离散数学版屈婉玲(答案)
离散数学(屈婉玲)答案

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式//最后一列全为1(5)公式类型为可满足式(方法如上例)//最后一列至少有一个1(6)公式类型为永真式(方法如上例)//第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q) ⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解: F(x): 2=(x+)(x ).G(x): x+5=9.(1)在两个个体域中都解释为)(x xF ∀,在(a )中为假命题,在(b)中为真命题。
离散数学答案屈婉玲版第二版高等教育出版社课后答案

离散数学答案屈婉玲版第二版高等教育出版社课后答案离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1) p V (q A r)二0 V (0 A 1) =0(2) ( p?r)A (「q V s)二(0?1)A (1 V 1) = 0A 1= 0.(3) ( — p A 一q A r) ?(p A q A「r)二(1 A 1 A 1) ? (0 A 0A 0)=0(4) (一「A s)—(p A _q) = (0A 1)—(1 A 0) =0—0=117.判断下面一段论述是否为真:“二是无理数。
并且,如果3是无理数,则也是无理数。
另外6能被2整除,6才能被4整除。
”答:p:二是无理数1q: 3 是无理数0r: ' 2是无理数1s: 6能被2整除1t: 6 能被4整除0命题符号化为:p A (q —r) A (t —s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4) (p —q) —( 一q—一p)(5) (p A r) ' ( 一p A 一q)(6) ((p —q) A (q —r)) —(p —r)答:(4)p q p —q _q _p —q—一p (p —q) — (一q—一p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5) 公式类型为可满足式(方法如上例)(6) 公式类型为永真式(方法如上例)第二章部分课后习题参考答案3. 用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值?⑴飞A q-q)(2) (p -(p V q)) V (p -r)(3) (p V q) -(p A r)答:(2) (p—(p V q) )V (p —r)=(—p V (p V q)) V (_p V r) u - p V p V q V r= 1 所以公式类型为永真式⑶P q r p V q p A r (p V q)—(p A r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4. 用等值演算法证明下面等值式:(2) (p —q) A (p —r)二(p —(q A r))⑷(p A - q) V (-p A q)=(p V q) A 一(p A q)证明(2) (p —q) A (p —r)(一p V q) A ( 一p V r):二_ p V (q A r))二p—(q A r)(4) (p A - q) V ( 一p A q)u (p V (一p A q)) A(_ q V (一p A q)-(p V _ p) A (p V q) A ( 一q V 一p) A ( 一q V q)=1 A (p V q) A 一(p A q) A 1二(p V q) A _ (p A q)5. 求下列公式的主析取范式与主合取范式,并求成真赋值(1) ( _p—q) —(一q V p)(2) _(P —q) A q A r(3) (p V (q A r)) -(p V q V r)解:(1) 主析取范式(- p-q) —( 一q p)二_(p q) ( 一q p)=(- p -q) ( 一q p)=(一p _q) (一q p) (一q _p) (p q) (p _q)u ( - p _q) (p _q) (p q)-刀(0,2,3)主合取范式:(_p—q) —( 一q p)-_(p q) ( 一q p)=(- p -q) ( 一q p)=(一P (一q P)) (一q (一q p))=1 (p — q)二(p —q)二M i=n (i)(2) 主合取范式为:_(p —q) q r=—(一p q) q ru (p _q) q 产0所以该式为矛盾式?主合取范式为n (0,123,4,5,6,7)矛盾式的主析取范式为0(3) 主合取范式为:(p (q r)) —(p q r)=一(p (q r)) —(p q r)=(一p (一q _r)) (p q r)=(一p (p q r)) (( _q - r)) (p q r))二 1 i二 1所以该式为永真式永真式的主合取范式为1主析取范式为刀(0,123,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2) 前提:p—. q, —(q r),r(4)前提:q— p,q『s,s『t,t r结论:p q证明:(2)①—(q r) 前提引入②—q —r ①置换③q,一「②蕴含等值式④r 前提引入⑤一q ③④拒取式⑥p- q 前提引入⑦」p (3)⑤⑥拒取式证明(4):①t r 前提引入②t ①化简律③qi s 前提引入④s—?t 前提引入⑤q r t ③④等价三段论( q > t)(t r q)?