方程2x2−ax+1=0的两根为x1,x2,则x1+x2=a2,x1x2=12,f(x1),f(x2)是函数F(x)的两个极值,由题意得,f(x1)+f(x2)=a(x1+x2)−(x12+x22)−(ln⁡x1+ln⁡x2)=a22−a24+1−ln⁡12⩾4+ln⁡2化简解得a2⩾12,满足Δ>0,又x1+x2=a2>0,即a>0,∴a的取值范围是[2√3,+∞).故选 C【备注】【考点】:利用导数研究函数的极值.本题考查导数与函数的单调性、极值的关系,求函数f(x)的定义域,求出f′(x),利用导数和极值之间的关系将条件转化:f′(x)=0在(0,+∞)上有根,即2x2−ax+1=0在(0,+∞)上有根,根据二次方程根的分布问题列出方程组,根据条件列出关于a的不等式,求出a的范围,属于中档题.变式训练2.若函数f(x)=a(x−2)e x+lnx−x存在唯一的极值点,且此极值小于0,则实数a的取值范围为()A.(−1e2,1 e2 )B.(−1e ,1 e )C.(−1e2,0]D.(−1e,0]【答案】D【解析】本题考查利用导数研究函数的单调性极值,先求导,再由f′(x)=0得到x=1或ae x−1x=0(∗),根据(∗)无解和函数的极值小于0即可求出a的范围.f′(x)=a(x−1)e x+1x −1=(x−1)(ae x−1x).由f′(x)=0得到x=1或ae x−1x=0(∗).由于f(x)仅有一个极值点.关于x的方程(∗)必无解.①当a=0时,(∗)无解,符合题意.②当a≠0时,由(∗)得,a=1xe x.设g(x)=xe x.∴g′(x)=e x(x+1)>0恒成立.∴g(x)为增函数.∴函数y=1xe x为减函数.∴当x→+∞时,y→0.∴a<0.∴x=1为f(x)的极值点.∵f(1)=−ae−1<0.∴a>−1e.综上可得a的取值范围是(−1e,0].故选 D题型五:利用导数求函数最值【例7】.已知函数f(x)=x3−12x+8在区间[−3,3]上的最大值、最小值分别为M,m,则M−m= ________【答案】32【解析】f′(x)=3x2−12.当x<−2或x>2时函数单调递增;当−2<x<2时函数单调递减.又f(−3)=17,f(−2)=24,f(2)=−8,f(3)=−1,比较以上几个数可得M=24,m=−8利用导数研究函数的最值,所以M−m=32.【备注】先判断函数的单调性,然后比较极值与端点处的函数值,从而得出函数的最大、最小值.变式训练.已知函数f(x)=2x3−3x.求f(x)在区间[−2,1]上的最大值;【答案】√2【解析】由f(x)=2x3−3x得f′(x)=6x2−3,令f′(x)=0,得x=−√22或x=√22,因为f(−2)=−10,f(−√22)=√2,f(√22)=−√2,f(1)=−1,所以f(x)在区间[−2,1]上的最大值利用导数研究函数的最值为f(−√2)=√2.【备注】本题考查利用导数确定函数最值的相关问题.题型六:根据最值求参数值【例8】.已知函数f(x)=12ax2−ln⁡x,a∈R.(1) 求函数f(x)的单调区间;【答案】当a⩽0时,函数f(x)的单调减区间是(0,+∞);当a>0时,函数f(x)的单调减区间是(0,√1a ),单调增区间为(√1a,+∞).【解析】求导分析导数正负即可,注意对a进行分类讨论.①当a=0时,f′(x)=−1x<0,故函数f(x)在(0,+∞)上单调递减.②当a<0时,f′(x)<0恒成立,所以函数f(x)在(0,+∞)上单调递减.③当a>0时,令f′(x)=0,解得x=√1a.当x∈(0,√1a )时,f′(x)<0 , 所以函数f(x)在(0,√1a)单调递减.当x∈(√1a ,+∞)时, f′(x)>0,所以函数f(x)在(√1a,+∞)单调递增.综上所述,当a⩽0时,函数f(x)的单调减区间是(0,+∞);当a>0时,函数f(x)的单调减区间是(0,√1a ),单调增区间为(√1a,+∞).(2) 若函数f(x)在区间[1,e]的最小值为1,求a的值.【答案】a=2.【解析】分a⩽0和a>0两种情况来表示f(x)的最小值,令最小值等于1,求出a的值.①当a⩽0时,由(1)可知,f(x)在[1,e]上单调递减,所以f(x)的最小值为f(e)=12ae2−1=1,解得a=4e2>0舍去.②当a>0时,由(1)可知:当√1a⩽1,即a⩾1时,函数f(x)在[1,e]上单调递增,所以函数f(x)的最小值为f(1)=12a=1,解得a=2.当1<√1a <e,即1e2<a<1时,函数f(x)在(1,√1a)上单调递减,在(√1a,e)上单调递增,所以函数f(x)的最小值为f(√1a )=12+12ln⁡a=1,解得a=e舍去.当√1a ⩾e,即0<a⩽1e2时,函数f(x)在[1,e]上单调递减,所以函数f(x)的最小值为f(e)=1 2ae2−1=1,得a=4e2舍去.综上所述,a=2.变式训练.已知f(x)=2xln⁡x−mx+2e.(1) 若方程f(x)=0在(14,e)上有实数根,求实数m的取值范围;【答案】[0,2e2+2)【解析】方程f(x)=0可化为2xlnx=mx−2e令 g(x)=2xlnx ,则 g ′(x)=2(ln⁡x +1)由 g ′(x)>0 可得 x >1e ,由 g ′(x)<0 可得 0<x <1e∴ g(x) 在 (0,1e ) 上单调递减,在 (1e ,+∞) 上单调递增∴ g(x) 的极小值为 g(1e )=−2e而 g(14)=−ln⁡2, f(e)=2e ,则 g(14)<g(e)由条件可知点 (0,−2e ) 与 (e ,2e) 连线的斜率为 2e 2+2可知点 (0,−2e ) 与 (14,−ln⁡2) 连线的斜率为 8e −4ln⁡2,而 2e 2+2>8e −4ln⁡2结合图像可得 0≤m <2e 2+2 时,函数 y =g(x) 与 y =mx −1e 有交点∴ 方程 f(x)=0 在 (14,e) 上有实数根时,实数 m 的取值范围是 [0,2e 2+2)【备注】令 f(x)=0,将其化为 2xlnx =mx −2e ,构造函数 g(x)=2xlnx ,利用导数研究函数的单调性与极值,结合图象可求得 m 的范围(2) 若 y =f(x) 在 [1,e] 上的最小值为 −4+2e ,求实数 m 的值.【答案】2ln⁡2+2【解析】由 f(x)=2xln⁡x −mx +2e 可得 f ′(x)=2ln⁡x −m +2① 若 m ≥4,则 f ′(x)≤0 在 [1,e] 上恒成立即 f ′(x) 在 [1,e] 单调递减则 f(x) 的最小值为 f(e)=2e −me +2e =−4+2e故 m =2+4e ,不满足 m ≥4,舍去② 若 m ≤2,则 f ′(x)≥0 在 [1,e] 上恒成立即 f ′(x) 在 [1,e] 单调递增则 f(x) 的最小值为 f(1)=−m +2e =−4+2e故m=4,不满足m≤2,舍去③若2<m<4,则x∈[1,e m−22)时,f′(x)<0x∈(e m−22,e]时,f′(x)>0∴f(x)在[1,e m−22)上单调递减,在[e m−22,e)上单调递增∴f(x)的最小值为f(e m−22)=−2e m−22+2e =−4+2e解之得m=2ln⁡2+2,满足2<m<4∴综上可知,实数m的值为2ln⁡2+2【备注】对f(x)求导,然后按m分类讨论函数的单调区间,结合最小值可求得m点的值求函数的单调区间、极值、最值是统一的,极值是函数的拐点,也是单调区间的划分点,而求函数的最值是在求极值的基础上,通过判断函数的大致图像,从而得到最值,大前提是要考虑函数的定义域.函数y=f(x)的零点就是f(x)=0的根,所以可通过解方程得零点,或者通过变形转化为两个熟悉函数图象的交点横坐标.确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可结合导数知识确定极值点和单调区间从而确定其大致图象.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理题型七:根据最值求参数取值范围【例9】.若函数f(x)=3x−x3在区间(a2−12,a)上有最小值,则实数a的取值范围是() A.(−1,√11)B.(−1,4)C.(−1,2]D.(−1,2)【答案】C【解析】【解答】由题f′(x)=3−3x2,令f′(x)>0解得−1<x<1;令f′(x)<0解得x<−1或x>1由此得函数在(−∞,−1)上是减函数,在(−1,1)上是增函数,在(1,+∞)上是减函数故函数在x=−1处取到极小值−2,判断知此极小值必是区间(a2−12,a)上的最小值∴a2−12<−1<a,解得−1<a<√11又当x=2时,f(2)=−2,故有a⩽2综上知a∈(−1,2]故选C.【分析】求函数f(x)=3x−x3导数,研究其最小值取到位置,由于函数在区间(a2−12,a)上有最小值,故最小值点的横坐标是集合(a2−12,a)的元素,由此可以得到关于参数a的等式,解之求得实数a的取值范围变式训练.函数f(x)=x3−3ax−a在(0,1)内有最小值,则a的取值范围为()A.0⩽a<1B.0<a<1C.−1<a<1D.0<a<12【答案】B【解析】f′(x)=3(x2−a).若a⩽0,则函数f(x)在(0,1)上单增,此时没有最小值;所以a>0,此时函数f(x)在(0,√a)单减,(√a,1)单增.因为函数f(x)有最小值,所以√a< 1,解得a<1利用导数研究函数的最值.综上,0<a<1.【备注】本题需要对a的取值进行分类讨论,注意是在开区间内有最小值,所以最小值点一定在极小值点取到.精选精练1.函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在(a,b)内有极值点________ 个【答案】3【解析】观察图象可得,导函数的变号零点有3个,因此函数f(x)在(a,b)内有3个极值点.2.已知函数y=x−ln⁡(1+x2),则函数y的极值情况是()A.有极小值B.有极大值C.既有极大值又有极小值D.无极值【答案】D【解析】y′=1−2x1+x2=(x−1)21+x2⩾0;∴该函数无极值.故选:D.求y′,从而可判断y′⩾0,从而得出该函数无极值.【备注】考查复合函数的导数公式,完全平方式,以及极值的定义.3.已知函数f(x)=x3+ax2+b(a,b∈R)在x=−2处取极大值为0,则b= () A.3B.4C.−4D.