2017高考立体几何大题(理科)
2017的年的高考立体几何大题(理科).doc

2017年高考立体几何大题(理科)1、(2017新课标Ⅰ理数)(12分)如图,在四棱锥P-ABCD中,AB//CD,且90BAP CDP o.(1)证明:平面PAB⊥平面PAD;APD o,求二面角A-PB-C的余弦值.(2)若PA=PD=AB=DC,902、(2017新课标Ⅱ理)(12分)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,o1,90,2ABBC AD BAD ABC E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D 的余弦值.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD//平面MAC,PA=PD=,AB=4.6(I)求证:M为PB的中点;(II)求二面角B-PD-A的大小;(III)求直线MC与平面BDP所成角的正弦值.5、(2017山东理)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120得到的,G是?DF的中点.(Ⅰ)设P是?CE上的一点,且AP BE,求CBP的大小;AD,求二面角E AG C的大小.AB,2(Ⅱ)当36、(2017江苏)(本小题满分14分)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E 与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.7、如图,在三棱锥P-ABC 中,PA ⊥底面ABC ,∠BAC =90°,点D 、E 、N 分别为棱PA 、PC 、BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2(1)求证:MN ∥平面BDE ;(2)求二面角C-EM-N 的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为217,求线段AH 的长。
2017年高考数学试题分项版—立体几何(原卷版)

2017年高考数学试题分项版—立体几何(原卷版)一、选择题1.(2017·全国Ⅰ文,6)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )2.(2017·全国Ⅱ文,6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π3.(2017·全国Ⅲ文,9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π44.(2017·全国Ⅲ文,10)在正方体ABCDA 1B 1C 1D 1中,E 为棱CD 的中点,则( )A .A 1E ⊥DC 1B .A 1E ⊥BDC .A 1E ⊥BC 1D .A 1E ⊥AC5.(2017·北京文,6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .60B .30C .20D .106.(2017·浙江,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .π2+1 B .π2+3 C .3π2+1 D .3π2+3 7.(2017·浙江,9)如图,已知正四面体DABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP =PB ,BQ QC =CR RA=2,分别记二面角DPRQ ,DPQR ,DQRP 的平面角为α,β,γ,则( )A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α8.(2017·全国Ⅰ理,7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .169.(2017·全国Ⅱ理,4)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π10.(2017·全国Ⅱ理,10)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.32 B.155 C.105 D.3311.(2017·全国Ⅲ理,8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2 D.π412.(2017·北京理,7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A .3 2B .2 3C .2 2D .2二、填空题1.(2017·全国Ⅰ文,16)已知三棱锥SABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥SABC 的体积为9,则球O 的表面积为________.2.(2017·全国Ⅱ文,15)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.3.(2017·天津文,11)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.4.(2017·山东文,13)由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为________.5.(2017·浙江,11)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6=________.6.(2017·江苏,6)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.7.(2017·全国Ⅰ理,16)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.8.(2017·全国Ⅲ理,16)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)9.(2017·天津理,10)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.10.(2017·山东理,13)由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为________.三、解答题1.(2017·全国Ⅰ文,18)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P ABCD 的体积为83,求该四棱锥的侧面积.2.(2017·全国Ⅱ文,18)如图,四棱锥P ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面P AD ;(2)若△PCD 的面积为27,求四棱锥P ABCD 的体积.因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM .3.(2017·全国Ⅲ文,19)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.4.(2017·北京文,18)如图,在三棱锥P-ABC中,P A⊥AB,P A⊥BC,AB⊥BC,P A=AB =BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:P A⊥BD;(2)求证:平面BDE⊥平面P AC;(3)当P A∥平面BDE时,求三棱锥E-BCD的体积.5.(2017·天津文,17)如图,在四棱锥P ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD =1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.6.(2017·山东文,18)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.7.(2017·浙江,19)如图,已知四棱锥P ABCD,△P AD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(1)证明:CE∥平面P AB;(2)求直线CE与平面PBC所成角的正弦值.8.(2017·江苏,15)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.9.(2017·江苏,18)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32 cm,容器Ⅰ的底面对角线AC的长为107 cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14 cm和62 cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12 cm.现有一根玻璃棒l,其长度为40 cm.(容器厚度、玻璃棒粗细均忽略不计).(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.10.