⑤置换炉(q >t)⑥化简⑧q ②⑥假言推理⑨ q—;p 前提引入⑩p ⑧⑨假言推理(11)p q ⑧⑩合取15在自然推理系统P中用附加前提法证1 F面各推理:结论:_ p(1)前提:pr (qr r),s r p,q结论:s —? r ①s 附加前提引入②Sr P前提引入③P①②假言推理④ p —;(q —; r)前提引入⑤q — r③④假言推理⑥q 前提引入⑦r⑤⑥假言推理16在自然推理系统 P 中用归谬法证明下面各推理:(1)前提:p ,—q, - r q,r _s结论:- p 证明:①p 结论的否定引入② p —「q 前提引入q ①②假言推理 r q 前提引入⑤「r ④化简律⑥r 「s 前提引入⑦r ⑥化简律⑧r 「r ⑤⑦合取由于最后一步r 「r 是矛盾式,所以推理正确. 第四章部分课后习题参考答案3.在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为的真值:(1)对于任意 x,均有 2=(x+ )(x ).证明(a),(b) 条件时命题(2)存在x,使得x+5=9. 其中(a)个体域为自然数集合. (b)个体域为实数集合.解:F(x): 2=(x+ 一)(x 一).G(x): x+5=9.(1) 在两个个体域中都解释为-xF(x),在(a)中为假命题,在(b)中为真命题。
离散数学第三版-屈婉玲-课后习题答案

离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语p q解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是(9)只有天下大雨,他才乘班车上班q p解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是(11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是(p q)r15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(p q r)((p q)r)(4)解:p=1,q=1,r=0,(p q r)(110)1,((p q)r)((11)0)(00)1 (p q r)((p q)r)111 19、用真值表判断下列公式的类型:(p p)q(2)解:列出公式的真值表,如下所示:p p qq(p p)(p p)q0 0 1 1 1 10 1 1 0 1 01 0 0 1 0 11 1 0 0 0 1由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值:(4)(p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:p0(p q) 1q0q0成真赋值有:01,10,11。
所以公式的习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)(p q)(q r)解:原式(p q)q r(p p)q rq r,此即公式的主析取范式,m m(p q r)(p q r)37所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值:(2)(p q)(p r)解:原式,此即公式的主合取范式,M(p p r)(p q r)(p q r)4所以成假赋值为100。
7、求下列公式的主析取范式,再用主析取范式求主合取范式:(1)(p q)r解:原式p q(r r)((p p)(q q)r)(p q r)(p q)r(p q)r(p q)r(p q)r(pq r(p q r)(p q)r(p q)r(p q)r(pq r,此即主析取范式。
离散数学课后习题答案屈婉玲

离散数学课后习题答案屈婉玲【篇一:屈婉玲版离散数学课后习题答案【4】】txt>4.判断下列集合对所给的二元运算是否封闭:(1)整数集合z和普通的减法运算。
封闭,不满足交换律和结合律,无零元和单位元(2)非零整数集合错误!未找到引用源。
普通的除法运算。
不封闭(3)全体n?n实矩阵集合错误!未找到引用源。
(r)和矩阵加法及乘法运算,其中n错误!未找到引用源。
2。
封闭均满足交换律,结合律,乘法对加法满足分配律;加法单位元是零矩阵,无零元;乘法单位元是单位矩阵,零元是零矩阵;(4)全体n?n实可逆矩阵集合关于矩阵加法及乘法运算,其中n 错误!未找到引用源。
2。
不封闭(5)正实数集合错误!未找到引用源。
和错误!未找到引用源。
运算,其中错误!未找到引用源。
运算定义为:错误!未找到引用源。
不封闭因为 1?1?1?1?1?1??1?r?(6)n错误!未找到引用源。
关于普通的加法和乘法运算。