−3【答案】C【解析】∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,函数在x=−2处取极小值0,∴−23+4a+b=0,12−4a=04.对于在R上可导的任意函数f(x),若满足(x−a)f′(x)⩾0,则必有()A .f(x)⩾f(a)B .f(x)⩽f(a)C .f(x)>f(a)D .f(x)<f(a)【答案】A【解析】由 (x −a)f ′(x)⩾0 知,当 x >a 时,f ′(x)⩾0;当 x <a 时,f ′(x)⩽0.所以当 x =a 时,函数 f(x) 取得最小值,则 f(x)⩾f(a).5.已知函数 f(x)=e x x +k(lnx −x),若 x =1 是函数 f(x) 的唯一极值点,则实数 k 的取值范围是( )A .(−∞,e]B .[0,e]C .(−∞,e)D .[0,e) 【答案】A【解析】对参数需要进行讨论.∵ 函数 f(x)=e x x +k(lnx −x).∴ 函数 f(x) 的定义域是 (0,+∞).∴f ′(x)=e x x−e xx 2+k(1x −1)=(e x −kx)(x−1)x 2.∵x =1 是函数 f(x) 的唯一一个极值点.∴x =1 是导函数 f ′(x)=0 的唯一根.∴e x −kx =0 在 (0,+∞) 无变号零点.令 g(x)=e x −kx .g ′(x)=e x −k .① k ≤0 时,g ′(x)>0 恒成立.g(x) 在 (0,+∞) 时单调递增的.g(x) 的最小值为 g(0)=1,g(x)=0 无解.② k >0 时,g ′(x)=0 有解为:x =ln⁡k .0<x <ln⁡k 时,g ′(x)<0,g(x) 单调递减.ln⁡k <x 时,g ′(x)>0,g(x) 单调递增.∴g(x) 的最小值为 g(ln⁡k)=k −kln⁡k .∴k −kln⁡k >0.∴k <e .由 y =e x 和 y =ex 图象,它们切于 (1,e).综上所述:k ≤e .故选 A【备注】本题考查由函数的导函数确定极值问题.6.若函数f(x)=x 33−a 2x 2+x +1在区间(12,3)上有极值点,则实数a 的取值范围是________. 【答案】 (2,103)【解析】若函数f(x)在区间( 12 ,3)上无极值,则当x ∈( 12 ,3)时,f ′(x)=x 2−ax +1⩾0恒成立或当x ∈(12,3)时,f ′(x)=x 2−ax +1⩽0恒成立.当x ∈(12,3)时,y =x +1x 的值域是[2,103);当x ∈(12,3)时, f ′(x)=x 2−ax +1⩾0,即a ⩽x +1x 恒成立,a ⩽2;当x ∈(12,3)时,f ′(x)=x 2−ax +1⩽0,即a ⩾x +1x 恒成立,a ⩾103.因此要使函数f(x)在(12,3)上有极值点,则实数a 的取值范围是(2,103).故答案为(2,103).【备注】本题考查的知识点是函数在某点取得极值的条件,其中将问题转化为导函数的零点问题是解答此类问题最常用的办法.7.函数 f(x)=13x 3−x 2+a ,函数 g(x)=x 2−3x ,它们的定义域均为 [1,+∞),并且函数 f(x)的图象始终在函数g(x)的上方,那么a的取值范围是 ()A.(0,+∞)B.(−∞,0)C.(−43,+∞)D.(−∞,43)【答案】A【解析】设ℎ(x)=13x3−x2+a−x2+3x,则ℎ′(x)=x2−4x+3=(x−3)(x−1),于是x∈(1,3)单调递减;x∈(3,+∞)单调递增,当x=3时,函数ℎ(x)取得最小值利用导数研究函数的最值,因为f(x)在g(x)上方,则有ℎmin(x)>0,即ℎ(3)=a>0,所以a的取值范围是(0,+∞)利用导数研究函数的图象与性质.【备注】可构造新函数ℎ(x)=f(x)−g(x),所以问题等价于函数ℎ(x)在[1,+∞)上大于0恒成立.8.若函数f(x)=a(x−2)e x+ln⁡x−x存在唯一的极值点,且此极值小于0,则实数a的取值范围为________ .【答案】(−1e,0]【解析】先求导,再由f′(x)=0得到x=1或ae x−1x=0(∗),根据(∗)无解和函数的极值大于0即可求出a的范围.f(x)=a(x−2)e x+ln⁡x−x,x>0.∴f′(x)=a(x−1)e x+1x −1=(x−1)(ae x−1x).由f′(x)=0得到x=1或ae x−1x=0(∗).由于f(x)仅有一个极值点,关于x的方程(∗)必无解.①当a=0时,(∗)无解,符合题意.②当a≠0时,由(∗)得,a=1xe x.设g(x)=xe x.∴g′(x)=e x(x+1)>0恒成立.∴g(x)为增函数.∴函数y=1xe为减函数.∴当x→+∞时,y→0.∴a<0.∴x=1为f(x)的极值点.∵f(1)=−ae−1<0.∴a>−1e.综上可得a的取值范围是(−1e,0].故答案为(−1e,0].9.函数f(x)=ln xx的最大值为()A.1eB.eC.e2D.103【答案】A【解析】令y′=(lnx)⋅x−lnx⋅x′x2=1−lnxx2=0则x=e当x>e时,y′<0当0<x<e时,y′>0所以当x=e时,函数有极大值,极大值为1e因为函数在定义域内只有—个极值,所以y max=1e10.函数y=xcos⁡x−sin⁡x在[π2,3π2]的最小值为________ .【答案】−π【解析】由已知,得y′=cos⁡x−xsin⁡x−cos⁡x=−xsin⁡x,当π2<x<π时,y′<0;当π<x<3π2时,y′>0.因此,y min=πcos⁡π−sin⁡π=−π.11.已知函数f(x)=(x2−7x+13)e x,求函数f(x)的极值【答案】y极大值=f(2)=3e2,y极小值=f(3)=e312.设0<x<π,则函数y=2−cos⁡xsin x的最小值是 () A.3B.2 C.√3D.2−√3【答案】C【解析】y′=sin2⁡x−(2−cos⁡x)cos⁡xsin x =1−2cos⁡xsin x,∵0<x<π,∴当π3<x<π时,y′>0;当0<x<π3时,y′<0.∴x=π3时,y min=√3.13.已知函数f(x)=xln⁡x−ax2+a不存在最值,则实数a的取值范围是()A.(0,1)B.(0,12]C.[1,+∞)D.[12,+∞)【答案】D【解析】由题意,f′(x)=ln⁡x+1−2ax令f′(x)=0,得ln⁡x=2ax−1,函数f(x)不存在最值,等价于f′(x)=ln⁡x−2ax+1最多1个零点,等价于函数y=ln⁡x与y=2ax−1的图象最多1个交点,当y=ln⁡x和y=2ax−1相切时,设切点是(x0,ln⁡x0),∴{ln⁡x0=2ax0−12a=1x0,解得:a=12,故当a=12时,直线y=2ax−1与y=ln⁡x的图象相切,故a⩾12时,y=ln⁡x与y=2ax−1的图象最多1个交点.则实数a的取值范围是[12,+∞).故选:D.【备注】问题等价于函数y=ln⁡x与y=2ax−1的图象最多1个交点,当y=ln⁡x和y=2ax−1相切时,设切点是(x0,ln⁡x0),求出a的临界值即可.本题考查了导数的应用以及函数的最值问题,考查转化思想,是一道中档题.14.设函数f(x)=13x3−x+m的极大值为1,则函数f(x)的极小值为()A.−13B.−1C.13D.1【答案】A【解析】对函数f(x)=13x3−x+m求导得,f′(x)=x2−1.令f′(x)=0得,x2−1=0,解得x=±1.当x∈(−∞,−1)∪(1,+∞)时,f′(x)>0,f(x)为单调增函数.当x∈(−1,1)时,f′(x)<0,f(x)为单调减函数.所以f(x)在x=−1处有极大值为f(−1)=−13+1+m=1,解得m=13.f(x)在x=1处有极小值为f(1)=13−1+m=−13.故选 A【备注】本题考查了利用导数研究函数的极值,对函数 f(x)=13x 3−x +m 求导得 f′(x)=x 2−1,从而得 f(x) 在 (−∞,−1),(1,+∞) 为单调增函数,在 (−1,1) 为单调减函数,故 f(x) 在 x =−1 处有极大值为 f(−1)=−13+1+m =1,即可解得 m ,进而得出极小值.15.已知 (a +1)x −1−ln⁡x ⩽0 对于任意 x ∈[12,2] 恒成立,则 a 的最大值为( ) A .0 B .1 C .1−2ln⁡2 D .−1+ln⁡22【答案】C【解析】分离变量,题意转化为 a +1⩽1+ln⁡x x在 [12,2] 上恒成立.16.已知函数f(x)=1−x ax+ln⁡x .若函数g(x)=f(x)−14x 在[1,e]上为增函数,求正实数a 的取值范围.【答案】[43,+∞)【解析】因为g(x)=f(x)−14x =1−x ax+lnx −14x ,所以g ′(x)=−ax 2+4ax−44ax 2(a >0)设φ(x)=−ax 2+4ax −4,由题意知,只需 φ(x)0在 [1,e] 上恒成立即可满足题意. 因为a >0,函数 φ(x)的图象的对称轴为x =2,所以只需φ(1)=3a −40,即 a 43即可.故正实数 a 的取值范围为[43,+∞).17.已知函数 f(x)=x 3−ax +2 的极大值为 4,若函数 g(x)=f(x)+mx 在 (−3,a −1) 上的极小值不大于 m −1,则实数 m 的取值范围是( ) A .[−9,−154) B .(−9,−154] C .(−154,+∞) D .(−∞,−9)【答案】B【解析】∵f′(x)=3x2−a,∴当a⩽0时,f′(x)⩾0,f(x)无极值,当a>0时,易得f(x)在x=−√a3处取得极大值,则有f(−√a3)=4,即a=3,于是g(x)=x3+(m−3)x+2,g′(x)=3x2+(m−3);当m−3⩾0时,g′(x)⩾0,g(x)在(−3,2)上不存在极小值;当m−3<0时,易知g(x)在x=√3−m3处取得极小值,依题意有{−3<√3−m3<2g(√3−m3)⩽m−1,解得−9<m⩽−154.故选 B【备注】【点睛】:本小题主要考查的数学知识是:函数与导数,导数与单调性、极值的关系,考查分类讨论的数学思想方法.涉及函数导数的问题,首先要求函数的定义域,然后对函数求导,令导函数为0,结合函数单调性可得极值,明确极大值和极小值的定义求解.18.设函数f(x)=x3−3ax+b,a≠0在点(2,f(2))处与直线y=8相切(1) 求实数a,b的值;【答案】a=4,b=24;【解析】f′(x)=3x2−3a,f′(2)=0,f(2)=8即12−3a=0,8−6a+b=8解得a=4,b= 24(2) 求函数f(x)在区间[0,3]上的最值。