(2017·江苏,22)如图,在平行六面体ABCDA1B1C1D1中,AA1⊥平面ABCD,且AB=AD =2,AA1=3,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角BA1DA的正弦值.11.(2017·全国Ⅰ理,18)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角APBC 的余弦值.12.(2017·全国Ⅱ理,19)如图,四棱锥P ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角MABD 的余弦值.13.(2017·全国Ⅲ理,19)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角DAEC 的余弦值.14.(2017·北京理,16)如图,在四棱锥P ABCD中,底面ABCD为正方形,平面P AD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,P A=PD=6,AB=4.(1)求证:M为PB的中点;(2)求二面角BPDA的大小;(3)求直线MC与平面BDP所成角的正弦值.15.(2017·天津理,17)如图,在三棱锥P ABC中,P A⊥底面ABC,∠BAC=90°.点D,E,N 分别为棱P A,PC,BC的中点,M是线段AD的中点,P A=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)求二面角CEMN的正弦值;(3)已知点H在棱P A上,且直线NH与直线BE所成角的余弦值为721,求线段AH的长.16.(2017·山东理,17)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G是DF的中点.(1)设P是CE上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E—AG—C的大小.。
【山东省】2017年高考数学(理科)-空间几何体表面积或体积的求解 -专题练习-答案

山东省2017年高考数学(理科)专题练习空间几何体表面积或体积的求解答 案[A 组高考达标] 一、选择题 1~5.DBDBA 二、填空题6.3+7.148.(16π三、解答题9.解:(1)证明:取PA 的中点F ,连接EF ,BF ,则EF AD BC ,即EF ,BC 共面.∵PB ⊥平面ABCD ,∴PB BC ⊥,又BC AB ⊥且PB AB B =,∴BC ⊥平面PAB ,∴.BC PA ⊥ ∵PB AB =,∴BF PA ⊥,又BC BF B =,∴PA ⊥平面EFBC ,∴PA CE ⊥. (2)设四棱锥P ABCD -的表面积为S ,∵PB ABCD ⊥平面,∴PB CD ⊥,又CD BC ⊥,PBBC B =,∴CD PBC ⊥平面,∴CD PC ⊥,即△PCD 为直角三角形, 由(1)知BC PAB ⊥平面,而AD BC ,∴AD PAB ⊥平面, 故AD PA ⊥,即△P AD 也为直角三角形.224ABCD S ==⨯=,12222PBC PAB PDA S S S ===⨯⨯=△△△,122PCDS=⨯= ∴ABCD PBC PDA PAB PCD S S S S S S ==++++△△△△表10=+10.解:.(1)证明:因为D ,E 分别为棱AC ,BC 的中点,所以DE 是△ABC 的中位线,所以DEAB又11DE ABB A ⊄平面,AB ⊂平面11ABB A ,所以DE 平面11ABB A .同理DG 平面11ABB A ,又DE DG D =,所以平面DEFG 平面11ABB A .(2)当直三棱柱111ABC A B C -容器的侧面11AA B B 水平放置时,由(1)可知,液体部分是直四棱柱,其高即为原直三棱柱111ABC A B C -容器的高,即侧棱长l ,当底面ABC 水平放置时,设液面的高为h ,ABC △的面积为S ,则由已知条件可知,CDE ABC △∽△,且14CDE S S =△,所以34ABED S S =四边形. 由于两种状态下液体体积相等,所以34ABED V Sh S l Sl ===液体四边形,即34h l =. 因此,当底面ABC 水平放置时,液面的高为34l . [B 组名校冲刺] 一、选择题 1~4.ABDC 二、填空题5 6.83π2三、解答题7.解:(1)证明:设EC 与DF 交于点N ,连接MN ,在矩形CDEF 中,点N 为EC 中点, 因为M 为EA 中点,所以MNAC .又因为AC MDF ⊄平面,MN MDF ⊂平面, 所以AC MDF 平面.(2)取CD 中点为G ,连接1A BG ,EG ,CDEF ABCD ⊥平面平面,CDEF ABCD CD =平面平面,AD ABCD ⊂平面,AD CD ⊥,所以AD CDEF ⊥平面,同理ED ABCD ⊥平面, 所以ED 的长即为四棱锥E-ABCD 的高. 在梯形ABCD 中,12AB CD DG ==,AB DG , 所以四边形ABGD 是平行四边形,BGAD ,所以BG CDEF ⊥平面.又DF ⊂平面CDEF ,所以BG DF ⊥,又BE DF ⊥,BE BG B =,所以DF BEG ⊥平面,DF EG ⊥.注意到Rt DEG Rt EFD △∽△,所以28DE DG EF ==,DE = 所以1423E ABCD ABCD V S ED -==梯形. 8.解:(1)证明:∵△CMD 是等腰直角三角形,90CMD ∠=︒,点O 为CD 的中点,∴OM CD ⊥.∵CMD BCD ⊥平面平面,CMD BCD CD =平面平面,OM CMD ⊂平面,∴OM BCD ⊥平面. ∵AB ⊥平面BCD ,∴OMAB .∵AB ABD ⊂平面,OM ABD ⊄平面,∴OM ABD 平面.(2)法一:由(1)知OMABD 平面,∴点M 到平面ABD 的距离等于点O 到平面ABD 的距离. 过点O 作OH BD ⊥,垂足为点H .∵AB BCD ⊥平面,OH BCD ⊂平面,∴OH AB ⊥. ∵AB ABD ⊂平面,BD ABD ⊂平面,AB BD B =,∴OH ABD ⊥平面.∵2AB BC ==,△BCD 是等边三角形,∴2BD =,1OD =,sin60=OH OD =︒. ∴A BDM M ABD V V --=三棱锥三棱锥1132AB BD OH =⨯⨯11223223=⨯⨯⨯⨯=.∴三棱锥A -BDM . 法二:由(1)知OMABD 平面,∴点M 到平面ABD 的距离等于点O 到平面ABD 的距离. ∵2AB BC ==,△BCD 是等边三角形,∴21BD OD ==,. 连接OB ,则OB CD ⊥,sin60=3OB BD =︒. ∴A BDM M ABD O ABD A BDO V V V V ----===三棱锥三棱锥三棱锥三棱锥1132OD OB AB =⨯⨯1112323=⨯⨯=.∴三棱锥A -BDM .山东省2017年高考数学(理科)专题练习空间几何体表面积或体积的求解解 析[建议A 、B 组各用时:45分钟] [A 组高考达标] 一、选择题 1.D[分析三视图可知,该几何体为如图所示的三棱锥,其中平面ACD ⊥平面BCD ,故选D.] 2.B[由三视图可知该几何体由半球内挖去一个同底的圆锥得到,所以该几何体的体积为V =12×43π×13-13π×12×1=π3.]3.D[由三视图可知,几何体是一个三棱柱,体积V 1=12×2×2×2=4,设外接球的半径为R ,则4R 2=22+22+22=12,所以R =3.所以球的体积V 2=43πR 3=43π,体积比V 1∶V 2=4∶43π=1∶3π.] 4.B[分析题意可知,该几何体是由如图所示的三棱柱ABC -A 1B 1C 1截去四棱锥A -BEDC 得到的,故其体积V =34×22×3-13×1+22×2×3=23,故选B.] 5.A[在正方体中还原出该四面体C -A 1EC 1如图所示,可求得该四面体的表面积为8+82+4 6.] 二、填空题6.3+2 2[依题意,边长是3的等边△ABC 的外接圆半径r =12·3sin 60°=1.∵球O 的表面积为36π=4πR 2,∴球O 的半径R =3,∴球心O 到平面ABC 的距离d =R 2-r 2=22,∴球面上的点P 到平面ABC 距离的最大值为R +d =3+2 2.] 7.14[如图,设S △ABD =S 1,S △PAB =S 2,E 到平面ABD 的距离为h 1,C 到平面PAB 的距离为h 2,则S 2=2S 1,h 2=2h 1,V 1=13S 1h 1,V 2=13S 2h 2,所以V 1V 2=S 1h 1S 2h 2=14.]8.16(π-2)[设内接正四棱柱底边长为a ,高为h ,那么16=2a 2+h 2≥22ah ,正四棱柱的侧面积S =4ah ≤162,球的表面积与该正四棱柱的侧面积之差是16(π-2).] 三、解答题9. 解:(1)证明:取P A 的中点F ,连接EF ,BF ,则EF ∥AD ∥BC ,即EF ,BC 共面.