封闭,均满足交换律,结合律,乘法对加法满足分配律加法单位元是0,无零元;乘法无单位元(n?1),零元是0;n?1单位元是1(7)a = {a1,a2,?,an} 错误!未找到引用源。
n错误!未找到引用源。
运算定义如下:错误!未找到引用源。
封闭不满足交换律,满足结合律,(8)s = 错误!未找到引用源。
关于普通的加法和乘法运算。
封闭均满足交换律,结合律,乘法对加法满足分配律(9)s = {0,1},s是关于普通的加法和乘法运算。
加法不封闭,乘法封闭;乘法满足交换律,结合律(10)s = 错误!未找到引用源。
,s关于普通的加法和乘法运算。
加法不封闭,乘法封闭,乘法满足交换律,结合律5.对于上题中封闭的二元运算判断是否适合交换律,结合律,分配律。
见上题7.设 * 为z?错误!未找到引用源。
上的二元运算?x,y?z?,x * y = min ( x,y ),即x和y之中较小的数.(1)求4 * 6,7 * 3。
4,3(2)* 在z上是否适合交换律,结合律,和幂等律?满足交换律,结合律,和幂等律(3)求*运算的单位元,零元及z?中所有可逆元素的逆元。
离散数学(屈婉玲版)第三章部分答案

3.6从1到300的整数中(1)同时能被3、5、和7这3个数整除的数有A个。
(2)不能被3、5,也不能被7整除的数有B个。
(3)可以被3整除,但不能被5和7整除的数有C个。
(4)可被3或5整除,但不能被7整除的数有D个。
(5)只能被3、5和7之中的一个数整除的数有E个。
供选择的答案A、B、C、D、E:①2;②6;③56;④68;⑤80;⑥102;⑦120;⑧124;⑨138;⑩162。
解:设1到300之间的整数构成全集E,A、B、C分别表示其中可被3、5或7整除的数的集合。
文氏图如下图:在A∩B∩C中的数一定可以被3、5和7的最小公倍数105整除,即∣A∩B∩C∣=⎣300/105⎦=2,同样可得∣A∩B∣=⎣300/15⎦=20,∣A∩C∣=⎣300/21⎦=14,∣B∩C∣=⎣300/35⎦=8.然后将20-2=18,14-2=12,8-2=6分别填入邻近的3块区域.再计算∣A∣=⎣300/3⎦=100,∣B∣=⎣300/5⎦=60,∣C∣=⎣300/7⎦=42.所以∣A∪B∪C∣=162.所以本题的答案是:A=①2;B=⑨138;C=④68;D=⑦120;E=⑧124.3.10列元素法表示下列集合。
(1)A={ x | x ∈N ∧x2 ≤7}.(2)A={ x | x ∈N ∧|3-x|<3}.(3)A={ x | x ∈R ∧(x+1)2≤0}.(4)A={<x,y> |x,y∈N∧x+y≤4}.解:(1) A={0,1,2}.(2) A={1,2,3,4,5}.(3) A={-1}.(4) A={<0,0>,<0,1>,<0,2>,<0,3>,<0,4>,<1,0>,<2,0>,<3,0>,<4,0>,<1,1>,<1,2>,<1,3>,<2,1>,<3,1>,<2,2>}.3.11求使得以下集合等式成立时,a,b,c,d应满足的条件。
离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p?r)∧(﹁q∨s) ⇔(0?1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)?(p∧q∧﹁r) ⇔(1∧1∧1)? (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q)? ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x ).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解: F(x): 2=(x+)(x ).G(x): x+5=9.(1)在两个个体域中都解释为)(x xF ∀,在(a )中为假命题,在(b)中为真命题。
离散数学(屈婉玲版)第六章部分答案
110
10
55
22
2
11
5
10
1
1
11
11
11 由图可知此偏序集是分配格,满足分配关系,也是有补格所以是布尔代数
6.14 在图 6-7 所示的 3 个有界格中哪些元素有补元?如果有,请指出该元素所有的补元。 (1)0,1 互为补元 a,b,c,d 都不存在补元 因为 0,1 的最小上界是 1,最大下界是 0 (2)0,1 互为补元 ,a,c 的补元是 b,d,b,d 的补元是 a,c 因为 0,1 的最小上界是 1,最大下界是 0 a,c 中的任一个与 b,d 中的任一个的最小上界是 1,最大下界是 0 (3)0,1 互为补元 c 与 b 互为补元 因为 0,1 的最小上界是 1,最大下界是 0 c 与 b 的最小上界是 1,最大下界是 0
对 2∈Z, x∈Z 有 x °2=x+2-2=x=2°x,
可见 , 存在幺元,幺元为 2。 对 x∈Z 有 4-x∈Z,使 x ° (4-x)= (4-x) °x=2
所以 x-¹= 4-x 所以 Z 与运算 ° 能构成群 。
6.7 下列各集合对于整除关系都构成偏序集,判断哪些偏序集是格? (1)L={1,2,3,4,5}. (2)L={1,2,3,6,12}. (3)L={1,2,3,4,6,9,12,18,36}. (4)L={1,2,2(2),…,2(n)}.