导数极值最值问题

导数极值最值问题

导数极值最值问题导数极值最值问题是高中数学中非常重要且常见的问题之一。

它是微积分中的一个重要内容,通过求函数的导数来研究函数在某些点上的极值和最值问题。

下面是一些相关的参考内容。

一、定义和概念1. 导数的定义:函数f(x)在点x处的导数定义为f'(x) = lim(h->0) [f(x+h)-f(x)]/h,它表示函数在该点的瞬时变化率。

2. 极值的定义:函数f(x)在某个区间的局部极大值或极小值称为极值。

3. 最值的定义:函数f(x)在某个区间的最大值或最小值称为最值。

二、求导法则1. 基本求导法则:如常数函数求导、幂函数求导、指数函数求导等。

2. 和差法则:导数的和、差等于导数的和、差。

3. 积法则:导数的积等于其中一个函数在点上的导数乘以另一个函数在点上的值,再加上其中一个函数在点上的值乘以另一个函数在点上的导数。

4. 商法则:导数的商等于分子的导数乘以分母减去分母的导数乘以分子,再除以分母的平方。

三、求解极值问题的步骤1. 求导:先求函数的导数f'(x)。

2. 导数为0的点:解方程f'(x) = 0,求出所有导数为0的点。

3. 导数不存在的点:找出导数不存在的点,也就是函数不可导的点。

4. 极值点的判断:对于导数为0的点和导数不存在的点,判断它们是否是函数的极值点。

5. 极值点的分类:根据二阶导数f''(x)的符号来判断极值点的性质。

a. 若f''(x) > 0,表示f(x)在该点上有极小值。

b. 若f''(x) < 0,表示f(x)在该点上有极大值。

c. 若f''(x) = 0,表示f(x)在该点上无极值,需进一步判断。

6. 求最值:将极值点的函数值代入原函数,求出极值。

四、举例说明以函数f(x) = x^3 - 4x^2 + 5x + 2为例,来说明如何求解其极值问题。

1. 求导:f'(x) = 3x^2 - 8x + 5。

高考复习-利用导数研究函数的单调性及极值和最值

高考复习-利用导数研究函数的单调性及极值和最值

利用导数研究函数的单调性及极值和最值知识集结知识元利用导数研究函数的单调性问题知识讲解1.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0的根;(4)用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:f(x)>2x+4,即f(x)﹣2x﹣4>0,设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则由g(x)>g(﹣1)=0得x>﹣1,即f(x)>2x+4的解集为(﹣1,+∞),故选:B题型二:导数和函数单调性的综合应用典例2:已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:.解:(Ⅰ)(2分)当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0时,f(x)不是单调函数(4分)(Ⅱ)得a=﹣2,f(x)=﹣2lnx+2x﹣3∴,∴g'(x)=3x2+(m+4)x﹣2(6分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣2∴由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,所以有:,∴(10分)(Ⅲ)令a=﹣1此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,(12分)∵n≥2,n∈N*,则有0<lnn<n﹣1,∴∴【解题方法点拨】若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件.例题精讲利用导数研究函数的单调性问题例1.函数f(x)=e x-3x+2的单调减区间为__________.例2.若函数y=-x3+ax在[1,+∞)上是单调函数,则a的最大值是___.例3.函数f(x)=sin x-x,x∈(0,)的单调递增区间是_______.利用导数研究函数的极值与最值问题知识讲解1.利用导数研究函数的极值【知识点的知识】1、极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f (x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f (x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.2、极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.3、判别f(x0)是极大、极小值的方法:若x0满足f′(x0)=0,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.4、求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f (x)在这个根处无极值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.2.利用导数研究函数的最值【利用导数求函数的最大值与最小值】1、函数的最大值和最小值观察图中一个定义在闭区间[a,b]上的函数f(x)的图象.图中f(x1)与f(x3)是极小值,f (x2)是极大值.函数f(x)在[a,b]上的最大值是f(b),最小值是f(x1).一般地,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.说明:(1)在开区间(a,b)内连续的函数f(x)不一定有最大值与最小值.如函数f(x)=在(0,+∞)内连续,但没有最大值与最小值;(2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.(3)函数f(x)在闭区间[a,b]上连续,是f(x)在闭区间[a,b]上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个2、用导数求函数的最值步骤:由上面函数f(x)的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数f(x)在[a,b]上连续,在(a,b)内可导,则求f(x)在[a,b]上的最大值与最小值的步骤如下:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.例题精讲利用导数研究函数的极值与最值问题例1.函数y=lnx-e x在[1,e]最大值为()A.1-e e B.C.-eD.例2.己知定义域为(1,+∞)的函数f(x)=e x+a-ax,若f(x)>0恒成立,则正实数a的取值范围为()A.(0,e2]B.(0,e2)C.[1,e2]D.(1,e2)例3.函数f(x)=x2-lnx的最小值为()A.1+ln2B.1-ln2C.D.当堂练习单选题练习1.定义在R上的函数f(x)的导函数为f'(x),且,若存在实数x使不等式f(x)≤m2-am-3对于a∈[0,2]恒成立,则实数m的取值范围为()A.(-∞,-2]∪[2,+∞)B.C.D.练习2.若函数f(x)与g(x)满足:存在实数t,使得f(t)=g'(t),则称函数g(x)为f(x)的“友导”函数.已知函数为函数f(x)=x2lnx+x的“友导”函数,则k的取值范围是()A.(-∞,1)B.(-∞,2]C.(1,+∞)D.[2,+∞)练习3.函数f(x)是定义在(0,+∞)上的可导函数,f'(x)为其导函数,若xf'(x)+f(x)=e x(x-2)且f(3)=0,则不等式f(x)<0的解集为()A.(0,2)B.(0,3)C.(2,3)D.(3,+∞)练习4.已知定义在(0,+∞)上的函数f(x)的导函数为f′(x),f(x)>0且f(e)=1,若xf′(x)lnx+f(x)>0对任意x∈(0,+∞)恒成立,则不等式<lnx的解集为()A.{x|0<x<1}B.{x|x>1}C.{x|x>e}D.{x|0<x<e}练习5.已知函数f(x)=x3-x2+ax-a存在极值点x0,且f(x1)=f(x0),其中x1≠x0,x1+2x0=()A.3B.2C.1D.0练习6.若函数f(x)=e x+axlnx(e为自然对数的底数)有两个极值点,则实数a的取值范围是()A.(-∞,-e)B.(-∞,-2e)C.(e,+∞)D.(2e,+∞)填空题练习1.已知函数f(x)=,若∃,使得f(f(x0))=x0,则m的取值范围是_________练习2.设函数f(x)=e x(2x-1)-2ax+2a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是_______.练习3.已知函数,若当x1,x2∈[1,3]时,都有f(x1)<2f(x2),则a的取值范围为______________.练习4.若函数f(x)=e-x(x2+ax-a)在R上单调递减,则实数a的值为____.练习5.已知函数,g(x)=|x-t|,t∈(0,+∞).若h(x)=min{f(x),g (x)}在[-1,3]上的最大值为2,则t的值为___.练习6.已知函数f(x)=x3-ax2在(-1,1)上没有最小值,则a的取值范围是_________.解答题练习1.'已知函数f(x)=e x-a(x+1),其中a∈R.(1)讨论f(x)的单调性;(2)若a>0时,函数f(x)恰有一个零点,求实数a的值.(3)已知数列{a n}满足a n=,其前n项和为S n,求证S n>ln(n+1)(其中n∈N).'练习2.'已知函数f(x)=(a∈R).(1)当a=1时,求f(x)的单调区间;(2)设点P(x1,y1),Q(x2,y2)是函数f(x)图象的不同两点,其中0<x1<1,x2>1,是否存在实数a,使得OP⊥OQ,且函数f(x)在点Q切线的斜率为f′(x1-),若存在,请求出a的范围;若不存在,请说明理由.'练习3.'已知函数f(x)=x2+ax-alnx(1)若函数f(x)在上递减,在上递增,求实数a的值.(2)若函数f(x)在定义域上不单调,求实数a的取值范围.(3)若方程x-lnx-m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.'练习4.'已知函数f(x)=xlnx-x2-ax+1,a>0,函数g(x)=f′(x).(1)若a=ln2,求g(x)的最大值;(2)证明:f(x)有且仅有一个零点.'练习5.'已知函数f(x)=e x-ax-b.(其中e为自然对数的底数)(Ⅰ)若f(x)≥0恒成立,求ab的最大值;(Ⅱ)设g(x)=lnx+1,若F(x)=g(x)-f(x)存在唯一的零点,且对满足条件的a,b不等式m(a-e+1)≥b恒成立,求实数m的取值集合.'。