∵PB ⊥平面ABCD ,∴PB ⊥BC ,又BC ⊥AB 且PB ∩AB =B , ∴BC ⊥平面P AB ,∴BC ⊥P A .3分 ∵PB =AB ,∴BF ⊥P A ,又BC ∩BF =B , ∴P A ⊥平面EFBC ,∴P A ⊥CE .6分 (2)设四棱锥P -ABCD 的表面积为S ,∵PB ⊥平面ABCD ,∴PB ⊥CD ,又CD ⊥BC ,PB ∩BC =B , ∴CD ⊥平面PBC ,∴CD ⊥PC ,即△PCD 为直角三角形,8分 由(1)知BC ⊥平面P AB ,而AD ∥BC ,∴AD ⊥平面P AB , 故AD ⊥P A ,即△P AD 也为直角三角形. S ▱ABCD =2×2=4,S △PBC =S △P AB =S △PDA =12×2×2=2,S △PCD =12×2×22+22=22,10分∴S 表=S ▱ABCD +S △PBC +S △PDA +S △P AB +S △PCD =10+22.12分10.解:(1)证明:因为D ,E 分别为棱AC ,BC 的中点,所以DE 是△ABC 的中位线,所以DE ∥AB .又DE ⊄平面ABB 1A 1,AB ⊂平面ABB 1A 1,所以DE ∥平面ABB 1A 1.同理DG ∥平面ABB 1A 1,又DE ∩DG =D ,所以平面DEFG ∥平面ABB 1A 1.6分(2)当直三棱柱ABC -A 1B 1C 1容器的侧面AA 1B 1B 水平放置时,由(1)可知,液体部分是直四棱柱,其高即为原直三棱柱ABC -A 1B 1C 1容器的高,即侧棱长l ,当底面ABC 水平放置时,设液面的高为h ,△ABC 的面积为S ,则由已知条件可知,△CDE ∽△ABC ,且S △CDE =14S ,所以S 四边形ABED =34S .9分由于两种状态下液体体积相等,所以V 液体=Sh =S 四边形ABED l =34Sl ,即h =34l .因此,当底面ABC 水平放置时,液面的高为34l .12分[B 组名校冲刺] 一、选择题1.A[过点D 在平面PCD 内作DN ⊥PM 于点N ,又平面PMB ⊥平面PCD ,平面PMB ∩平面PCD =PM ,所以DN ⊥平面PMB ,所以DN ⊥BM .又由PD ⊥平面ABCD ,得PD ⊥BM ,又PD 与DN 是平面PDC 内的两条相交直线,所以BM ⊥平面PDC ,则BM ⊥CD .又点M 是CD 的中点,BC =CD ,所以∠BCD =60°,所以底面菱形ABCD 的面积为2×2×sin 60°=23,故该四棱锥的体积为13×23×2=433.]2.B[根据三视图可知,几何体是由一个直三棱柱与一个三棱锥所组成的,其中该直三棱柱的底面是一个直角三角形(直角边长分别为1,2,高为1);该三棱锥的底面是一个直角三角形(腰长分别为1,2,高为1),因此该几何体的体积为12×2×1×1+13×12×2×1×1=43,选B .] 3.D[由三视图知,该几何体为一个底面半径为1,高为1的圆柱体,与底面半径为1,高为2的半圆柱体构成,所以该三视图的体积为π×12×1+12π×12×2=2π,故选D .] 4.C[设OP 交平面ABC 于O ′,由题得△ABC 和△P AB 为正三角形,所以O ′A =33AB =33AP .因为AO ′⊥PO ,OA ⊥P A ,所以OP OA =AP AO ′,AO ′AB=33,AO ′AP =33,所以OA =OP ·O ′A AP =3×33=1,即球的半径为1,所以其体积为43π×13=43π.选C .]二、填空题 5.55π6[由题意知六棱柱的底面正六边形的外接圆半径r =1, 其高h =1,∴球半径为R =r 2+⎝⎛⎭⎫h 22=1+14=54,∴该球的体积V =43πR 3=43×⎝⎛⎭⎫543π=55π6.]6.832π[由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,∴x 2=32+(6-x )2,解得x =546,∴R 2=x 2+⎝⎛⎭⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),∴外接球的表面积S =4πR 2=832π.]三、解答题7.解:(1)证明:设EC 与DF 交于点N ,连接MN ,在矩形CDEF 中,点N 为EC 中点, 因为M 为EA 中点,所以MN ∥AC .2分 又因为AC ⊄平面MDF ,MN ⊂平面MDF , 所以AC ∥平面MDF .4分(2)取CD 中点为G ,连接BG ,EG ,平面CDEF ⊥平面ABCD ,平面CDEF ∩平面ABCD =CD , AD ⊂平面ABCD ,AD ⊥CD ,所以AD ⊥平面CDEF ,同理ED ⊥平面ABCD ,7分 所以ED 的长即为四棱锥E -ABCD 的高.8分 在梯形ABCD 中,AB =12CD =DG ,AB ∥DG ,所以四边形ABGD 是平行四边形,BG ∥AD ,所以BG ⊥平面CDEF . 又DF ⊂平面CDEF ,所以BG ⊥DF ,又BE ⊥DF ,BE ∩BG =B , 所以DF ⊥平面BEG ,DF ⊥EG .10分注意到Rt △DEG ∽Rt △EFD ,所以DE 2=DG ·EF =8,DE =22, 所以V E -ABCD =13S 梯形ABCD ·ED =42.12分 8.解:(1)证明:∵△CMD 是等腰直角三角形,∠CMD =90°,点O 为CD 的中点,∴OM ⊥CD .1分∵平面CMD ⊥平面BCD ,平面CMD ∩平面BCD =CD ,OM ⊂平面CMD , ∴OM ⊥平面BCD .2分∵AB⊥平面BCD,∴OM∥AB.3分∵AB⊂平面ABD,OM⊄平面ABD,∴OM∥平面ABD.4分(2)法一:由(1)知OM∥平面ABD,∴点M到平面ABD的距离等于点O到平面ABD的距离.5分过点O作OH⊥BD,垂足为点H.∵AB⊥平面BCD,OH⊂平面BCD,∴OH⊥AB.6分∵AB⊂平面ABD,BD⊂平面ABD,AB∩BD=B,∴OH⊥平面ABD.7分∵AB=BC=2,△BCD是等边三角形,∴BD=2,OD=1,OH=OD·sin 60°=32.9分∴V三棱锥A-BDM=V三棱锥M-ABD=13×12×AB·BD·OH=13×12×2×2×32=33.11分∴三棱锥A-BDM的体积为33.12分法二:由(1)知OM∥平面ABD,∴点M到平面ABD的距离等于点O到平面ABD的距离.5分∵AB=BC=2,△BCD是等边三角形,∴BD=2,OD=1.6分连接OB,则OB⊥CD,OB=BD·sin 60°=3.7分∴V三棱锥A-BDM=V三棱锥M-ABD=V三棱锥O-ABD=V三棱锥A-BDO=13×12×OD·OB·AB=13×12×1×3×2=33.11分∴三棱锥A-BDM的体积为33.12分。
2017年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4 4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= .14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 .15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.【考点】CF:几何概型.【专题】35:转化思想;4O:定义法;5I:概率与统计.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B.【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4【考点】2K:命题的真假判断与应用;A1:虚数单位i、复数;A5:复数的运算.【专题】2A:探究型;5L:简易逻辑;5N:数系的扩充和复数.【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案.【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.8【考点】84:等差数列的通项公式;85:等差数列的前n项和.【专题】11:计算题;34:方程思想;4O:定义法;54:等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【考点】3P:抽象函数及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.35【考点】DA:二项式定理.【专题】35:转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题. 8.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2【考点】EF:程序框图.【专题】11:计算题;38:对应思想;49:综合法;5K:算法和程序框图.【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题;35:转化思想;57:三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.10【考点】K8:抛物线的性质.【专题】11:计算题;34:方程思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】方法一:根据题意可判断当A与D,B,E关于x轴对称,即直线DE的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A.