80论坛_初中数学校本教材_初中数学校本教材 9849080
初中数学教学论坛材料

初中数学教学论坛材料下面是一份初中数学教学论坛的材料,主要包括与数学教学相关的内容和讨论。
通过本材料,教师们可以互相交流经验、分享教学方法,并共同探讨数学教育的发展和创新。
一、引言在引言部分,我们可以简要介绍数学教学论坛的目的和意义。
可以从数学教育的重要性和关键作用入手,强调教师们通过论坛交流可以提高教学水平,促进学生的数学学习兴趣和能力,从而推动数学教育的发展。
二、数学教学方法分享1. 课堂互动与学生参与通过分享与课堂互动与学生参与相关的教学经验,教师们可以探讨如何提高学生的学习积极性和参与度。
比如,在小拓展环节中引入数学谜题、游戏等,培养学生的思维能力和合作精神。
2. 创新教学法应用在这个部分,教师们可以分享他们在数学教学中尝试的创新教学法。
例如,采用多媒体教学、案例式教学、问题解决教学等方法,激发学生的主动学习,提高他们的数学思维和解决问题的能力。
3. 视频资源在教学中的应用现代技术的发展为数学教学提供了新的机遇。
在这一部分,教师们可以分享他们在教学中使用视频资源的心得体会。
例如,如何选取合适的视频资源,如何设计引导学生观看视频并进行讨论,如何将视频资源与课堂教学相结合等。
三、数学教学经验交流1. 针对性教学与个性化辅导教师们可以分享他们在教学中如何根据不同学生的特点和需求进行针对性教学和个性化辅导的经验。
比如,通过分组讨论、个别辅导等方式,帮助学生克服数学学习中的难点和困惑,提高他们的学习效果。
2. 合作学习与团队合作合作学习和团队合作在数学教学中具有重要作用。
在这部分,教师们可以分享他们在组织合作学习和团队合作中的经验和教学设计。
例如,如何鼓励学生互相合作、分享思考和解决问题的过程,如何培养团队精神和合作意识。
四、数学教育的发展与创新1. 融合STEAM教育理念STEAM教育将科学、技术、工程、艺术和数学相融合,旨在培养学生的综合能力和创新思维。
在这一部分,教师们可以分享关于如何融合STEAM教育理念于数学教学中的经验和心得。
北京市第八十中学校本教材

北京市第八十中学校本教材. 高三数学本教材以高三学生的学习需求为出发点,探索条件分析、函数论、代数方程联立、集合论、概率与统计及以及数学分析的知识与思维技能。
旨在为学生提供系统全面的学习尝试,指导学生在精准实践中加强攻克各种专题,以开发有创造性思维能力为目标,满足学生终生发展的诉求。
第八十中学校本教材高三数学一、教师引导第八十中学高三数学教材是教育部门推出的新教材,旨在帮助高三学生以最有效和最快的方式掌握数学知识。
教师们要对学生发表正确的见解,并采取严格的评估手段来确保学生真正掌握数学知识。
除此之外,教师们也要经常组织讨论、口头练习和讲座,帮助学生更好地了解数学理论和概念。
二、课程内容第八十中学高三数学课程与一般数学课程相同,但是会更加注重实际应用和解决实际问题的能力。
主要课程包括代数、几何、抽象数学、省考等。
更多的可以详见课程大纲。
三、学习方法高三的数学书本教材是非常重要的,但也不是学习高三数学的唯一方法。
除了正统教育外,学生还可以搜索相关的内容,参加社会活动、完成作业等。
从而建立正确的知识体系,获得数学的知识。
四、提高学习效率高中受教育时期,是大学面前重要的基础,需要强调努力和勤学苦练。
因此,学生应具备学习效率提高的能力,有效利用课余时间。
学生可以采用模块化学习、课堂笔记和及时复习等方法,以最快时间掌握最多知识,达到课程要求。
五、学习态度第八十中学高三数学教材在这之中,学习数学的态度对学生的成就也至关重要。
学生应该有持之以恒的精神、努力学习的决心,培养开放式的学习态度,不论是学习这门学科的手段、方法、思维上的阻碍还是创造的灵感等都应积极进取。
六、创新性思维数学主要强调归纳总结和建立模型,加强过程学习和分析能力,以此来锻炼学生创新性思维方式。
在数学课堂中,教师要积极引导学生进行探究,以不同的观点和方法,不断思考、推理和分析,来条理分解问题,以便更好的解决问题。
总之,第八十中学高三数学教材是一本十分实用且具有重要意义的课本,它不仅可以培养学生的数学知识,更重要的是能为学生建立正确的知识体系、学习方法和创新性思维方式,为他们今后的学习和职业构筑坚实的数学基础。
初中数学的校本教研主题(3篇)