利用导数求函数的极值、最值知识点讲解+例题讲解(含解析)

利用导数求函数的极值、最值知识点讲解+例题讲解(含解析)

利用导数求函数的极值、最值一、知识梳理1.函数的极值与导数形如山峰形如山谷2.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习考点一利用导数解决函数的极值问题角度1根据函数图象判断函数极值【例1-1】已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2)解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 答案 D规律方法 由图象判断函数y =f (x )的极值,要抓住两点:(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性.两者结合可得极值点.角度2 已知函数求极值【例1-2】 (2019·天津和平区模拟)已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x , 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-ax x (x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,故函数在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1a .规律方法 运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.角度3 已知函数的极(最)值求参数的取值 【例1-3】 (2019·泰安检测)已知函数f (x )=ln x . (1)求f (x )图象的过点P (0,-1)的切线方程;(2)若函数g (x )=f (x )-mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.解 (1)f (x )的定义域为(0,+∞),且f ′(x )=1x .设切点坐标为(x 0,ln x 0),则切线方程为y =1x 0x +ln x 0-1.把点P (0,-1)代入切线方程,得ln x 0=0,∴x 0=1. ∴过点P (0,-1)的切线方程为y =x -1. (2)因为g (x )=f (x )-mx +m x =ln x -mx +mx (x >0), 所以g ′(x )=1x -m -m x 2=x -mx 2-mx 2=-mx 2-x +m x 2,令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h (0)>0,12m >0,h ⎝ ⎛⎭⎪⎫12m <0即可,解得0<m <12.规律方法 已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.【训练1】 (1)(2017·全国Ⅱ卷)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为( ) A.-1B.-2e -3C.5e -3D.1解析 f ′(x )=[x 2+(a +2)x +a -1]·e x -1,则f ′(-2)=[4-2(a +2)+a -1]·e -3=0⇒a =-1, 则f (x )=(x 2-x -1)·e x -1,f ′(x )=(x 2+x -2)·e x -1, 令f ′(x )=0,得x =-2或x =1, 当x <-2或x >1时,f ′(x )>0, 当-2<x <1时,f ′(x )<0,所以x =1是函数f (x )的极小值点, 则f (x )极小值为f (1)=-1. 答案 A(2)(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . ①若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; ②若f (x )在x =2处取得极小值,求a 的取值范围. 解 ①因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e. 由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.②f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.考点二 利用导数求函数的最值【例2】 (2019·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 解 (1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx , 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎢⎡⎭⎪⎫1e ,+∞.①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e.从而f (x )在⎝ ⎛⎭⎪⎫0,-1a 上为增函数,在⎝ ⎛⎦⎥⎤-1a ,e 上为减函数,∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a .令-1+ln ⎝ ⎛⎭⎪⎫-1a =-3,得ln ⎝ ⎛⎭⎪⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.规律方法 1.利用导数求函数f (x )在[a ,b ]上的最值的一般步骤:(1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【训练2】 (2019·合肥质检)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)∵f (x )=e x ·cos x -x ,∴f (0)=1, f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0), 即y =1.(2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ), 则g ′(x )=-2e xsin x ≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立, 且仅在x =0处等号成立, ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减, ∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.考点三 利用导数求解最优化问题【例3】 (2018·衡水中学质检)在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为⎝ ⎛⎭⎪⎫v 103+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v2(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y (升). (1)求y 关于v 的函数关系式;(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,总用氧量最少.解 (1)由题意,下潜用时60v (单位时间),用氧量为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫v 103+1×60v =3v 250+60v (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时60v 2=120v (单位时间),用氧量为120v ×1.5=180v (升),因此总用氧量y =3v 250+240v +9(v >0).(2)y ′=6v 50-240v 2=3(v 3-2 000)25v 2,令y ′=0得v =1032,当0<v <1032时,y ′<0,函数单调递减; 当v >1032时,y ′>0,函数单调递增.若c <1032 ,函数在(c ,1032)上单调递减,在(1032,15)上单调递增,∴当v =1032时,总用氧量最少. 若c ≥1032,则y 在[c ,15]上单调递增, ∴当v =c 时,这时总用氧量最少.规律方法 1.利用导数解决生活中优化问题的一般步骤:(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.三、课后练习1.(2019·郑州质检)若函数y =f (x )存在n -1(n ∈N *)个极值点,则称y =f (x )为n 折函数,例如f (x )=x 2为2折函数.已知函数f (x )=(x +1)e x -x (x +2)2,则f (x )为( ) A.2折函数 B.3折函数 C.4折函数D.5折函数解析 f ′(x )=(x +2)e x -(x +2)(3x +2)=(x +2)(e x -3x -2),令f ′(x )=0,得x =-2或e x =3x +2. 易知x =-2是f (x )的一个极值点,又e x =3x +2,结合函数图象,y =e x 与y =3x +2有两个交点.又e -2≠3(-2)+2=-4.∴函数y =f (x )有3个极值点,则f (x )为4折函数. 答案 C2.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.解析 因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.答案 ⎣⎢⎡⎭⎪⎫1,323.(2019·杭州质检)传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm 且以每秒1 cm 等速率缩短,而长度以每秒20 cm 等速率增长.已知神针的底面半径只能从12 cm 缩到4 cm ,且知在这段变形过程中,当底面半径为10 cm 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________ cm. 解析 设神针原来的长度为a cm ,t 秒时神针的体积为V (t ) cm 3, 则V (t )=π(12-t )2·(a +20t ),其中0≤t ≤8, 所以V ′(t )=[-2(12-t )(a +20t )+(12-t )2·20]π.因为当底面半径为10 cm 时其体积最大,所以10=12-t ,解得t =2,此时V ′(2)=0,解得a =60,所以V (t )=π(12-t )2·(60+20t ),其中0≤t ≤8.V ′(t )=60π(12-t )(2-t ),当t ∈(0,2)时,V ′(t )>0,当t ∈(2,8)时,V ′(t )<0,从而V (t )在(0,2)上单调递增,在(2,8)上单调递减,V (0)=8 640π,V (8)=3 520π,所以当t =8时,V (t )有最小值3 520π,此时金箍棒的底面半径为4 cm.答案 44.设f (x )=x ln x -ax 2+(2a -1)x (常数a >0). (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解 (1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x . 又a >0,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减.∴函数y =g (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12a ,单调递减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意. 综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.。