离散数学屈婉玲版课后题答案
1.14.将下列命题符号化.(1) 刘晓月跑得快, 跳得高.(2)老王是山东人或河北人.(3)因为天气冷, 所以我穿了羽绒服.(4)王欢与李乐组成一个小组.(5)李辛与李末是兄弟.(6)王强与刘威都学过法语.(7)他一面吃饭, 一面听音乐.(8)如果天下大雨, 他就乘班车上班.(9)只有天下大雨, 他才乘班车上班.(10)除非天下大雨, 他才乘班车上班.(11)下雪路滑, 他迟到了.(12)2与4都是素数, 这是不对的.这是不对的”是不对的.(13)“2或4是素数,(1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高.(2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人.(3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服.(4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题.(5)p, 其中, p: 李辛与李末是兄弟.(6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语.(7)p∧q, 其中, p: 他吃饭, q: 他听音乐.(8)p→q, 其中, p: 天下大雨, q: 他乘班车上班.(9)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(10)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(11)p→q, 其中, p: 下雪路滑, q: 他迟到了.(12) ¬ (p∧q)或¬p∨¬q, 其中, p: 2是素数, q: 4是素数.(13) ¬¬ (p∨q)或p∨q, 其中, p: 2是素数, q: 4是素数.1.19.用真值表判断下列公式的类型:(1)p→ (p∨q∨r)(2)(p→¬q) →¬q(3) ¬ (q→r) ∧r(4)(p→q) → (¬q→¬p)(5)(p∧r) ↔ ( ¬p∧¬q)(6)((p→q) ∧ (q→r)) → (p→r)(7)(p→q) ↔ (r↔s)(1), (4), (6)为重言式.(3)为矛盾式.(2), (5), (7)为可满足式.2.4. 用等值演算法证明下面等值式:(1) p⇔ (p∧q) ∨ (p∧¬q)(3) ¬ (p↔q) ⇔ (p∨q) ∧¬ (p∧q)(4) (p∧¬q) ∨ (¬p∧q) ⇔ (p∨q) ∧¬ (p∧q)(1)(p∧q) ∨ (p∧¬q) ⇔p ∧ (q¬∨q) ⇔p ∧ 1 ⇔p.(3) ¬ (p↔q)⇔¬ ((p→q) ∧ (q→p))⇔¬ ((¬p∨q) ∧ (¬q∨p))⇔ (p∧¬q) ∨ (q∧¬p)⇔ (p∨q) ∧ (p∨¬p) ∧ (¬q∨q) ∧ (¬p∨¬q)⇔ (p∨q) ∧¬ (p∧q)(4) (p∧¬q) ∨ (¬p∧q)⇔ (p∨¬p) ∧ (p∨q) ∧ (¬q∨¬p) ∧ (¬q∨q)⇔ (p∨q) ∧¬ (p∧q)2.7. 求下列公式的主析取范式, 再用主析取范式求合取范式:(1)(p∧q) ∨r(2)(p→q) ∧ (q→r)(1)m1∨m3∨m5∨m6∨m7⇔M0∧M2∧M4(2)m0∨m1∨m3∨m7⇔M2∧M4∧M5∧M62.27. 某电路中有一个灯泡和三个开关A,B,C. 已知在且仅在下述四种情况下灯亮:(1)C的扳键向上, A,B的扳键向下.(2)A的扳键向上, B,C的扳键向下.(3)B,C的扳键向上, A的扳键向下.(4)A,B的扳键向上, C的扳键向下.设F为1表示灯亮, p,q,r分别表示A,B,C的扳键向上.(a)求F的主析取范式.(b)在联结词完备集{¬, ∧}上构造F.(c)在联结词完备集{¬, →,↔}上构造F.(a)由条件(1)-(4)可知, F的主析取范式为F⇔ (¬p∧¬q∧r) ∨ (p∧¬q∧¬r) ∨ (¬p∧q∧r) ∨ (p∧q∧¬r)⇔m1∨m4∨m3∨m6⇔m1∨m3∨m4∨m6(b)先化简公式F⇔ (¬p∧¬q∧r) ∨ (p∧¬q∧¬r) ∨ (¬p∧q∧r) ∨ (p∧q∧¬r)⇔¬q∧ ((¬p∧r) ∨ (p∧¬r)) ∨q∧ ((¬p∧r) ∨ (p∧¬r))⇔ (¬q∨q) ∧ ((¬p∧r) ∨ (p∧¬r))⇔ (¬p∧r) ∨ (p∧¬r)⇔¬ (¬ (¬p∧r) ∧¬ (p∧¬r)) (已为{¬, ∧}中公式)(c)F⇔ (¬p∧r) ∨ (p∧¬r)⇔¬¬ (¬p∧r) ∨ (p∧¬r)⇔¬ (¬p∧r) → (p∧¬r)⇔ (p∨¬r) →¬ (¬p∨r)⇔ (r→p) →¬ (p→r) (已为{¬, →,↔}中公式)3.14.