第1篇一、引言随着新课程改革的深入推进,初中数学教学面临着前所未有的挑战和机遇。
为了提高数学教学质量,促进学生全面发展,我校数学教研组决定以“构建高效课堂,提升学生数学素养”为主题,开展校本教研活动。
本文将从主题背景、目标与内容、实施策略、预期效果等方面进行阐述。
二、主题背景1. 新课程改革对初中数学教学提出新的要求。
新课程强调以学生为主体,注重培养学生的数学素养,提高学生的综合素质。
2. 初中数学教学现状不容乐观。
部分教师教学观念滞后,教学方法单一,导致学生数学学习兴趣不高,数学素养难以提升。
3. 校本教研是提高教师专业素养、促进教学质量提升的重要途径。
通过开展校本教研,可以促进教师之间的交流与合作,共同探讨教学中的问题,提高教学效果。
三、目标与内容1. 目标(1)提高教师专业素养,提升教师教学水平。
(2)优化课堂教学,构建高效课堂。
(3)培养学生的数学素养,提高学生的综合素质。
2. 内容(1)新课程理念下的初中数学教学目标与内容。
(2)初中数学课堂教学策略与方法。
(3)初中数学作业设计与评价。
(4)初中数学教学评价与反思。
(5)初中数学课程资源开发与利用。
四、实施策略1. 加强教师培训,提升教师专业素养(1)组织教师参加各类培训,学习新课程理念,掌握新教学方法。
(2)邀请专家、学者来校进行专题讲座,拓宽教师视野。
(3)鼓励教师参加教育教学研究,撰写论文,提高教育教学水平。
2. 构建高效课堂,优化课堂教学(1)转变教学观念,关注学生需求,激发学生学习兴趣。
(2)运用多种教学方法,如探究式学习、合作学习、自主学习等,提高课堂教学效果。
(3)注重教学过程,关注学生思维发展,培养学生数学素养。
3. 创设教学情境,激发学生学习兴趣(1)结合生活实际,设计富有趣味性的教学案例。
(2)运用多媒体技术,丰富课堂教学形式,提高学生学习兴趣。
(3)开展数学实践活动,让学生在实践中感受数学魅力。
4. 优化作业设计,提高学生自主学习能力(1)设计分层作业,满足不同学生的学习需求。
初中数学教研名家论坛(3篇)