专题13 利用导数解决函数的极值、最值

专题13 利用导数解决函数的极值、最值

专题13利用导数解决函数的极值、最值【高考地位】导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大.类型一利用导数研究函数的极值万能模板内容使用场景一般函数类型解题模板第一步计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步求方程'()0f x =的根;第三步判断'()f x 在方程的根的左、右两侧值的符号;第四步利用结论写出极值.例1已知函数x xx f ln 1)(+=,求函数()f x 的极值.【答案】极小值为1,无极大值.试题解析:第一步,计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :因为x xx f ln 1)(+=,所以()f x 的定义域为()0+∞,,所以()22111'x f x x x x -=-+=;第二步,求方程'()0f x =的根:令()'0f x =得,1x =;第三步,判断'()f x 在方程的根的左、右两侧值的符号:当01x <<时()'0f x <,当1x >时,()'0f x >;第四步,利用结论写出极值:所以1x =时,()f x 有极小值为1,无极大值.【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值.【变式演练1】(极值概念)下列说法正确的是()A .当0'()0f x =时,则0()f x 为()f x 的极大值B .当0'()0f x =时,则0()f x 为()f x 的极小值C .当0'()0f x =时,则0()f x 为()f x 的极值D .当0()f x 为()f x 的极值且0'()f x 存在时,则有0'()0f x =【答案】D 【解析】【分析】由导函数及极值定义得解.【详解】不妨设函数3()f x x =则可排除ABC由导数求极值的方法知当0()f x 为()f x 的极值且0'()f x 存在时,则有0'()0f x =故选:D【变式演练2】(图像与极值)已知函数()3()ln (,,)f x ax bx c a b c =++∈R 的定义域为(3,)-+∞,其图象大致如图所示,则()A .b a c <<B .b c a <<C .a b c <<D .a c b<<【答案】A 【分析】设3()g x ax bx c =++,利用导数求得函数的单调性,以及结合图象中的函数单调性,即可求得,,a b c 的大小关系,得到答案.【详解】设3()g x ax bx c =++,可得2()3g x ax b '=+,由图象可知,函数()f x 先递增,再递减,最后递增,且当1x =时,()g x 取得极小值,所以函数()g x 既有极大值,也有极小值,所以2()30g x ax b '=+=有两个根,即3a x b=-31ab=-,可得0,0a b ><且3a b =-,又由()0ln 0f c =>,可得1c >,由()1ln()0ln1f a b c =++>=,可得1a b c ++>,所以11312c a b a a a a >--=-+=+>,所以c a b >>.故选:A.【变式演练3】(解析式中不含参的极值)已知函数()ln xf x x x=-,则()A .()f x 的单调递减区间为()0,1B .()f x 的极小值点为1C .()f x 的极大值为1-D .()f x 的最小值为1-【答案】C【分析】先对函数求导()221ln x x f x x --'=,令()21ln x x x ϕ=--,再利用导数判断其单调性,而()1=0ϕ,从而可求出()f x 的单调区间和极值【详解】()2221ln 1ln 1x f x x x x x ---=='-.令()21ln x x x ϕ=--,则()120x x x ϕ'=--<,所以()21ln x x x ϕ=--在()0,∞+上单调递减.因为()1=0ϕ,所以当01x <<时,()0x ϕ>;当1x >时,()0x ϕ<.所以()f x 的单调递增区间为()0,1,单调递减区间为()1,+∞,故()f x 的极大值点为1,()f x 的极大值为()11f =-故选:C【变式演练4】(解析式中含参数的极值)已知函数()2ln 2f x ax x =--,()4xg x axe x =-.(1)求函数()f x 的极值;(2)当0a >时,证明:()()()2ln 12ln ln 2g x x x a --+≥-.【答案】(1)答案见解析;(2)证明见解析.【解析】【分析】(1)对函数进行求导,分为0a ≤和0a >两种情形讨论单调性即可得极值;(2)令()()()2ln 1h x g x x x =--+,根据导数判断函数的单调性证明即可.【详解】(1)∵()2ln 2f x ax x =--,()0x >,∴()22ax f x a x x-'=-=,当0a ≤时,()0f x '<恒成立,函数()f x 单调递减,函数()f x 无极值;当0a >时,20,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,函数()f x 单调递减;2,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,函数()f x 单调递增;故函数()f x 的极小值为2222=2ln 22ln f a a a a a ⎛⎫⨯--=-⎪⎝⎭,无极大值.(2)证明:令()()42ln 2222ln 20,0xxh x axe x x x axe x x a x =--+-=--->>,()()()211=22x x x x h x a e xe ae x x x +'+--=+-,故()()=21xh x x ae x '+-⎛⎫ ⎪⎝⎭,令()0h x '=的根为0x ,即02=x ae x ,两边求对数得:00ln ln 2ln a x x +=-,即00ln ln 2ln x x a +=-,∴当()0x x ∈+∞,时,()0h x '>,()h x 单调递增;当()00,x x ∈时,()0h x '<,()h x 单调递减;∴()()()0000000min 22ln 222ln 2ln 2ln xh x h x ax e x x x x a =---=-=--=-,∴()2ln 2ln 2h x a ≥-,即原不等式成立.【变式演练5】(由极值求参数范围)若函数()221e e 22x x f m x x m=--有两个极值点,则实数m 的取值范围是()A .1,2⎛⎫+∞ ⎪⎝⎭B .()1,+∞C .e ,2⎛⎫+∞ ⎪⎝⎭D .()e,+∞【答案】B 【分析】依题意,()2e e xxm f m x x =--'有两个变号零点,由()0f x '=,可得21e e xx x m +=,设()2e ex x g x x +=,求出函数()g x 的单调性及取值情况即可得解.【详解】解:依题意,()2e e x xm f m x x =--'有两个变号零点,令()0f x '=,即2e e 0x x m mx --=,则()2e e x xm x =+,显然0m ≠,则21e ex x xm +=,设()2e e x x g x x+=,则()()22421212()x x x x x x x e e e x e e x g x e e+⋅-+⋅--='=,设()1e 2x x h x =--,则()e 20xh x -'=-<,∴()h x 在R 上单调递减,又()00h =,∴当(),0x ∈-∞时,()0h x >,()0g x '>,()g x 单调递增,当()0,x ∈+∞时,()0h x <,()0g x '<,()g x 单调递减,∴()()max 01g x g ==,且x →-∞时,()g x →-∞,x →+∞时,()0g x →,∴101m<<,解得1m >.故选:B .【点睛】方法点睛:函数零点问题的求解常用的方法有:(1)方程法(直接解方程求解);(2)图象法(画出函数()f x 的图象分析得解);(3)方程+图象法(令()=0f x 得()()g x h x =,分析函数(),()g x h x 的图象得解).要根据已知条件灵活选择方法求解.【变式演练6】(由极值求其他)已知函数321()(,)3f x x ax bx a b R =++∈在3x =-处取得极大值为9.(1)求a ,b 的值;(2)求函数()f x 在区间[4,4]-上的最大值与最小值.【答案】(1)13a b =⎧⎨=-⎩;(2)最大值为763,最小值为53-.【解析】【分析】(1)先对函数求导()22f x x ax b '=++,根据题意,列出方程组求解,即可得出结果;(2)根据(1)的结果,确定函数极大值与极小值,再计算出端点值,比较大小,即可得出结果.【详解】(1)由题意得:()22f x x ax b '=++,()()396039939f a b f a b ⎧-=-+=⎪∴⎨-=-+='-⎪⎩,解得:13a b =⎧⎨=-⎩.当13a b =⎧⎨=-⎩时,()32133f x x x x =+-,()()()22331f x x x x x '=+-=+-,∴当(),3x ∈-∞-和()1,+∞时,()0f x '>;当()3,1x ∈-时,()0f x '<,()f x ∴在(),3-∞-,()1,+∞上单调递增,在()3,1-上单调递减,()f x ∴的极大值为()39f -=,满足题意.(2)由(1)得:()f x 的极大值为()39f -=,极小值为()1511333f =+-=-,又()2043f -=,()7643f =,()f x ∴在区间[]4,4-上的最大值为763,最小值为53-.类型二求函数在闭区间上的最值例2已知函数()ln f x x x =-,()22g x ax x =+()0a <.(1)求函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的最值;(2)求函数()()()h x f x g x =+的极值点.【答案】(1)最大值为1-,最小值为1e -;(2)见解析.【解析】试题分析:(1)对函数()f x 进行求导可得()11f x x'=-,求出极值,比较端点值和极值即可得函数的最大值和最小值;(2)对()h x 进行求导可得()h x '=221ax x x++,利用求根公式求出导函数的零点,得到导数与0的关系,判断单调性得其极值.试题解析:第一步,求出函数()f x 在开区间(,)a b 内所有极值点:依题意,()11f x x '=-,令110x-=,解得1x =;第二步,计算函数()f x 在极值点和端点的函数值:()11f =-,111e e f ⎛⎫=-- ⎪⎝⎭,()e 1ef =-;第三步,比较其大小关系,其中最大的一个为最大值,最小的一个为最小值:因为11e 11e -<--<-,故函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的最大值为1-,最小值为1e -.(2)第一步,计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :依题意,()()()h x f x g x =+=2ln x ax x ++,()121h x ax x =++'=221ax x x++,第二步,求方程'()0f x =的根:当0a <时,令()0h x '=,则2210ax x ++=.因为180a ∆=->,所以()221ax x h x x'++==()()122a x x x x x--,其中11184x a =-,21184x a+=-第三步,判断'()f x 在方程的根的左、右两侧值的符号:.因为0a <,所以10x <,20x >,所以当20x x <<时,()0h x '>,当2x x >时,()0h x '<,所以函数()h x 在()20,x 上是增函数,在()2,x +∞上是减函数,第四步,利用结论写出极值:故214x a+=-为函数()h x 的极大值点,函数()h x 无极小值点.【变式演练7】(极值与最值关系)已知函数()f x 在区间(),a b 上可导,则“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】【分析】由开区间最小值点必为极小值点可知极小值点导数值为0,充分性成立;利用()3f x x =可验证出必要性不成立,由此得到结论.【详解】(),a b 为开区间∴最小值点一定是极小值点∴极小值点处的导数值为0∴充分性成立当()3f x x =,00x =时,()00f x '=,结合幂函数图象知()f x 无最小值,必要性不成立∴“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的充分不必要条件故选:A【变式演练8】(由最值求参数范围)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为()A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦C .(20,2e ⎤⎦D .(30,2e ⎤⎦【答案】B 【解析】由12f a -=-+(),可得222alnx x a --≤-+在0x >恒成立,即为a (1-lnx )≥-x 2,当x e =时,0e->2显然成立;当0x e <<时,有10lnx ->,可得21x a lnx ≥-,设201x g x x e lnx =-(),<<,222(1)(23)(1)(1)x lnx x x lnx g x lnx lnx (),---'==--由0x e <<时,223lnx <<,则0g x g x ()<,()'在0e (,)递减,且0g x ()<,可得0a ≥;当x e >时,有10lnx -<,可得21x a lnx ≤-,设22(23)1(1)x x lnx g x x e g x lnx lnx -='=--(),>,(),由32e x e <<时,0gx g x ()<,()'在32e e (,)递减,由32x e >时,0g x g x '()>,()在32 ,x e ⎛⎫+∞ ⎪⎝⎭递增,即有)g x (在32x e =处取得极小值,且为最小值32e ,可得32a e ≤,综上可得302a e ≤≤.故选B .【变式演练9】(不含参数最值)已知函数2()cos sin 2f x x x =,若存在实数M ,对任意12,R x x ∈都有()()12f x f x M -≤成立.则M 的最小值为()A .338B .32C .334D .233【答案】C 【解析】【分析】令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()f x h t =,利用导数可求()max 27256h t =,从而得到()f x 的最值,故可得M 的取值范围,从而得到正确的选项.【详解】3()2cos sin f x x x =,故622()4cos sin f x x x =,令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()4f x h t =,又()()()()()322131114h t t t t t t '=---=--,若10,4t ⎛⎫∈ ⎪⎝⎭,则()0h t '>,故()h t '在10,4⎡⎤⎢⎥⎣⎦为增函数;若1,14t ⎛⎫∈ ⎪⎝⎭,则()0h t '<,故()h t '在1,14⎛⎤ ⎥⎝⎦为减函数;故()max 27256h t =,故2max 27()64f x =,所以max ()8f x =,min ()8f x =-,当且仅当1sin 415cos 4x x ⎧=⎪⎪⎨⎪=⎪⎩时取最大值,当且仅当1sin 415cos 4x x ⎧=-⎪⎪⎨⎪=-⎪⎩时取最小值,故4M ≥即M的最小值4.故选:C.【变式演练10】(含参最值)已知函数121()(1),02x f x x a ex ax x -=---+>(1)若()f x 为单调增函数,求实数a 的值;(2)若函数()f x 无最小值,求整数a 的最小值与最大值之和.【答案】(1)1a =.(2)3【解析】【分析】(1)求出()f x ',再令()0f x '=,求出两个根,函数()f x 为单调函数,所以()f x 有两个相同的根,得到1a =,再进行检验即可;(2)由()0f x '=得11x =,或2x a =和a Z ∈,分别当0a ≤、1a =和1a >三种情况进行讨论;0a ≤时不成立,1a =时成立,1a >时,利用函数单调性,当()f x 无最小值时,(0)()f f a <,构造关于a 的函数,求出a 的范围,即可得到答案.【详解】(1)由题意,11()()()(1)x x f x x a e x a x a e --'=--+=--,()0f x '=,解得11x =,或2x a =,因为函数()f x 为单调函数,所以()f x 有两个相同的根,即1a =,1a =时,()0f x '≥,()f x 为增函数,故1a =适合题意;(2)由(1)知,()0f x '=,解得11x =,或2x a =,①当0a ≤时,则(0,1)()0x f x '∈⇒<⇒()f x 在(0,1]上为减函数,(1,)()0x f x '∈+∞⇒>⇒()f x 在[1,)+∞上为增函数,当1x =时,()f x 有最小值1(1)2f =-,故0a ≤不适合题意;②当1a =时,则(0,1)()0x f x '∈⇒>⇒()f x 在(0,1]上为增函数,(1,)()0x f x '∈+∞⇒>⇒()f x 在[1,)+∞上为增函数,∴()f x 在(0,)+∞上为增函数,()f x 无最小值,故1a =适合题意;③当1a >时,则(0,1)()0x f x '∈⇒>⇒()f x 在(0,1]上为增函数,(1,)()0x a f x '∈⇒<⇒()f x 在[1,]a 上为减函数,(,)()0x a f x '∈+∞⇒>⇒()f x 在[,)a +∞上为增函数,因为()f x 无最小值,所以(0)()f f a <21121111(1)022a a a a e e a e a e -----⇒<-⇒--+<,()()()121111112a a g a e a a e a g a e a e ----'=--+>⇒=--,,由()110a g a e -''=->在()1+∞,上恒成立,()11a g a e a e --'=--在()1+∞,上单调递增,且110g e -'=-<(),()()12200g e e g a ->''=--⇒=存在唯一的实根()112a ∈,() g a ⇒在()11a ,上单调递减;() g a 在()1a +∞,上单调递增增,且()()()2e 439410220302e 2g g e g e e e-=<=--<=-->,,()0g a ⇒=存在唯一的实根()223a ∈,,由()12121102a e a a e a a ----+<⇒<,()f x 无最小值,则21a a <<,()223a ∈,,综上,21a a ≤<,()223a ∈,,a Z ∈ ,123min max a a +=+=.【变式演练11】(恒成立转求最值)已知函数32()ln x f x e x x x ax -=+--满足()0f x ≥恒成立,则实数a 的取值范围是()A .(,e]-∞B .(,2]-∞-C .[2,e]D .[2,2]-【答案】B【分析】由()0f x ≥转化为3ln x e a x x x -≤+-,设33ln ()ln ln x x x e g x x x e x x x---=+-=+-,利用3ln ln (3ln 1)ln x x e x x x x x x --+-≥--++-,即可求解.【详解】由题意,函数32()ln x f x e x x x ax -=+--满足()0f x ≥恒成立,可得32ln x ax e x x x -≤+-恒成立,即3ln x e a x x x -≤+-,设33ln ()ln ln x x x e g x x x e x x x---=+-=+-,又由函数()(1)1x x h x e x e x =-+=--,可得()1x h x e '=-,当0x >时,可得()10x h x e '=->,所以()h x 为单调递增函数,且(0)0h =,所以0x >时,可得()(0)0h x h >=,即1x e x >+,则3ln ()ln (3ln 1)ln 2x x g x e x x x x x x --=+-≥--++-=-,当且仅当3ln 0x x --=,即3ln x x =+时取“=”号,所以2a ≤-,即实数a 的取值范围是(,2]-∞-.故选:B.【点睛】对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.【变式演练12】(构造函数求最值)函数()22(0)f x x x =-+<,()ln x g x x x =+.若()()12f x g x =,则212x x -的最小值为()A .1-B .24e -C .2D .1【答案】C【分析】让()()12f x g x =,得到212222ln x x x x -+=+,再构造22122222ln x x x x x -=+-,然后令()22ln x u x x x =+-,研究()u x 的最小值即可.【详解】由题120x x <<,且()()12f x g x =,2120x x ->.有212222ln x x x x -+=+,则22122222ln x x x x x -=+-,令()22ln x u x x x=+-(0x >且1x ≠,()0u x >).(1)当01x <<时,易知()0u x <,不满足条件.(2)当1x >时,知()0u x >,由222ln ln 1(2ln 1)(ln 1)()ln ln 2x x x x u x x +--+'==,令()0u x '=,则1 x =,212x =(舍去),若1x <<()0u x '<;若x >()0u x '>,则 x =时取得极小值2u=-,也为最小值,则()u x u ≥,即21242x x -≥-,所以212x x -的最小值为2.故选:C.【点睛】关键点睛:解决本题的关键一是构造出212x x 的表达式并要统一变量,二是对构造的函数求最小值.。