【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题. 11.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【考点】72:不等式比较大小.【专题】35:转化思想;51:函数的性质及应用;59:不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35:转化思想;4R:转化法;54:等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= 2 .【考点】9O:平面向量数量积的性质及其运算.【专题】31:数形结合;4O:定义法;5A:平面向量及应用.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 ﹣5 .【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .【考点】KC:双曲线的性质.【专题】11:计算题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 4cm3 .【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】法一:由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h=,求出S△ABC=3,V==,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.法二:设正三角形的边长为x,则OG=,FG=SG=5﹣,SO=h===,由此能示出三棱锥的体积的最大值.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为x,则OG=,∴FG=SG=5﹣,SO=h===,∴三棱锥的体积V===,令b(x)=5x4﹣,则,令b'(x)=0,则4x3﹣=0,解得x=4,∴(cm3).故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;33:函数思想;4R:转化法;56:三角函数的求值;58:解三角形.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.【解答】解:(1)由三角形的面积公式可得S△ABC=acsinB=,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】15:综合题;31:数形结合;41:向量法;5G:空间角.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB ⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;35:转化思想;4A:数学模型法;5I:概率与统计.【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【考点】K3:椭圆的标准方程;KI:圆锥曲线的综合.【专题】14:证明题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(1)根据椭圆的对称性,得到P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+t,(t≠1),联立,得(1+4k2)x2+8ktx+4t2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2﹣4=0,,x1x2=,则=====﹣1,又t≠1,∴t=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】32:分类讨论;35:转化思想;4R:转化法;53:导数的综合应用.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)由(1)可知:当a>0时才有两个零点,根据函数的单调性求得f(x)最小值,由f(x)min<0,g(a)=alna+a﹣1,a>0,求导,由g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,g(1)=0,即可求得a的取值范围.(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1。
2017年高考真题分类汇编(理数)解析几何

2017年高考真题分类汇编(理数):专题5 解析几何一、单选题(共6题;共12分)1、(2017•浙江)椭圆+ =1的离心率是()A、B、C、D、2、(2017•新课标Ⅲ)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y= x,且与椭圆+ =1有公共焦点,则C的方程为()A、﹣=1B、﹣=1C、﹣=1D、﹣=13、(2017·天津)已知双曲线﹣=1(a>0,b>0)的左焦点为F,离心率为.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A、=1B、=1C、=1D、=14、(2017•新课标Ⅰ卷)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1, l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A、16B、14C、12D、105、(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A、2B、C、D、6、(2017•新课标Ⅲ)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1, A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A、B、C、D、二、填空题(共6题;共6分)7、(2017•北京卷)若双曲线x2﹣=1的离心率为,则实数m=________.8、(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是________.9、(2017•江苏)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1, F2,则四边形F1PF2Q的面积是________.10、(2017•新课标Ⅰ卷)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________ .11、(2017•新课标Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=________.12、(2017•山东)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为________.三、解答题(共8题;共50分)13、(2017·天津)设椭圆+ =1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.14、(2017•北京卷)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(14分)(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.15、(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足= .(Ⅰ)求点P的轨迹方程;(Ⅱ)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.16、(2017•山东)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(14分)(Ⅰ)求椭圆E的方程.(Ⅱ)如图,该直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且看k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率.17、(2017•浙江)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.18、(2017•江苏)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)若直线l1, l2的交点Q在椭圆E上,求点P的坐标.19、(2017•新课标Ⅰ卷)已知椭圆C:+ =1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(12分)(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.20、(2017•新课标Ⅲ)已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.(Ⅰ)证明:坐标原点O在圆M上;(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.