在自然推理系统P中构造下面推理的证明:(1)前提: p→ (q→r), p, q结论: r∨s(2)前提: p→q, ¬ (q∧r), r结论: ¬p(3)前提: p→q结论: p→ (p∧q)(4)前提: q→p, q⇒s, s⇒t, t∧r结论: p∧q(5)前提: p→r, q→s, p∧q结论: r∧s(6)前提: ¬p∨r, ¬q∨s, p∧q结论: t→ (r∨s)(1)证明:①p→(q→r) 前提引入②p前提引入③q→r①②假言推理④q前提引入⑤r③④假言推理⑥r∨s⑤附加律(2)证明:①¬ (q∧r) 前提引入②¬q∨¬r①置换③r前提引入④¬q②③析取三段论⑤p→q前提引入⑥¬p④⑤拒取式(3)证明:①p→q前提引入②¬p∨q①置换③(¬p∨q) ∧ (¬p∨p) ②置换④¬p∨ (p∧q) ③置换⑤p→ (p∧q) ④置换也可以用附加前提证明法, 更简单些.(4)证明:①s⇒t前提引入② (s→t) ∧ (t→s) ①置换③t→s②化简④t∧r前提引入⑤t④化简⑥s③⑤假言推理⑦q⇒s前提引入⑧ (s→q) ∧ (q→s) ⑦置换⑨s→q⑧化简⑩q⑥⑥假言推理○11q→p前提引入○12p⑩○11假言推理○13p∧q⑩○12合取(5)证明:①p→r前提引入②q→s前提引入③p∧q前提引入④p③化简⑤q③化简⑥r①④假言推理⑦s②⑤假言推理⑧r∧s⑥⑦合取(6)证明:①t附加前提引入②¬p∨r前提引入③p∧q前提引入④p③化简⑤r②④析取三段论⑥r∨s⑤附加说明: 证明中, 附加提前t, 前提¬q∨s没用上. 这仍是正确的推理.3.15.在自然推理系统P中用附加前提法证明下面各推理:(1)前提: p→ (q→r), s→p, q结论: s→r(2)前提: (p∨q) → (r∧s), (s∨t) →u结论: p→u(1)证明:①s附加前提引入②s→p前提引入③p①②假言推理④p→ (q→r) 前提引入⑤q→r③④假言推理⑥q前提引入⑦r⑤⑥假言推理(2)证明:①P附加前提引入②p∨q①附加③(p∨q) → (r∧s) 前提引入④r∧s②③假言推理⑤S④化简⑥s∨t⑤附加⑦(s∨t) →u前提引入⑧u⑥⑦假言推理3.16.在自然推理系统P中用归谬法证明下面推理:(1)前提: p→¬q, ¬r∨q, r∧¬s结论: ¬p(2)前提: p∨q, p→r, q→s结论: r∨s(1)证明:①P结论否定引入②p→¬q前提引入③¬q①②假言推理④¬r∨q前提引入⑤¬r③④析取三段论⑥r∧¬s前提引入⑦r⑥化简⑧¬r∧r⑤⑦合取⑧为矛盾式, 由归谬法可知, 推理正确.(2)证明:①¬ (r∨s) 结论否定引入②p∨q前提引入③p→r前提引入④q→s前提引入⑤r∨s②③④构造性二难⑥¬ (r∨s) ∧ (r∨s) ①⑤合取⑥为矛盾式, 所以推理正确.3.17.P53 17. 在自然推理系统P中构造下面推理的证明:只要 A 曾到过受害者房间并且11点以前没用离开, A 就犯了谋杀罪. A 曾到过受害者房间. 如果 A 在11点以前离开, 看门人会看到他. 看门人没有看到他.所以 A 犯了谋杀罪.令p: A 曾到过受害者房间; q: A 在11点以前离开了; r: A 就犯了谋杀罪; s:看门人看到 A.前提: p¬∧q →r, p, q →s, ¬s;结论: r.证明:①¬s前提引入②q →s前提引入③¬q ①②拒取④p前提引入⑤p¬∧q ③④合取⑥p¬∧q →r前提引入⑦r⑤⑥假言推理4.4.在一阶逻辑中将下列命题符号化:(1)没有不能表示成分数的有理数.(2)在北京卖菜的人不全是外地人.(3)乌鸦都是黑色的.(4)有的人天天锻炼身体.没指定个体域, 因而使用全总个体域.(1) ¬∃x(F(x) ∧¬G(x))或∀x(F(x) →G(x)), 其中, F(x): x为有理数, G(x): x能表示成分数.(2) ¬∀x(F(x) →G(x))或∃x(F(x) ∧¬G(x)), 其中, F(x): x在北京卖菜, G(x): x是外地人.(3) ∀x(F(x) →G(x)), 其中, F(x): x是乌鸦, G(x): x是黑色的.(4) ∃x(F(x) ∧G(x)), 其中, F(x): x是人, G(x): x天天锻炼身体.4.5.在一阶逻辑中将下列命题符号化:(1)火车都比轮船快.(2)有的火车比有的汽车快.(3)不存在比所有火车都快的汽车.(4)“凡是汽车就比火车慢”是不对的.因为没指明个体域, 因而使用全总个体域(1) ∀x∀y(F(x) ∧G(y) →H(x,y)), 其中, F(x): x是火车, G(y): y是轮船, H(x,y):x比y快.(2) ∃x∃y(F(x) ∧G(y) ∧H(x,y)), 其中, F(x): x是火车, G(y): y是汽车, H(x,y):x比y快.(3) ¬∃x(F(x) ∧∀y(G(y) →H(x,y)))或∀x(F(x) →∃y(G(y) ∧¬H(x,y))), 其中, F(x): x是汽车, G(y): y是火车, H(x,y):x比y快.(4) ¬∀x∀y(F(x) ∧G(y) →H(x,y))或∃x∃y(F(x) ∧G(y) ∧¬H(x,y) ), 其中, F(x): x是汽车, G(y): y是火车, H(x,y):x比y慢.4.9.给定解释I如下:(a)个体域D I为实数集合\.