高考数学导数:极值与最值问题解析

高考数学导数:极值与最值问题解析

高考数学导数:极值与最值问题解析在高考数学中,导数部分的极值与最值问题一直是重点和难点,也是许多同学感到头疼的知识点。

但其实,只要我们掌握了正确的方法和思路,这类问题也并非不可攻克。

接下来,让我们一起深入探讨一下高考数学中导数的极值与最值问题。

一、极值与最值的基本概念首先,我们要明确极值和最值的定义。

极值是指函数在某个局部范围内的最大值或最小值。

也就是说,在函数的某个区间内,如果在某一点处的函数值比它附近其他点的函数值都大(小),那么这个点对应的函数值就是极大值(极小值)。

而最值则是指函数在整个定义域内的最大值或最小值。

需要注意的是,极值不一定是最值,最值也不一定是极值。

例如,函数在一个区间内可能有多个极值,但只有一个最大值和一个最小值。

二、求极值的方法1、求导数这是解决极值问题的关键步骤。

对于给定的函数,我们先对其求导,得到导函数。

2、令导数为 0求出导函数后,令其等于 0,解出这些方程的根。

这些根就是可能的极值点。

3、判断极值点通过导数的正负来判断极值点的类型。

如果在极值点的左侧导数为正,右侧导数为负,那么这个点就是极大值点;反之,如果在极值点的左侧导数为负,右侧导数为正,那么这个点就是极小值点。

例如,对于函数 f(x) = x³ 3x²+ 2,其导函数为 f'(x) = 3x² 6x。

令 f'(x) = 0,解得 x = 0 或 x = 2。

当 x < 0 时,f'(x) > 0;当 0 <x < 2 时,f'(x) < 0;当 x > 2 时,f'(x) > 0。

所以,x = 0 是极大值点,极大值为 f(0) = 2;x = 2 是极小值点,极小值为 f(2) =-2。

三、求最值的方法1、求出函数在区间内的极值按照前面提到的求极值的方法,找出函数在给定区间内的所有极值。

2、求出区间端点处的函数值将区间的端点代入函数,得到相应的函数值。

第17讲导数在函数中的应用——极值与最值

第17讲导数在函数中的应用——极值与最值

第17讲导数在函数中的应用——极值与最值在数学中,导数是函数在其中一点的变化率。

它对于研究函数的各种特性非常重要。

其中之一就是函数的极值与最值。

通过求解导数,我们可以找到函数的极值点和最值,这对于优化问题和在实际应用中的最优解是非常有用的。

首先,我们来定义什么是极值和最值。

在一个给定的区间内,如果函数在其中一点的导数存在,并且导数的值为0或者不存在,那么这个点就是函数的极值点。

如果在整个区间内,函数的值在该点的左边都小于这个点的函数值,而在该点的右边都大于这个点的函数值,那么该点是函数的极小值点;反之,如果在整个区间内,函数的值在该点的左边都大于这个点的函数值,而在该点的右边都小于这个点的函数值,那么该点是函数的极大值点。