第1篇一、前言随着我国教育事业的不断发展,初中数学教学越来越受到广大师生的关注。
为了进一步提高初中数学教学质量,探讨初中数学教学的新思路、新方法,推动我国初中数学教育事业的进步,特举办此次初中数学教研名家论坛。
本次论坛邀请了国内知名初中数学教育专家、学者和一线教师,共同探讨初中数学教学的创新与发展。
二、论坛主题1. 初中数学课程改革与教学实践2. 初中数学核心素养的培养与评价3. 初中数学教学方法与策略4. 初中数学教师专业成长与发展5. 初中数学教育信息化与课程整合三、论坛议程1. 开幕式2. 专家主题报告3. 专题研讨4. 优秀教学案例分享5. 闭幕式四、论坛亮点1. 专家云集:本次论坛邀请到了国内知名初中数学教育专家、学者和一线教师,为参会者提供高水平的学术交流平台。
2. 内容丰富:论坛涵盖了初中数学教学改革的各个方面,包括课程改革、核心素养培养、教学方法与策略、教师专业成长等。
3. 互动性强:论坛设置了专题研讨环节,参会者可以与专家、学者和同行进行深入交流,分享教学经验。
4. 案例分享:优秀教学案例分享环节,为参会者提供可借鉴的教学方法与策略。
五、论坛成果1. 深化初中数学教学改革的认识,明确改革方向。
2. 提高初中数学教师的专业素养,促进教师专业成长。
3. 探索初中数学教学的新方法、新策略,提高教学质量。
4. 促进初中数学教育信息化与课程整合,推动教育现代化。
5. 增强初中数学教育界的交流与合作,共同推动我国初中数学教育事业的发展。
六、结语初中数学教研名家论坛的举办,旨在为广大初中数学教育工作者提供一个交流、学习、分享的平台,推动我国初中数学教学事业的进步。
相信通过本次论坛,参会者将收获满满,为今后的教学工作注入新的活力。
让我们携手共进,为我国初中数学教育事业的发展贡献力量!第2篇一、前言初中数学是基础教育阶段的重要组成部分,对于培养学生的逻辑思维能力、空间想象能力和解决问题的能力具有重要意义。
高中数学竞赛校本教材[全套共30讲].pdf
![高中数学竞赛校本教材[全套共30讲].pdf](https://img.taocdn.com/s3/m/cd48785bf78a6529657d5306.png)
高中数学竞赛校本教材目录§1数学方法选讲(1) (1)§2数学方法选讲(2) (11)§3集合 (22)§4函数的性质 (30)§5二次函数(1) (41)§6二次函数(2) (55)§7指、对数函数,幂函数 (63)§8函数方程 (73)§9三角恒等式与三角不等式 (76)§10向量与向量方法 (85)§11数列 (95)§12递推数列 (102)§13数学归纳法 (105)§14不等式的证明 (111)§15不等式的应用 (122)§16排列,组合 (130)§17二项式定理与多项式 (134)§18直线和圆,圆锥曲线 (143)§19立体图形,空间向量 (161)§20平面几何证明 (173)§21平面几何名定理 (180)§22几何变换 (186)§23抽屉原理 (194)§24容斥原理 (205)§25奇数偶数 (214)§26整除 (222)§27同余 (230)§28高斯函数 (238)§29覆盖 (245)§29涂色问题 (256)§30组合数学选讲 (265)§1数学方法选讲(1) 同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。
看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。
例题讲解一、从简单情况考虑 华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。
从简单情况考虑,就是一种以退为进的一种解题策略。
初中数学教研组论坛主题(3篇)

第1篇一、前言随着我国教育改革的不断深入,初中数学教学面临着新的挑战和机遇。
如何提高学生的数学素养,培养学生的综合能力,成为广大数学教师关注的焦点。
为进一步推动初中数学教学改革,提高教学质量,本教研组特举办以“探索数学核心素养,提升学生综合能力”为主题的论坛活动。
二、论坛主题阐述1. 数学核心素养数学核心素养是指学生在数学学习过程中所形成的数学思维、数学能力、数学品质等方面的综合素养。
主要包括以下几个方面:(1)数学思维:培养学生逻辑思维、抽象思维、空间想象思维等。
(2)数学能力:培养学生解决问题、探究问题、应用数学知识的能力。
(3)数学品质:培养学生严谨、求实、创新、合作等品质。
2. 提升学生综合能力在初中数学教学中,不仅要关注学生的数学成绩,更要关注学生的综合能力。
以下从几个方面阐述如何提升学生综合能力:(1)激发学习兴趣:通过丰富多样的教学方法,激发学生的学习兴趣,提高学生的自主学习能力。
(2)培养合作精神:鼓励学生开展小组合作学习,培养学生的团队协作能力和沟通能力。
(3)关注实践应用:将数学知识与实际生活相结合,提高学生的实践应用能力。
(4)加强德育教育:在数学教学中融入德育教育,培养学生的道德品质和社会责任感。
三、论坛内容安排1. 主题讲座邀请知名数学教育专家、优秀教师进行主题讲座,分享他们在数学教学中的实践经验,为参会教师提供有益的启示。
2. 课堂教学观摩组织优秀教师进行课堂教学观摩,展示他们在探索数学核心素养、提升学生综合能力方面的教学成果。
3. 分组研讨参会教师根据分组,围绕以下议题进行研讨:(1)如何将数学核心素养融入课堂教学?(2)如何提高学生的数学思维能力?(3)如何培养学生的实践应用能力?(4)如何加强数学德育教育?4. 经验分享邀请优秀教师在论坛上分享他们在数学教学中的成功经验,为参会教师提供借鉴。
四、预期成果1. 提高教师对数学核心素养的认识,明确提升学生综合能力的方向。
初中数学校本教材———— 《生活与数学》序言