(b)D I中特定元素⎯a =0.(c)特定函数⎯f (x,y)=x−y, x,y∈D I.(d)特定谓词⎯F(x,y): x=y,⎯G(x,y): x<y, x,y∈D I. 说明下列公式在I下的含义, 并指出各公式的真值:(1) ∀x∀y(G(x,y) →¬F(x,y))(2) ∀x∀y(F(f(x,y),a) →G(x,y))(3) ∀x∀y(G(x,y) →¬F(f(x,y),a))(4) ∀x∀y(G(f(x,y),a) →F(x,y))(1) ∀x∀y(x<y→x≠y), 真值为1.(2) ∀x∀y((x−y=0) →x<y), 真值为0.(3) ∀x∀y((x<y) → (x−y≠0)), 真值为1.(4) ∀x∀y((x−y<0) → (x=y)), 真值为0.4.11.判断下列各式的类型:(1) F(x, y) → (G(x, y) →F(x, y)).(3) ∀x∃yF(x, y) →∃x∀yF(x, y).(5) ∀x∀y(F(x, y) →F(y, x)).(1) 是命题重言式p→ (q→p) 的代换实例, 所以是永真式.(3) 在某些解释下为假(举例), 在某些解释下为真(举例), 所以是非永真式的可满足式.(5) 同(3).5.8.在一阶逻辑中将下列命题符号化, 要求用两种不同的等值形式.(1) 没有小于负数的正数.(2) 相等的两个角未必都是对顶角.(1) 令F(x): x小于负数, G(x): x是正数. 符合化为:∃¬x((F(x) ∧G(x)) ⇔∀x(G(x) →¬G(x)).(2) 令F(x): x是角, H(x, y): x和y是相等的, L(x, y): x与y是对顶角. 符合化为:¬∀x∀y(F(x) ∧F(y) ∧H(x, y) →L(x, y))⇔∃x∃y(F(x) ∧F(y) ∧H(x, y) ∧¬L(x, y))⇔∃x(F(x) ∧ (∃y(F(y) ∧H(x, y) ∧¬L(x, y))).5.12.求下列各式的前束范式.(1) ∀xF(x) →∀yG(x, y);(3) ∀xF(x, y) ↔∃xG(x, y);(5) ∃x1F(x1, x2) → (F(x1) →∃¬x2G(x1, x2)).前束范式不是唯一的.(1) ∀xF(x) →∀yG(x, y)⇔∃x(F(x) →∀yG(x, y))⇔∃x∀y(F(x) →G(x, y)).(3) ∀xF(x, y) ↔∃xG(x, y)⇔ (∀xF(x, y) →∃xG(x, y)) ∧ (∃xG(x, y) →∀xF(x, y))⇔ (∀x1F(x1, y) →∃x2G(x2, y)) ∧ (∃x3G(x3, y) →∀x4F(x4, y))⇔∃x1∃x2(F(x1, y) →G(x2, y)) ∧∀x3∀x4(G(x3, y) →F(x4, y))⇔∃x1∃x2∀x3∀x4((F(x1, y) →G(x2, y)) ∧ (G(x3, y) →F(x4, y))).5.15.在自然推理系统F中构造下面推理的证明:(1) 前提: ∃xF(x) →∀y((F(y) ∨G(y)) →R(y)), ∃xF(x)结论: ∃xR(x).(2) 前提: ∀x(F(x) → (G(a) ∧R(x))), ∃xF(x)结论: ∃x(F(x) ∧R(x))(3) 前提: ∀x(F(x) ∨G(x)), ¬∃xG(x)结论: ∃xF(x)(4) 前提: ∀x(F(x) ∨G(x)), ∀x(¬G(x) ∨¬R(x)), ∀xR(x)结论: ∀xF(x)5.24.在自然推理系统F 中, 构造下面推理的证明:每个喜欢步行的人都不喜欢骑自行车. 每个人或者喜欢骑自行车或者喜欢乘汽车. 有的人不喜欢乘汽车,所以有的人不喜欢步行. (个体域为人类集合)令F(x): x喜欢步行, G( x): x喜欢骑自行车, H(x): x 喜欢乘汽车.前提: ∀x(F(x) →¬G(x)), ∀x(G(x) ∨H(y)), ∃x¬H(x).结论: ∃x¬F(x).①∀x(G(x) ∨H(y)) 前提引入②G(c) ∨H(c) ①UI③∃x¬H(x) 前提引入④¬H(c) ③UI⑤G(c) ②④析取三段⑥∀x(F(x) →¬G(x)) 前提引入⑦F(c) →¬G(c) ⑥UI⑧¬F(c) ⑤⑦拒取⑨∃x¬F(x) ⑧EG8.5.设X = {a, b, c, d}, Y = {1, 2, 3}, f = {〈a, 1〉, 〈b, 2〉, 〈c, 3〉}, 判断以下命题的真假(1)f是从X到Y的二元关系, 但不是从X到Y的函数;(2) f是从X到Y的函数, 但不是从满射, 也不是单射(3) f是从X到Y的满射, 但不是从单射;(4) f是从X到Y的双射.8.12.设f: S→T, 证明(1)f (A∩B) ⊆f (A) ∩f (B), 其中A, B⊆S.(2)举出反例说明等式f (A∩B) = f (A) ∩f (B)不是永远为真的.(3)说明对于什么函数, 上述等式为真.8.16.16.设A={a, b, c}. R为A上的等价关系, 且∪AR={〈a, b〉, 〈b, a〉}I求自然映射g: A→A/R.8.21.21.