而最大值和最小值则是函数在一个给定的区间上的最大值和最小值。

注意,极值点不一定是最大值或最小值,因为函数可能在其它点上也可以取到相同的函数值。

下面,我们来看一些具体的例子。

例子1:求函数$f(x)=x^3-3x^2+2$在区间$[-1,2]$上的极值和最值。

首先,我们求出函数$f(x)$的导数:$f'(x)=3x^2-6x$。

然后令导数等于0,解方程$3x^2-6x=0$,得到$x=0$和$x=2$。

将这两个解代入到原函数$f(x)$中,我们得到$f(0)=2$和$f(2)=2$。

接下来我们要找到$x=-1,0,2$三个点之间的最大值和最小值。

我们可以通过描绘函数的图像来直观地找到答案。

根据图像,我们可以看出当$x=-1$时,$f(x)$取到最大值2;当$x=2$时,$f(x)$取到最小值-2所以在区间$[-1,2]$上,函数$f(x)$的极大值为2,极小值为-2,最大值为2,最小值为-2例子2:求函数$f(x)=x^4-2x^3-6x^2+12x$在区间$[-2,3]$上的极值和最值。

首先,我们求出函数$f(x)$的导数:$f'(x)=4x^3-6x^2-12x+12$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学专题:导数应用-极值最值问题一、选择题1.函数y=ax3+bx2取得极大值和极小值时的x的值分别为0和13,则()A.a-2b=0B.2a-b=0 C.2a+b=0 D.a+2b=0 答案 D解析y′=3ax2+2bx,据题意,0、13是方程3ax2+2bx=0的两根∴-2b3a=13,∴a+2b=0.2.当函数y=x·2x取极小值时,x=()A.1ln2B.-1ln2C.-ln2 D.ln2答案 B解析由y=x·2x得y′=2x+x·2x·ln2 令y′=0得2x(1+x·ln2)=0∵2x>0,∴x=-1 ln23.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则() A.0<b<1 B.b<1C.b>0 D.b<1 2答案 A解析f(x)在(0,1)内有极小值,则f′(x)=3x2-3b在(0,1)上先负后正,∴f′(0)=-3b<0,∴b>0,f′(1)=3-3b>0,∴b<1综上,b的范围为0<b<14.连续函数f(x)的导函数为f′(x),若(x+1)·f′(x)>0,则下列结论中正确的是()A.x=-1一定是函数f(x)的极大值点B.x=-1一定是函数f(x)的极小值点C.x=-1不是函数f(x)的极值点D.x=-1不一定是函数f(x)的极值点答案 B解析x>-1时,f′(x)>0x<-1时,f′(x)<0∴连续函数f(x)在(-∞,-1)单减,在(-1,+∞)单增,∴x=-1为极小值点.5.函数y=x33+x2-3x-4在[0,2]上的最小值是()A.-173B.-103C.-4 D.-64 3答案 A解析y′=x2+2x-3.令y′=x2+2x-3=0,x=-3或x=1为极值点.当x∈[0,1]时,y′<0.当x∈[1,2]时,y′>0,所以当x=1时,函数取得极小值,也为最小值.∴当x=1时,y min=-17 3.6.函数f(x)的导函数f′(x)的图象,如右图所示,则()A.x=1是最小值点B.x=0是极小值点C.x=2是极小值点D.函数f(x)在(1,2)上单增答案 C解析由导数图象可知,x=0,x=2为两极值点,x=0为极大值点,x=2为极小值点,选C.7.已知函数f(x)=12x3-x2-72x,则f(-a2)与f(-1)的大小关系为()A.f(-a2)≤f(-1)B.f(-a2)<f(-1)C.f(-a2)≥f(-1)D.f(-a2)与f(-1)的大小关系不确定答案 A解析由题意可得f′(x)=32x2-2x-72.由f′(x)=12(3x-7)(x+1)=0,得x=-1或x=73.当x<-1时,f(x)为增函数;当-1<x<73时,f(x)为减函数.所以f(-1)是函数f(x)在(-∞,0]上的最大值,又因为-a2≤0,故f(-a2)≤f(-1).8.函数f(x)=e-x·x,则()A.仅有极小值1 2eB.仅有极大值1 2eC.有极小值0,极大值1 2eD.以上皆不正确答案 B解析 f ′(x )=-e -x ·x +12x·e -x =e -x (-x +12x )=e -x ·1-2x2x. 令f ′(x )=0,得x =12. 当x >12时,f ′(x )<0; 当x <12时,f ′(x )>0.∴x =12时取极大值,f (12)=1e ·12=12e.二、填空题9.若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________.答案 -23 -16解析 y ′=ax +2bx +1.由已知⎩⎪⎨⎪⎧a +2b +1=0a 2+4b +1=0,解得⎩⎪⎨⎪⎧a =-23b =-1610.已知函数f (x )=13x 3-bx 2+c (b ,c 为常数).当x =2时,函数f (x )取得极值,若函数f (x )只有三个零点,则实数c 的取值范围为________答案 0<c <43解析 ∵f (x )=13x 3-bx 2+c ,∴f ′(x )=x 2-2bx ,∵x =2时,f (x )取得极值,∴22-2b ×2=0,解得b =1.∴当x ∈(0,2)时,f (x )单调递减,当x ∈(-∞,0) 或x ∈(2,+∞)时,f (x )单调递增.若f (x )=0有3个实根, 则⎩⎪⎨⎪⎧f (0)=c >0f (2)=13×23-22+c <0,,解得0<c <43 11.设m ∈R ,若函数y =e x +2mx (x ∈R )有大于零的极值点,则m 的取值范围是________.答案 m <-12解析 因为函数y =e x +2mx (x ∈R )有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图象可得-2m >1,即m <-12.12.已知函数f (x )=x 3-px 2-qx 的图象与x 轴相切于(1,0),则极小值为________.答案 0解析 f ′(x )=3x 2-2px -q , 由题知f ′(1)=3-2p -q =0. 又f (1)=1-p -q =0,联立方程组,解得p =2,q =-1.∴f (x )=x 3-2x 2+x ,f ′(x )=3x 2-4x +1. 由f ′(x )=3x 2-4x +1=0,解得x =1或x =13,经检验知x =1是函数的极小值点, ∴f (x )极小值=f (1)=0. 三、解答题 13.设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值. 解析 由f (x )=sin x -cos x +x +1,0<x <2π, 知f ′(x )=cos x +sin x +1,于是f ′(x )=1+2sin(x +π4).令f ′(x )=0,从而sin(x +π4)=-22,得x =π,或x =3π2.因此,由上表知f (x )的单调递增区间是(0,π)与(3π2,2π),单调递减区间是(π,3π2),极小值为f (3π2)=3π2,极大值为f (π)=π+2.14.设函数f (x )=6x 3+3(a +2)x 2+2ax .(1)若f (x )的两个极值点为x 1,x 2,且x 1x 2=1,求实数a 的值;(2)是否存在实数a ,使得f (x )是(-∞,+∞)上的单调函数?若存在,求出a 的值;若不存在,说明理由.解析 f ′(x )=18x 2+6(a +2)x +2a .(1)由已知有f ′(x 1)=f ′(x 2)=0,从而x 1x 2=2a18=1,所以a =9; (2)由于Δ=36(a +2)2-4×18×2a =36(a 2+4)>0,所以不存在实数a ,使得f (x )是(-∞,+∞)上的单调函数. 15.已知定义在R 上的函数f (x )=x 2(ax -3),其中a 为常数. (1)若x =1是函数f (x )的一个极值点,求a 的值;(2)若函数f (x )在区间(-1,0)上是增函数,求a 的取值范围. 解析 (1)f (x )=ax 3-3x 2,f ′(x )=3ax 2-6x =3x (ax -2). ∵x =1是f (x )的一个极值点,∴f ′(1)=0,∴a =2.(2)解法一 ①当a =0时,f (x )=-3x 2在区间(-1,0)上是增函数,∴a =0符合题意;②当a ≠0时,f ′(x )=3ax (x -2a ),令f ′(x )=0得:x 1=0,x 2=2a .当a >0时,对任意x ∈(-1,0),f ′(x )>0,∴a >0符合题意;当a <0时,当x ∈(2a ,0)时,f ′(x )>0,∴2a ≤-1,∴-2≤a <0符合题意; 综上所述,a ≥-2.解法二 f ′(x )=3ax 2-6x ≥0在区间(-1,0)上恒成立,∴3ax -6≤0,∴a ≥2x在区间(-1,0)上恒成立,又2x <2-1=-2,∴a ≥-2.16.已知函数f (x )=-x 2+ax +1-ln x .(1)若f (x )在(0,12)上是减函数,求a 的取值范围;(2)函数f (x )是否既有极大值又有极小值?若存在,求出a 的取值范围;若不存在,请说明理由.解析 (1)f ′(x )=-2x +a -1x ,∵f (x )在(0,12)上为减函数,∴x ∈(0,12)时-2x +a -1x <0恒成立,即a <2x +1x 恒成立.设g (x )=2x +1x ,则g ′(x )=2-1x 2.∵x ∈(0,12)时1x 2>4,∴g ′(x )<0,∴g (x )在(0,12)上单调递减,g (x )>g (12)=3,∴a ≤3.(2)若f (x )既有极大值又有极小值,则f ′(x )=0必须有两个不等的正实数根x 1,x 2,即2x 2-ax +1=0有两个不等的正实数根.故a 应满足⎩⎪⎨⎪⎧Δ>0a 2>0⇒⎩⎨⎧a 2-8>0a >0⇒a >22,∴当a >22时,f ′(x )=0有两个不等的实数根, 不妨设x 1<x 2,由f ′(x )=-1x (2x 2-ax +1)=-2x (x -x 1)(x -x 2)知,0<x <x 1时f ′(x )<0,x 1<x <x 2时f ′(x )>0,x >x 2时f ′(x )<0,∴当a >22时f (x )既有极大值f (x 2)又有极小值f (x 1).1. 