答案解析部分一、单选题1、【答案】B【考点】椭圆的简单性质【解析】【解答】解:椭圆+ =1,可得a=3,b=2,则c= = ,所以椭圆的离心率为:= .故选:B.【分析】直接利用椭圆的简单性质求解即可.2、【答案】B【考点】椭圆的标准方程,椭圆的简单性质,双曲线的标准方程,双曲线的简单性质【解析】【解答】解:椭圆+ =1的焦点坐标(±3,0),则双曲线的焦点坐标为(±3,0),可得c=3,双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y= x,可得,即,可得= ,解得a=2,b= ,所求的双曲线方程为:﹣=1.故选:B.【分析】求出椭圆的焦点坐标,得到双曲线的焦点坐标,利用双曲线的渐近线方程,求出双曲线实半轴与虚半轴的长,即可得到双曲线方程.3、【答案】B【考点】斜率的计算公式,两条直线平行的判定,双曲线的简单性质【解析】【解答】解:设双曲线的左焦点F(﹣c,0),离心率e= = ,c= a,则双曲线为等轴双曲线,即a=b,双曲线的渐近线方程为y=± x=±x,则经过F和P(0,4)两点的直线的斜率k= = ,则=1,c=4,则a=b=2 ,∴双曲线的标准方程:;故选B.【分析】由双曲线的离心率为,则双曲线为等轴双曲线,即渐近线方程为y=±x,根据直线的斜率公式,即可求得c的值,求得a和b的值,即可求得双曲线方程.4、【答案】A【考点】抛物线的简单性质,直线与圆锥曲线的关系,直线与圆锥曲线的综合问题【解析】【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|= •|y1﹣y2|= × =8,∴|AB|+|DE|的最小值为2|DE|=16,故选:A【分析】根据题意可判断当A与D,B,E关于x轴对称,即直线DE的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.5、【答案】A【考点】直线与圆相交的性质,双曲线的简单性质,圆与圆锥曲线的综合【解析】【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:= ,解得:,可得e2=4,即e=2.故选:A.【分析】通过圆的圆心与双曲线的渐近线的距离,列出关系式,然后求解双曲线的离心率即可.6、【答案】A【考点】圆的标准方程,直线与圆的位置关系,椭圆的简单性质【解析】【解答】解:以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,∴原点到直线的距离=a,化为:a2=3b2.∴椭圆C的离心率e= = = .故选:A.【分析】以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,可得原点到直线的距离=a,化简即可得出.二、填空题7、【答案】2【考点】双曲线的标准方程,双曲线的简单性质【解析】【解答】解:双曲线x2﹣=1(m>0)的离心率为,可得:,解得m=2.故答案为:2.【分析】利用双曲线的离心率,列出方程求和求解m 即可.8、【答案】[-5 ,1]【考点】平面向量数量积的运算,直线和圆的方程的应用【解析】【解答】解:根据题意,设P(x0, y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0, 6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0+6y0+30≤0,即2x0+y0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5 ,1],故答案为:[﹣5 ,1].【分析】根据题意,设P(x0, y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.9、【答案】2【考点】双曲线的简单性质【解析】【解答】解:双曲线﹣y2=1的右准线:x= ,双曲线渐近线方程为:y= x,所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:=2 .故答案为:2 .【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.10、【答案】【考点】双曲线的简单性质【解析】【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°= ,可得:= ,即,可得离心率为:e= .故答案为:.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.11、【答案】6【考点】抛物线的简单性质【解析】【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2 =6.故答案为:6.【分析】求出抛物线的焦点坐标,推出M坐标,然后求解即可.12、【答案】y=± x【考点】抛物线的标准方程,抛物线的简单性质,双曲线的标准方程,双曲线的简单性质,圆锥曲线的综合【解析】【解答】解:把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,∴y A+y B= ,∵|AF|+|BF|=4|OF|,∴y A+y B+2× =4× ,∴=p,∴= .∴该双曲线的渐近线方程为:y=± x.故答案为:y=± x.【分析】把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,利用根与系数的关系、抛物线的定义及其性质即可得出.三、解答题13、【答案】(Ⅰ)解:设F的坐标为(﹣c,0).依题意可得,解得a=1,c= ,p=2,于是b2=a2﹣c2= .所以,椭圆的方程为x2+ =1,抛物线的方程为y2=4x.(Ⅱ)解:直线l的方程为x=﹣1,设直线AP的方程为x=my+1(m≠0),联立方程组,解得点P(﹣1,﹣),故Q(﹣1,).联立方程组,消去x,整理得(3m2+4)y2+6my=0,解得y=0,或y=﹣.∴B(,).∴直线BQ的方程为(﹣)(x+1)﹣()(y﹣)=0,令y=0,解得x= ,故D(,0).∴|AD|=1﹣= .又∵△APD的面积为,∴× = ,整理得3m2﹣2 |m|+2=0,解得|m|= ,∴m=± .∴直线AP的方程为3x+ y﹣3=0,或3x﹣y﹣3=0.【考点】椭圆的标准方程,椭圆的简单性质,抛物线的简单性质,直线与圆锥曲线的关系,圆锥曲线的综合【解析】【分析】(Ⅰ)根据椭圆和抛物线的定义、性质列方程组求出a,b,p即可得出方程;(Ⅱ)设AP方程为x=my+1,联立方程组得出B,P,Q三点坐标,从而得出直线BQ的方程,解出D点坐标,根据三角形的面积列方程解出m即可得出答案.14、【答案】(1)解:(1)∵y2=2px过点P(1,1),∴1=2p,解得p= ,∴y2=x,∴焦点坐标为(,0),准线为x=﹣,(2)(2)证明:设过点(0,)的直线方程为y=kx+ ,M(x1, y1),N(x2, y2),∴直线OP为y=x,直线ON为:y= x,由题意知A(x1, x1),B(x1,),由,可得k2x2+(k﹣1)x+ =0,∴x1+x2= ,x1x2=∴y1+ =kx1+ + =2kx1+ =2kx1+ =∴A为线段BM的中点.【考点】抛物线的简单性质,抛物线的应用,直线与圆锥曲线的综合问题【解析】【分析】(1.)根据抛物线过点P(1,1).代值求出p,即可求出抛物线C的方程,焦点坐标和准线方程;(2.)设过点(0,)的直线方程为y=kx+ ,M(x1, y1),N(x2, y2),根据韦达定理得到x1+x2= ,x1x2= ,根据中点的定义即可证明.15、【答案】解:(Ⅰ)设M(x0, y0),由题意可得N(x0, 0),设P(x,y),由点P满足= .可得(x﹣x0, y)= (0,y0),可得x﹣x0=0,y= y0,即有x0=x,y0= ,代入椭圆方程+y2=1,可得+ =1,即有点P的轨迹方程为圆x2+y2=2;(Ⅱ)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3 cosα﹣2cos2α+ msinα﹣2sin2α=1,解得m= ,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由k OQ=﹣,k PF= ,由k OQ•k PF=﹣1,可得过点P且垂直于OQ的直线l过C的左焦点F.【考点】数量积的坐标表达式,同角三角函数间的基本关系,斜率的计算公式,两条直线垂直与倾斜角、斜率的关系,轨迹方程【解析】【分析】(Ⅰ)设M(x0, y0),由题意可得N(x0, 0),设P(x,y),运用向量的坐标运算,结合M满足椭圆方程,化简整理可得P的轨迹方程;(Ⅱ)设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),运用向量的数量积的坐标表示,可得m,即有Q的坐标,求得椭圆的左焦点坐标,求得OQ,PF的斜率,由两直线垂直的条件:斜率之积为﹣1,即可得证.16、【答案】解:(Ⅰ)由题意知,,解得a= ,b=1.∴椭圆E的方程为;(Ⅱ)设A(x1, y1),B(x2, y2),联立,得.由题意得△= >0.,.∴|AB|= .由题意可知圆M的半径r为r= .由题意设知,,∴.因此直线OC的方程为.联立,得.因此,|OC|= .