设f : → × , f (x) =〈x, x + 1〉.(1)说明f是否为单射和满射, 为什么(2)f的反函数是否存在, 如果存在, 求出f的反函数;(3)求ran f.(1)f是单射的, ∵∀x1, x2∈ , 若x1≠x2, 则f(x1) = 〈x1, x1+ 1〉≠ f(x2) = 〈x2, x2+ 1〉. F不是满射的, 因为若〈0, 0〉∈ran f, 则∃x∈ , 使得f (x) =〈x, x + 1〉 = 〈0, 0〉, 而这是不可能的.(2)因为f = {〈x, 〈x, x + 1〉〉| x∈ }是单射, 它的逆关系f −1= {〈〈x, x + 1〉, x〉| x∈ }是函数, 是从ran f到dom f =的双射函数. 但f −1不是 × → 的函数, 因为dom f −1 = ran f≠ × .(3) ran f={〈n, n + 1〉⎪n∈ }.19.用真值表判断下列公式的类型:(4)(p→q)→(¬q→¬p)(5)(p∧r)↔(¬p∧¬q)(6)((p→q)∧(q→r))→(p→r)答:(4)p q p→q¬q¬p¬q→¬p(p→q)→(¬q→¬p)0011111011011110010011110011所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)。
离散数学最全最新答案 屈婉玲
For personal use only in study and research; not for commercial use第一章 命题逻辑基本概念课后练习题答案4.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e 是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.5.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p :刘晓月选学英语,q :刘晓月选学日语;.7.因为p 与q 不能同时为真.13.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q ,真值为1;(4)p→r,若p 为真,则p→r 真值为0,否则,p→r 真值为1.16 设p 、q 的真值为0;r 、s 的真值为1,求下列各命题公式的真值。
(1)p ∨(q ∧r)⇔ 0∨(0∧1) ⇔0(2)(p ↔r )∧(﹁q ∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p ∧⌝q ∧r )↔(p ∧q ∧﹁r) ⇔(1∧1∧1) ↔ (0∧0∧0)⇔(4)(⌝r ∧s )→(p ∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
离散数学最全最新答案--屈婉玲
第一章命题逻辑基本概念课后练习题答案4.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.5.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.7.因为p与q不能同时为真.13.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(3)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔1(4)(π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”17.判断下面一段论述是否为真:“π是无理数1答:p:q: 3是无理数02是无理数 1r:s: 6能被2整除1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《离散数学1-5章》练习题答案第2,3章(数理逻辑)
1.答:(2),(3),(4)
2.答:(2),(3),(4),(5),(6)
3.答:(1)是,T (2)是,F (3)不是
(4)是,T (5)不是(6)不是
4.答:(4)
5.答:⌝P ,Q→P
6.答:P(x)∨∃yR(y)
7.答:⌝∀x(R(x)→Q(x))
8、
c、P→(P∧(Q→P))
解:P→(P∧(Q→P))
⇔⌝P∨(P∧(⌝Q∨P))
⇔⌝P∨P
⇔ 1 (主合取范式)
⇔ m0∨ m1∨m2∨ m3 (主析取范式)
d、P∨(⌝P→(Q∨(⌝Q→R)))
解:P∨(⌝P→(Q∨(⌝Q→R)))
⇔ P∨(P∨(Q∨(Q∨R)))
⇔ P∨Q∨R
⇔ M0 (主合取范式)
⇔ m1∨ m2∨m3∨ m4∨ m5∨m6 ∨m7 (主析取范式) 9、
b、P→(Q→R),R→(Q→S) => P→(Q→S)
证明:
(1) P 附加前提
(2) Q 附加前提
(3) P→(Q→R) 前提
(4) Q→R (1),(3)假言推理