已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为 1,则a 的值等于________.答案 1解析 ∵f (x )是奇函数,∴f (x )在(0,2)上的最大值为-1,当x ∈(0,2)时,f ′(x )=1x -a ,令f ′(x )=0得x =1a ,又a >12,∴0<1a <2.令f ′(x )>0,则x <1a ,∴f (x )在(0,1a )上递增;令f ′(x )<0,则x >1a ,∴f (x )在(1a ,2)上递减, ∴f (x )max =f (1a )=ln 1a -a ·1a =-1,∴ln1a =0,得a =1.2.设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值.(1)求a 、b 的值;(2)若对任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围. 解 (1)f ′(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2时取得极值, 则有f ′(1)=0,f ′(2)=0, 即⎩⎨⎧6+6a +3b =0,24+12a +3b =0.解得a =-3,b =4. (2)由(1)可知,f (x )=2x 3-9x 2+12x +8c , f ′(x )=6x 2-18x +12=6(x -1)(x -2).当x ∈(0,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0; 当x ∈(2,3)时,f ′(x )>0.所以,当x =1时,f (x )取得极大值f (1)=5+8c . 又f (0)=8c ,f (3)=9+8c ,则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以9+8c <c 2,解得c <-1或c >9.因此c 的取值范围为(-∞,-1)∪(9,+∞). 3.已知函数f (x )=x 3-3ax 2+3x +1. (1)设a =2,求f (x )的单调区间;(2)设f (x )在区间(2,3)中至少有一个极值点,求a 的取值范围. 解析 (1)当a =2时,f (x )=x 3-6x 2+3x +1,f ′(x )=3(x -2+3)(x -2-3). 当x ∈(-∞,2-3)时f ′(x )>0,f (x )在(-∞,2-3)上单调增加; 当x ∈(2-3,2+3)时f ′(x )<0,f (x )在(2-3,2+3)上单调减少; 当x ∈(2+3,+∞)时f ′(x )>0,f (x )在(2+3,+∞)上单调增加.综上,f (x )的单调增区间是(-∞,2-3)和(2+3,+∞),f (x )的单调减区间是(2-3,2+3).(2)f ′(x )=3[(x -a )2+1-a 2].当1-a 2≥0时,f ′(x )≥0,f (x )为增函数,故f (x )无极值点; 当1-a 2<0时,f ′(x )=0有两个根, x 1=a -a 2-1,x 2=a +a 2-1. 由题意知,2<a -a 2-1<3,① 或2<a +a 2-1<3.②①式无解.②式的解为54<a <53.因此a 的取值范围是(54,53).1.“我们称使f (x )=0的x 为函数y =f (x )的零点.若函数y =f (x )在区间[a ,b]上是连续的,单调的函数,且满足f(a)·f(b)<0,则函数y=f(x)在区间[a,b]上有唯一的零点”.对于函数f(x)=6ln(x+1)-x2+2x-1,(1)讨论函数f(x)在其定义域内的单调性,并求出函数极值.(2)证明连续函数f(x)在[2,+∞)内只有一个零点.解析(1)解:f(x)=6ln(x+1)-x2+2x-1定义域为(-1,+∞),且f′(x)=6-2x+2=8-2x2,f′(x)=0⇒x=2(-2舍去).∴当x=2时,f(x)的极大值为f(2)=6ln3-1.(2)证明:由(1)知f(2)=6ln3-1>0,f(x)在[2,7]上单调递减,又f(7)=6ln8-36=18(ln2-2)<0,∴f(2)·f(7)<0.∴f(x)在[2,7]上有唯一零点.当x∈[7,+∞)时,f(x)≤f(7)<0,故x∈[7,+∞)时,f(x)不为零.∴y=f(x)在[7,+∞)上无零点.∴函数f(x)=6ln(x+1)-x2+2x-1在定义域内只有一个零点.2.(2010·江西高考)设函数f(x)=ln x+ln (2-x)+ax(a>0).(1)当a=1时,求f(x)的单调区间;(2)若f(x)在(0,1]上的最大值为12,求a的值.解析函数f(x)的定义域为(0,2),f′(x)=1x-12-x+a.(1)当a=1时,f′(x)=-x2+2x(2-x),所以f(x)的单调递增区间为(0,2),单调递减区间为(2,2);(2)当x∈(0,1]时,f′(x)=2-2xx(2-x)+a>0,即f(x)在(0,1]上单调递增,故f(x)在(0,1]上的最大值为f(1)=a,因此a=1 2.3.已知函数f(x)=-x3+3x2+9x+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.分析本题考查多项式的导数公式及运用导数求函数的单调区间和函数的最值,题目中需注意应先比较f(2)和f(-2)的大小,然后判定哪个是最大值从而求出a.解(1)f′(x)=-3x2+6x+9.令f′(x)<0,解得x<-1,或x>3,∴函数f(x)的单调递减区间为(-∞,-1),(3,+∞).(2)∵f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,∴f(2)>f(-2).∵在(-1,3)上f′(x)>0,∴f(x)在(-1,2]上单调递增.又由于f(x)在[-2,-1)上单调递减,∴f(-1)是f(x)的极小值,且f(-1)=a-5.∴f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有22+a =20,解得a=-2.∴f(x)=-x3+3x2+9x-2.∴f(-1)=a-5=-7,即函数f(x)在区间[-2,2]上的最小值为-7.4.已知函数f(x)=xe-x(x∈R).(1)求函数f(x)的单调区间和极值;(2)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称.证明当x>1时,f(x)>g(x);(3)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.解析(1)f′(x)=(1-x)e-x.令f′(x)=0,解得x=1.当x所以f(x)函数f(x)在x=1处取得极大值f(1),且f(1)=1 e.(2)由题意可知g(x)=f(2-x),得g(x)=(2-x)e x-2.令F(x)=f(x)-g(x),即F(x)=xe-x+(x-2)e x-2,于是F′(x)=(x-1)(e2x-2-1)e-x.当x>1时,2x-2>0,从而e2x-2-1>0,又e-x>0.所以F′(x)>0.从而函数F(x)在[1,+∞)上是增函数.又F(1)=e-1-e-1=0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x).(3)①若(x1-1)(x2-1)=0,由(1)及f(x1)=f(x2),得x1=x2=1,与x1≠x2矛盾.②若(x1-1)(x2-1)>0,由(1)及f(x1)=f(x2),得x1=x2,与x1≠x2矛盾.根据①②得(x1-1)(x2-1)<0,不妨设x1<1,x2>1.由(2)可知,f(x2)>g(x2),g(x2)=f(2-x2),所以f(x2)>f(2-x2),从而f(x1)>f(2-x2),因为x2>1,所以2-x2<1,又由(1)可知函数f(x)在区间(-∞,1)内是增函数,所以x1>2-x2,即x1+x2>2.5.已知函数f(x)=ax3-32ax2,函数g(x)=3(x-1)2.(1)当a>0时,求f(x)和g(x)的公共单调区间;(2)当a>2时,求函数h(x)=f(x)-g(x)的极小值;(3)讨论方程f(x)=g(x)的解的个数.解(1)f′(x)=3ax2-3ax=3ax(x-1),又a>0,由f′(x)>0得x<0或x>1,由f′(x)<0得0<x<1,即函数f(x)的单调递增区间是(-∞,0)与(1,+∞),单调递减区间是(0,1),而函数g(x)的单调递减区间是(-∞,1),单调递增区间是(1,+∞),故两个函数的公共单调递减区间是(0,1),公共单调递增区间是(1,+∞).(2)h (x )=ax 3-32ax 2-3(x -1)2,h ′(x )=3ax 2-3(a +2)x +6=3a (x -2a )(x -1),令h ′(x )=0,得x =2a 或x =1,由于2a <1,易知x =1为函数h (x )的极小值点,∴h (x )的极小值为h (1)=-a2.(3)令φ(x )=f (x )-g (x )=ax 3-32(a +2)x 2+6x -3,φ′(x )=3ax 2-3(a +2)x +6=3a (x -2a )(x -1),①若a =0,则φ(x )=-3(x -1)2,∴φ(x )的图象与x 轴只有一个交点,即方程f (x )=g (x )只有一个解;②若a <0,则φ(x )的极大值为φ(1)=-a 2>0,φ(x )的极小值为φ(2a )=-4a 2+6a -3<0,∴φ(x )的图象与x 轴有三个交点,即方程f (x )=g (x )有三个解;③若0<a <2,则φ(x )的极大值为φ(1)=-a2<0,∴φ(x )的图象与x 轴只有一个交点,即方程f (x )=g (x )只有一个解;④若a =2,则φ′(x )=6(x -1)2≥0,φ(x )单调递增,∴φ(x )的图象与x 轴只有一个交点,即方程f (x )=g (x )只有一个解;⑤若a >2,由(2)知φ(x )的极大值为φ(2a )=-4(1a -34)2-34<0,∴φ(x )的图象与x 轴只有一个交点,即方程f (x )=g (x )只有一个解.综上知,若a ≥0,方程f (x )=g (x )只有一个解;若a <0,方程f (x )=g (x )有三个解.。

相关文档
最新文档