由题意可知,sin = .而= .令t= ,则t>1,∈(0,1),因此,= ≥1.当且仅当,即t=2时等式成立,此时.∴,因此.∴∠SOT的最大值为.综上所述:∠SOT的最大值为,取得最大值时直线l的斜率为.【考点】函数的值域,椭圆的标准方程,椭圆的简单性质,椭圆的应用,直线与圆锥曲线的关系,直线与圆锥曲线的综合问题【解析】【分析】(Ⅰ)由题意得关于a,b,c的方程组,求解方程组得a,b的值,则椭圆方程可求;(Ⅱ)设A(x1, y1),B(x2, y2),联立直线方程与椭圆方程,利用根与系数的关系求得A,B的横坐标的和与积,由弦长公式求得|AB|,由题意可知圆M的半径r,则r=.由题意设知.得到直线OC的方程,与椭圆方程联立,求得C点坐标,可得|OC|,由题意可知,sin = .转化为关于k1的函数,换元后利用配方法求得∠SOT的最大值为,取得最大值时直线l的斜率为.17、【答案】解:(Ⅰ)由题可知P(x,x2),﹣<x<,所以k AP= =x﹣∈(﹣1,1),故直线AP斜率的取值范围是:(﹣1,1);(Ⅱ)由(I)知P(x,x2),﹣<x<,所以=(﹣﹣x,﹣x2),设直线AP的斜率为k,则AP:y=kx+ k+ ,BP:y=﹣x+ + ,联立直线AP、BP方程可知Q(,),故=(,),又因为=(﹣1﹣k,﹣k2﹣k),故﹣|PA|•|PQ|= •= + =(1+k)3(k﹣1),所以|PA|•|PQ|=(1+k)3(1﹣k),令f(x)=(1+x)3(1﹣x),﹣1<x<1,则f′(x)=(1+x)2(2﹣4x)=﹣2(1+x)2(2x﹣1),由于当﹣1<x<﹣时f′(x)>0,当<x<1时f′(x)<0,故f(x)max=f()= ,即|PA|•|PQ|的最大值为.【考点】利用导数求闭区间上函数的最值,平面向量数量积的运算,斜率的计算公式,抛物线的应用,圆锥曲线的综合【解析】【分析】(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣<x<可得结论;(Ⅱ)通过(I)知P(x,x2)、﹣<x<,设直线AP的斜率为k,联立直线AP、BP方程可知Q点坐标,进而可用k表示出、,计算可知|PA|•|PQ|=(1+k)3(1﹣k),通过令f(x)=(1+x)3(1﹣x),﹣1<x<1,求导结合单调性可得结论.18、【答案】解:(Ⅰ)由题意可知:椭圆的离心率e= = ,则a=2c,①椭圆的准线方程x=± ,由2× =8,②由①②解得:a=2,c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(Ⅱ)设P(x0, y0),则直线PF2的斜率= ,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x﹣1),直线PF1的斜率= ,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x+1),联立,解得:,则Q(﹣x0,),由Q在椭圆上,则y0= ,则y02=x02﹣1,则,解得:,则,∴P(,)或P(﹣,)或P(,﹣)或P(﹣,﹣).【考点】直线的点斜式方程,两条直线的交点坐标,椭圆的简单性质,直线与圆锥曲线的关系【解析】【分析】(Ⅰ)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=± ,则2× =8,即可求得a和c的值,则b2=a2﹣c2=3,即可求得椭圆方程;(Ⅱ)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x02﹣1,联立即可求得P点坐标;19、【答案】(1)解:根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.(2)证明:①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴= = =﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+b,(b≠1),A(x1, y1),B(x2, y2),联立,整理,得(1+4k2)x2+8kbx+4b2﹣4=0,,x1x2= ,则= == = =﹣1,又b≠1,∴b=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).【考点】直线的斜截式方程,椭圆的标准方程,椭圆的简单性质,圆锥曲线的综合【解析】【分析】(1.)根据椭圆的对称性,得到P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2.)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+b,(b≠1),联立,得(1+4k2)x2+8kbx+4b2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).20、【答案】解:方法一:证明:(Ⅰ)当直线l的斜率不存在时,则A(2,2),B(2,﹣2),则=(2,2),=(2,﹣2),则•=0,∴⊥,则坐标原点O在圆M上;当直线l的斜率存在,设直线l的方程y=k(x﹣2),设A(x1, y1),B(x2, y2),,整理得:k2x2﹣(4k2+2)x+4k2=0,则x1x2=4,4x1x2=y12y22=(y1y2)2,由y1y2<0,则y1y2=﹣4,由•=x1x2+y1y2=0,则⊥,则坐标原点O在圆M上,综上可知:坐标原点O在圆M上;方法二:设直线l的方程x=my+2,,整理得:y2﹣2my﹣4=0,设A(x1, y1),B(x2, y2),则y1y2=﹣4,则(y1y2)2=4x1x2,则x1x2=4,则•=x1x2+y1y2=0,则⊥,则坐标原点O在圆M上,∴坐标原点O在圆M上;(Ⅱ)由(Ⅰ)可知:x1x2=4,x1+x2= ,y1+y2= ,y1y2=﹣4,圆M过点P(4,﹣2),则=(4﹣x1,﹣2﹣y1),=(4﹣x2,﹣2﹣y2),由•=0,则(4﹣x1)(4﹣x2)+(﹣2﹣y1)(﹣2﹣y2)=0,整理得:k2+k﹣2=0,解得:k=﹣2,k=1,当k=﹣2时,直线l的方程为y=﹣2x+4,则x1+x2= ,y1+y2=﹣1,则M(,﹣),半径为r=丨MP丨= = ,∴圆M的方程(x﹣)2+(y+ )2= .当直线斜率k=1时,直线l的方程为y=x﹣2,同理求得M(3,1),则半径为r=丨MP丨= ,∴圆M的方程为(x﹣3)2+(y﹣1)2=10,综上可知:直线l的方程为y=﹣2x+4,圆M的方程(x﹣)2+(y+ )2=或直线l的方程为y=x﹣2,圆M的方程为(x﹣3)2+(y﹣1)2=10.【考点】直线的点斜式方程,直线的斜截式方程,圆的标准方程,点与圆的位置关系,直线与圆锥曲线的关系【解析】【分析】(Ⅰ)方法一:分类讨论,当直线斜率不存在时,求得A和B的坐标,由•=0,则坐标原点O在圆M上;当直线l斜率存在,代入抛物线方程,利用韦达定理及向量数量积的可得•=0,则坐标原点O在圆M上;方法二:设直线l的方程x=my+2,代入椭圆方程,利用韦达定理及向量数量积的坐标运算,即可求得•=0,则坐标原点O在圆M上;(Ⅱ)由题意可知:•=0,根据向量数量积的坐标运算,即可求得k的值,求得M点坐标,则半径r=丨MP丨,即可求得圆的方程.。
【山东省】2017年高考数学(理科)-空间几何体表面积或体积的求解 -专题练习-答案

山东省2017年高考数学(理科)专题练习空间几何体表面积或体积的求解答 案[A 组高考达标] 一、选择题 1~5.DBDBA 二、填空题6.3+7.148.(16π三、解答题9.解:(1)证明:取PA 的中点F ,连接EF ,BF ,则EF AD BC ,即EF ,BC共面.∵PB ⊥平面ABCD ,∴PB BC ⊥,又BC AB ⊥且PB AB B =,∴BC ⊥平面PAB ,∴.BC PA ⊥ ∵PB AB =,∴BF PA ⊥,又BC BF B =,∴PA ⊥平面EFBC ,∴PA CE ⊥. (2)设四棱锥P ABCD -的表面积为S ,∵PB ABCD ⊥平面,∴PB CD ⊥,又CD BC ⊥,PBBC B =,∴CD PBC ⊥平面,∴CD PC ⊥,即△PCD 为直角三角形, 由(1)知BC PAB ⊥平面,而AD BC ,∴AD PAB ⊥平面, 故AD PA ⊥,即△P AD 也为直角三角形.224ABCD S ==⨯=,12222PBC PAB PDA S S S ===⨯⨯=△△△,122PCDS=⨯= ∴ABCD PBC PDA PAB PCD S S S S S S ==++++△△△△表10=+10.解:.(1)证明:因为D ,E 分别为棱AC ,BC 的中点,所以DE 是△ABC 的中位线,所以DEAB又11DE ABB A ⊄平面,AB ⊂平面11ABB A ,所以DE 平面11ABB A .同理DG 平面11ABB A ,又DE DG D =,所以平面DEFG 平面11ABB A .(2)当直三棱柱111ABC A B C -容器的侧面11AA B B 水平放置时,由(1)可知,液体部分是直四棱柱,其高即为原直三棱柱111ABC A B C -容器的高,即侧棱长l ,当底面ABC 水平放置时,设液面的高为h ,ABC △的面积为S ,则由已知条件可知,CDE ABC △∽△,且14CDE S S =△,所以34ABED S S =四边形. 