(5) R (2),(4)假言推理
(6) R→(Q→S) 前提
(7) Q→S (5),(6)假言推理
(8) S (2),(7)假言推理
d、P→⌝Q,Q∨⌝R,R∧⌝S⇒⌝P
证明、
(1) P 附加前提
(2) P→⌝Q 前提
(3)⌝Q (1),(2)假言推理
(4) Q∨⌝R 前提
(5) ⌝R (3),(4)析取三段论
(6 ) R∧⌝S 前提
(7) R (6)化简
(8) R∧⌝R 矛盾(5),(7)合取
所以该推理正确
10.写出∀x(F(x)→G(x))→(∃xF(x) →∃xG(x))的前束范式。
解:原式⇔∀x(⌝F(x)∨G(x))→(⌝(∃x)F(x) ∨ (∃x)G(x))
⇔⌝(∀x)(⌝F(x)∨G(x)) ∨(⌝(∃x)F(x) ∨ (∃x)G(x))
⇔ (∃x)((F(x)∧⌝ G(x)) ∨G(x)) ∨ (∀x) ⌝F(x)
⇔ (∃x)((F(x) ∨G(x)) ∨ (∀x) ⌝F(x)
⇔ (∃x)((F(x) ∨G(x)) ∨ (∀y) ⌝F(y)
⇔ (∃x) (∀y) (F(x) ∨G(x) ∨⌝F(y))
(集合论部分)
1、答:(4)
2.答:32
3.答:(3)
4. 答:(4)
5.答:(2),(4)
6、设A,B,C是三个集合,证明:
a、A⋂ (B-C)=(A⋂B)-(A⋂C)
证明:
(A⋂B)-(A⋂C)= (A⋂B)⋂~(A⋂C)=(A⋂B) ⋂(~A⋃~C)
=(A⋂B⋂~A)⋃(A⋂B⋂~C)= A⋂B⋂~C=A⋂(B⋂~C)
=A⋂(B-C)
b、(A-B)⋃(A-C)=A-(B⋂C)
证明:
(A-B)⋃(A-C)=(A⋂~B)⋃(A⋂⋂~C) =A⋂ (~B ⋃~C)
=A⋂~(B⋂C)= A-(B⋂C)
(二元关系部分)
1、答:(1)R={<1,1>,<4,2>} (2) R1-={<1,1>,<2,4>}
2.答:R R ={〈1,1〉,〈1,3〉,〈2,2〉,〈2,4〉}
R-1 ={〈2,1〉,〈1,2〉,〈3,2〉,〈4,3〉}
3.答:R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<1,2>,<1,3>,<1,4>,
<1,5>,<1,6>,<2,4>,<2,6>,<3,6>}
4.
答:R 的关系矩阵=⎥⎥⎥⎥
⎥⎥
⎥
⎦
⎤
⎢⎢⎢⎢⎢⎢⎢⎣⎡0000000010000
00001 R 1
-的关系矩阵=⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡000000010000000001
5、解:
(1)R={<2,1>,<3,1>,<2,3>};M R =⎪⎪⎪
⎭
⎫ ⎝⎛001101000;它是反自反的、反对称的、
传递的;
(2)R={<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};M R =⎪⎪⎪
⎭
⎫
⎝⎛011101110;它是反
自反的、对称的;
(3)R={<1,2>,<2,1>,<1,3>,<3,3>};M R =⎪⎪⎪
⎭
⎫
⎝⎛100001110;它既不是自反的、也
不是反自反的、也不是对称的、也不是反对称的、也不是传递的。
6、解:
R 诱导的划分为{{1,5},{2,4},{3,6}}。
7.画出下列集合关于整除关系的哈斯图.
(1){1, 2, 3, 4, 6, 8, 12, 24}. (2){1,2,…..,9}.
并指出它的极小元,最小元,极大元,最大元。
在图(1)极小元,最小元是1,极大元,最大元是24;
在图(2)中极小元,最小元是1,极大元是5,6,7,8,9,没有最大元。
第5章 函数
1.解
(1){<1,a >,<2,a >
,<3,c >}的定义域为A ,值域为{a ,c }。
又由于它满足单值性,所以它是函数,但因为1和2都对应a ,它不是单射,{a ,c }≠B ,它不是满射。
(2){<1,c >,<2,a >,<3,b >}的定义域为A ,值域是B 。
又由于它满足单值性,所以它是函数,且是单射。
满射和双射。
(3){<1,a >,<1,b >,<3,c >}的定义域为A ,值域是B 。
由于它不满足单值性,所以它不是函数,更不是单射、满射和双射。
(4){<1,b >,<2,b >,<3,b >}的定义域为A ,值域是{b }。
由于它满足单值性,所以它是函数,因为1、2和3都对应b ,所以它不是单射,由于{b }≠B ,所以它不是满射。
2.解
(1)不同的函数共n m 个。
(2)显然当|m |≤|n |时,存在单射。
(3)显然当|n |≤|m |时,存在满射。
(4)显然当|m |=|n |时,才存在双射。
3.解
因为g f (x )=f (g (x ))=f (3x +1)=3(3x +1)=9x +3,h g (x )=g (h (x ))=g (3x +2)=3(3x +2)+
1=9x+7,所以g f={<x,9x+3>|x∈Z},h g={<x,9x+7>|x∈Z}。