由于两种状态下液体体积相等,所以34ABED V Sh S l Sl ===液体四边形,即34h l =.因此,当底面ABC 水平放置时,液面的高为34l . [B 组名校冲刺] 一、选择题 1~4.ABDC 二、填空题5 6.83π2三、解答题7.解:(1)证明:设EC 与DF 交于点N ,连接MN ,在矩形CDEF 中,点N 为EC 中点, 因为M 为EA 中点,所以MNAC .又因为AC MDF ⊄平面,MN MDF ⊂平面, 所以AC MDF 平面.(2)取CD 中点为G ,连接1A BG ,EG ,CDEF ABCD ⊥平面平面,CDEF ABCD CD =平面平面,AD ABCD ⊂平面,AD CD ⊥,所以AD CDEF ⊥平面,同理ED ABCD ⊥平面, 所以ED 的长即为四棱锥E-ABCD 的高. 在梯形ABCD 中,12AB CD DG ==,AB DG , 所以四边形ABGD 是平行四边形,BG AD ,所以BG CDEF ⊥平面.又DF ⊂平面CDEF ,所以BG DF ⊥,又BE DF ⊥,BE BG B =,所以DF BEG ⊥平面,DF EG ⊥.注意到Rt DEG Rt EFD △∽△,所以28DE DG EF ==,DE = 所以1423E ABCD ABCDV S ED -==梯形. 8.解:(1)证明:∵△CMD 是等腰直角三角形,90CMD ∠=︒,点O 为CD 的中点,∴OM CD ⊥.∵CMD BCD ⊥平面平面,CMD BCD CD =平面平面,OM CMD ⊂平面,∴OM BCD ⊥平面. ∵AB ⊥平面BCD ,∴OMAB .∵AB ABD ⊂平面,OM ABD ⊄平面,∴OM ABD 平面.(2)法一:由(1)知OMABD 平面,∴点M 到平面ABD 的距离等于点O 到平面ABD 的距离. 过点O 作OH BD ⊥,垂足为点H .∵AB BCD ⊥平面,OH BCD ⊂平面,∴OH AB ⊥. ∵AB ABD ⊂平面,BD ABD ⊂平面,AB BD B =,∴OH ABD ⊥平面.∵2AB BC ==,△BCD 是等边三角形,∴2BD =,1OD =,sin60=2OH OD =︒. ∴A BDM M ABD V V --=三棱锥三棱锥1132AB BD OH =⨯⨯11223223=⨯⨯⨯⨯=.∴三棱锥A -BDM . 法二:由(1)知OMABD 平面,∴点M 到平面ABD 的距离等于点O 到平面ABD 的距离. ∵2AB BC ==,△BCD 是等边三角形,∴21BD OD ==,. 连接OB ,则OB CD ⊥,sin60=3OB BD =︒ ∴A BDM M ABD O ABD A BDO V V V V ----===三棱锥三棱锥三棱锥三棱锥1132OD OB AB =⨯⨯111232=⨯⨯=.∴三棱锥A -BDM 的体积为3.山东省2017年高考数学(理科)专题练习空间几何体表面积或体积的求解解 析[建议A 、B 组各用时:45分钟] [A 组高考达标] 一、选择题 1.D[分析三视图可知,该几何体为如图所示的三棱锥,其中平面ACD ⊥平面BCD ,故选D.] 2.B[由三视图可知该几何体由半球内挖去一个同底的圆锥得到,所以该几何体的体积为V =12×43π×13-13π×12×1=π3.]3.D[由三视图可知,几何体是一个三棱柱,体积V 1=12×2×2×2=4,设外接球的半径为R ,则4R 2=22+22+22=12,所以R =3.所以球的体积V 2=43πR 3=43π,体积比V 1∶V 2=4∶43π=1∶3π.] 4.B[分析题意可知,该几何体是由如图所示的三棱柱ABC -A 1B 1C 1截去四棱锥A -BEDC 得到的,故其体积V =34×22×3-13×1+22×2×3=23,故选B.] 5.A[在正方体中还原出该四面体C -A 1EC 1如图所示,可求得该四面体的表面积为8+82+4 6.] 二、填空题6.3+2 2[依题意,边长是3的等边△ABC 的外接圆半径r =12·3sin 60°=1.∵球O 的表面积为36π=4πR 2,∴球O 的半径R =3,∴球心O 到平面ABC 的距离d =R 2-r 2=22,∴球面上的点P 到平面ABC 距离的最大值为R +d =3+2 2.] 7.14[如图,设S △ABD =S 1,S △PAB =S 2,E 到平面ABD 的距离为h 1,C 到平面PAB 的距离为h 2,则S 2=2S 1,h 2=2h 1,V 1=13S 1h 1,V 2=13S 2h 2,所以V 1V 2=S 1h 1S 2h 2=14.] 8.16(π-2)[设内接正四棱柱底边长为a ,高为h ,那么16=2a 2+h 2≥22ah ,正四棱柱的侧面积S =4ah ≤162,球的表面积与该正四棱柱的侧面积之差是16(π-2).] 三、解答题9. 解:(1)证明:取P A 的中点F ,连接EF ,BF ,则EF ∥AD ∥BC ,即EF ,BC 共面.∵PB ⊥平面ABCD ,∴PB ⊥BC ,又BC ⊥AB 且PB ∩AB =B , ∴BC ⊥平面P AB ,∴BC ⊥P A .3分 ∵PB =AB ,∴BF ⊥P A ,又BC ∩BF =B , ∴P A ⊥平面EFBC ,∴P A ⊥CE .6分 (2)设四棱锥P -ABCD 的表面积为S ,∵PB ⊥平面ABCD ,∴PB ⊥CD ,又CD ⊥BC ,PB ∩BC =B , ∴CD ⊥平面PBC ,∴CD ⊥PC ,即△PCD 为直角三角形,8分 由(1)知BC ⊥平面P AB ,而AD ∥BC ,∴AD ⊥平面P AB , 故AD ⊥P A ,即△P AD 也为直角三角形. S ▱ABCD =2×2=4,S △PBC =S △P AB =S △PDA =12×2×2=2,S △PCD =12×2×22+22=22,10分∴S 表=S ▱ABCD +S △PBC +S △PDA +S △P AB +S △PCD =10+22.12分10.解:(1)证明:因为D ,E 分别为棱AC ,BC 的中点,所以DE 是△ABC 的中位线,所以DE ∥AB .又DE ⊄平面ABB 1A 1,AB ⊂平面ABB 1A 1,所以DE ∥平面ABB 1A 1.同理DG ∥平面ABB 1A 1,又DE ∩DG =D ,所以平面DEFG ∥平面ABB 1A 1.6分(2)当直三棱柱ABC -A 1B 1C 1容器的侧面AA 1B 1B 水平放置时,由(1)可知,液体部分是直四棱柱,其高即为原直三棱柱ABC -A 1B 1C 1容器的高,即侧棱长l ,当底面ABC 水平放置时,设液面的高为h ,△ABC 的面积为S ,则由已知条件可知,△CDE ∽△ABC ,且S △CDE =14S ,所以S 四边形ABED =34S .9分由于两种状态下液体体积相等,所以V 液体=Sh =S 四边形ABED l =34Sl ,即h =34l .因此,当底面ABC 水平放置时,液面的高为34l .12分[B 组名校冲刺] 一、选择题1.A[过点D 在平面PCD 内作DN ⊥PM 于点N ,又平面PMB ⊥平面PCD ,平面PMB ∩平面PCD =PM ,所以DN ⊥平面PMB ,所以DN ⊥BM .又由PD ⊥平面ABCD ,得PD ⊥BM ,又PD 与DN 是平面PDC 内的两条相交直线,所以BM ⊥平面PDC ,则BM ⊥CD .又点M 是CD 的中点,BC =CD ,所以∠BCD =60°,所以底面菱形ABCD 的面积为2×2×sin 60°=23,故该四棱锥的体积为13×23×2=433.]2.B[根据三视图可知,几何体是由一个直三棱柱与一个三棱锥所组成的,其中该直三棱柱的底面是一个直角三角形(直角边长分别为1,2,高为1);该三棱锥的底面是一个直角三角形(腰长分别为1,2,高为1),因此该几何体的体积为12×2×1×1+13×12×2×1×1=43,选B .] 3.D[由三视图知,该几何体为一个底面半径为1,高为1的圆柱体,与底面半径为1,高为2的半圆柱体构成,所以该三视图的体积为π×12×1+12π×12×2=2π,故选D .] 4.C[设OP 交平面ABC 于O ′,由题得△ABC 和△P AB 为正三角形,所以O ′A =33AB =33AP .因为AO ′⊥PO ,OA ⊥P A ,所以OP OA =AP AO ′,AO ′AB=33,AO ′AP =33,所以OA =OP ·O ′A AP =3×33=1,即球的半径为1,所以其体积为43π×13=43π.选C .]二、填空题 5.55π6[由题意知六棱柱的底面正六边形的外接圆半径r =1, 其高h =1,∴球半径为R =r 2+⎝⎛⎭⎫h 22=1+14=54,∴该球的体积V =43πR 3=43×⎝⎛⎭⎫543π=55π6.]6.832π[由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,∴x 2=32+(6-x )2,解得x =546,∴R 2=x 2+⎝⎛⎭⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),∴外接球的表面积S =4πR 2=832π.]三、解答题7.解:(1)证明:设EC 与DF 交于点N ,连接MN ,在矩形CDEF 中,点N 为EC 中点, 因为M 为EA 中点,所以MN ∥AC .2分 又因为AC ⊄平面MDF ,MN ⊂平面MDF , 所以AC ∥平面MDF .4分(2)取CD 中点为G ,连接BG ,EG ,平面CDEF ⊥平面ABCD ,平面CDEF ∩平面ABCD =CD , AD ⊂平面ABCD ,AD ⊥CD ,所以AD ⊥平面CDEF ,同理ED ⊥平面ABCD ,7分 所以ED 的长即为四棱锥E -ABCD 的高.8分 在梯形ABCD 中,AB =12CD =DG ,AB ∥DG ,所以四边形ABGD 是平行四边形,BG ∥AD ,所以BG ⊥平面CDEF . 又DF ⊂平面CDEF ,所以BG ⊥DF ,又BE ⊥DF ,BE ∩BG =B , 所以DF ⊥平面BEG ,DF ⊥EG .10分注意到Rt △DEG ∽Rt △EFD ,所以DE 2=DG ·EF =8,DE =22, 所以V E -ABCD =13S 梯形ABCD ·ED =42.12分 8.解:(1)证明:∵△CMD 是等腰直角三角形,∠CMD =90°,点O 为CD 的中点,∴OM ⊥CD .1分∵平面CMD ⊥平面BCD ,平面CMD ∩平面BCD =CD ,OM ⊂平面CMD , ∴OM ⊥平面BCD .2分∵AB⊥平面BCD,∴OM∥AB.3分∵AB⊂平面ABD,OM⊄平面ABD,∴OM∥平面ABD.4分(2)法一:由(1)知OM∥平面ABD,∴点M到平面ABD的距离等于点O到平面ABD的距离.5分过点O作OH⊥BD,垂足为点H.∵AB⊥平面BCD,OH⊂平面BCD,∴OH⊥AB.6分∵AB⊂平面ABD,BD⊂平面ABD,AB∩BD=B,∴OH⊥平面ABD.7分∵AB=BC=2,△BCD是等边三角形,∴BD=2,OD=1,OH=OD·sin 60°=32.9分∴V三棱锥A-BDM=V三棱锥M-ABD=13×12×AB·BD·OH=13×12×2×2×32=33.11分∴三棱锥A-BDM的体积为33.12分法二:由(1)知OM∥平面ABD,∴点M到平面ABD的距离等于点O到平面ABD的距离.5分∵AB=BC=2,△BCD是等边三角形,∴BD=2,OD=1.6分连接OB,则OB⊥CD,OB=BD·sin 60°=3.7分∴V三棱锥A-BDM=V三棱锥M-ABD=V三棱锥O-ABD=V三棱锥A-BDO=13×12×OD·OB·AB=13×12×1×3×2=33.11分∴三棱锥A-BDM的体积为33.12分。
2017年浙江高考理科数学试题及解析

2017年普通高等学校招生全国统一考试(浙江卷)数 学(理科)选择题部分(共50分)1。
(2017年浙江)已知集合P={x|—1<x <1},Q={0<x <2},那么P ∪Q=( ) A .(1,2)B .(0,1)C .(-1,0)D .(1,2)1。
A 【解析】利用数轴,取P ,Q 所有元素,得P ∪Q=(-1,2)。
2。
(2017年浙江)椭圆错误!+错误!=1的离心率是( ) A .错误!B .错误!C .错误!D .错误!2。
B 【解析】e=错误!=错误!.故选B .3. (2017年浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )(第3题图) A .12π+ B .32π+ C .312π+ D .332π+ 3。
A 【解析】根据所给三视图可还原几何体为半个圆锥和半个棱锥拼接而成的组合体,所以,几何体的体积为V=13×3×(错误!+错误!×2×1)=错误!+1。
故选A 。
4. (2017年浙江)若x ,y 满足约束条件错误!则z=x+2y 的取值范围是( ) A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)4。
D 【解析】如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D.5. (2017年浙江)若函数f(x)=x2+ ax+b在区间[0,1]上的最大值是M,最小值是m,则M –m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关5. B 【解析】因为最值f(0)=b,f(1)=1+a+b,f(—a2)=b-错误!中取,所以最值之差一定与b 无关.故选B.6。
(2017年浙江)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0"是“S4+ S6>2S5”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6. C 【解析】由S4 + S6-2S5=10a1+21d-2(5a1+10d)=d,可知当d>0时,有S4+S6-2S5>0,即S4 + S6>2S5,反之,若S4 + S6>2S5,则d>0,所以“d〉0”是“S4 + S6〉2S5"的充要条件,选C.7. (2017年浙江)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()(第7题图)7. D 【解析】原函数先减再增,再减再增,且x=0位于增区间内.故选D。
二面角的求法--以2017全国卷1理科立体几何题为例

-
12
-
2 2
+
2 4
ö ÷ ø
.
过C
作CN
^
PB
于
N
,
设
PN
=
μ PB
,
PN
=
æ ç
è
2 2
μμ -
2 2
μ
ö ÷ ø
,
CN
=
CP
+
2 2
μ -1 + μ
2 2
-
2 2
μ ö÷ ø
由
CN × PB = 2μ - 1 = 0
得
μ
=
1 2
,
所
以
| | | NC
cos
=
æ ç
-
è
2 2
以三个不共线向量作为一组基底,求出
两知个, <半解A平法B面:A的以D法>A向=B量9A0D°., <APAB为 ,
基AP底
. 由(1) >= 90° ,
| | | | < ADAP >= 45° . 设 AB = AP = 1 , 则
| | AD = 2 . 设 n = x1AB + y1AD + z1AP 是 平
M D
C
1 建系可
Aæç è
2 2
0 0
ö ÷ ø
,
得F
A x
N
y
图3 B
P æç 0 0 è
2 2
ö ÷
,
ø
Bæç è
2 2
1 0
ö ÷ ø
,
C æç è
2 2
1 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高考立体几何大题
1、( 2017新课标I 理数)(12分)
如图,在四棱锥P-ABCD 中,AB//CD ,且 BAP
(1)证明:平面PAB 丄平面PAD ;
(2)若 PA=PD=AB=DC , APD 90°
,求二面角(理科) A-PB-C 的余弦值.
(2017新课标U理)(12分)
如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂
1
直于底面ABCD,AB BC AD, BAD ABC 90°,
2
E是PD的中点.
(1)证明:直线CE//平面PAB;
(2)点M在棱PC 上,且直线BM与底面ABCD所成角
为45°,求二面角M AB D的余弦值.
3、( 2017新课标川理数)(12分)
如图,四面体ABCD中,△ ABC是正三角形,△ ACD是直角三角形,/
ABD=ZCBD , AB=BD .
(1)证明:平面ACD 丄平面ABC ;
(2)过AC 的平面交BD 于点E,若平面AEC 把四面体ABCD 分成体积相等 的两部分,求二面角D -\E-C 的余弦值.
B
4、(2017北京理)(本小题14分)
如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD丄平面ABCD,点M 在线段PB 上, PD// 平面MAC,PA= PD=二,AB=4 .
(I) 求证:M为PB的中点;
(II)求二面角B-PD-A的大小;
(III)求直线MC与平面BDP所成角的正弦值.
门
5、(2017山东理)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB边所在直线为旋转轴旋转120得到的,G是D F的中点.
(I)设P是CE上的一点,且AP BE,求CBP的大小;
(H)当AB 3,AD
2,求二面角E AG C的大小.
6( 2017江苏)(本小题满分14分)
如图,在三棱锥A-BCD 中,AB 丄AD , BC 丄BD ,平面ABD 丄平面BCD ,点 求证: (1)
EF//平面
(2) AD 丄AC .D
E , F(E 与 A , 且
EF X AD .
7、如图,在三棱锥P-ABC中,PA丄底面ABC,/BAC= 90。
,点D、E、N分别为棱PA、PC、BC的中点,M是线段AD的中点,PA= AC = 4, AB = 2
(1)求证:MN //平面BDE;
(2)求二面角C-EM-N的正弦值;
(3)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为—,求线
21
段AH的长
8、(2017浙江)(本题满分15分)如图,已知四棱锥PiABCD,A PAD是以
PC=AD=2 DC=2CB, AD为斜边的等腰直角三角形,BC//AD , CD丄AD ,
E为PD的中点.
(第19题图)
(I)证明:CE //平面PAB;
(H)求直线CE与平面PBC所成角的正弦值.……………。