初中数学校本教材————《生活与数学》序言一、把握数学的生活性——“使教学有生活味”《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息做出恰当的选择和判断,进而解决问题,直接为社会创造价值”。
这说明数学来源于社会,同时也反作用于社会,社会生活与数学关系密切,它已经渗透到生活的每个方面,我们的衣食住行都离不开它。
现代数学论认为:数学源于生活,又运用于生活,生活中充满数学,数学教育寓于生活实际。
有意识地引导学生沟通生活中的具体问题与有关数学问题的联系,借助学生熟悉的生活实际中的具体事例,激发学生学习数学的求知欲,帮助学生更好的理解和掌握数学基础知识,并运用学到的数学知识去解决实际生活中的数学问题。
二、把握数学的美育性——“使教学有韵味”数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。
音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。
” 美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。
作为精神产品的数学就具有上述美的特点。
简练、精确是数学的美。
数学的基本定理说法简约,却又涵盖真理,让人阅读简便却又印象深刻。
数学语言是如此慎重的、有意的而且经常是精心设计的,凭借数学语言的严密性和简洁性,我们就可以表达和研究数学思想,这种简洁性有助于思维的效率。
数学很讲究它的逻辑美。
数学的应用是被人们广泛认同的,可学习数学还能训练人的逻辑思维能力。
尤其是几何的证明讲究前因后果,每一步都要前后呼应,抽象的数学也显示它模糊的美。
抽象给我们想象的余地,让我们思维海阔天空,给学生留有了思索和创新的空间。
抽象的数学不正展示它的魅力吗?数学上有很多知识是和对称有关的。
对称给人协调,平稳的感觉,像圆,正方体等,它们的形式是如此的匀称优美。
初中数学校本教材(完整版)

初中数学校本教材————《生活与数学》序言一、把握数学的生活性——“使教学有生活味”《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息做出恰当的选择和判断,进而解决问题,直接为社会创造价值”。
这说明数学来源于社会,同时也反作用于社会,社会生活与数学关系密切,它已经渗透到生活的每个方面,我们的衣食住行都离不开它。
现代数学论认为:数学源于生活,又运用于生活,生活中充满数学,数学教育寓于生活实际。
有意识地引导学生沟通生活中的具体问题与有关数学问题的联系,借助学生熟悉的生活实际中的具体事例,激发学生学习数学的求知欲,帮助学生更好的理解和掌握数学基础知识,并运用学到的数学知识去解决实际生活中的数学问题。
二、把握数学的美育性——“使教学有韵味”数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。
音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。
” 美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。
作为精神产品的数学就具有上述美的特点。
简练、精确是数学的美。
数学的基本定理说法简约,却又涵盖真理,让人阅读简便却又印象深刻。
数学语言是如此慎重的、有意的而且经常是精心设计的,凭借数学语言的严密性和简洁性,我们就可以表达和研究数学思想,这种简洁性有助于思维的效率。
数学很讲究它的逻辑美。
数学的应用是被人们广泛认同的,可学习数学还能训练人的逻辑思维能力。
尤其是几何的证明讲究前因后果,每一步都要前后呼应,抽象的数学也显示它模糊的美。
抽象给我们想象的余地,让我们思维海阔天空,给学生留有了思索和创新的空间。
抽象的数学不正展示它的魅力吗?数学上有很多知识是和对称有关的。
对称给人协调,平稳的感觉,像圆,正方体等,它们的形式是如此的匀称优美。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学校本教材————《校本课程》序言一、把握数学的生活性——“使教学有生活味”《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择和判断,进而解决问题,直接为社会创造价值”。
这说明数学来源于社会,同时也反作用于社会,社会生活与数学关系密切,它已经渗透到生活的每个方面,我们的衣食住行都离不开它。
现代数学论认为:数学源于生活,又运用于生活,生活中充满数学,数学教育寓于生活实际。
有意识地引导学生沟通生活中的具体问题与有关数学问题的联系,借助学生熟悉的生活实际中的具体事例,激发学生学习数学的求知欲,帮助学生更好的理解和掌握数学基础知识,并运用学到的数学知识去解决实际生活中的数学问题。
二、把握数学的美育性——“使教学有韵味”数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。
音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。
” 美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。
作为精神产品的数学就具有上述美的特点。
简练、精确是数学的美。
数学的基本定理说法简约,却又涵盖真理,让人阅读简便却又印象深刻。
数学语言是如此慎重的、有意的而且经常是精心设计的,凭借数学语言的严密性和简洁性,我们就可以表达和研究数学思想,这种简洁性有助于思维的效率。
数学很讲究它的逻辑美。
数学的应用是被人们广泛认同的,可学习数学还能训练人的逻辑思维能力。
尤其是几何的证明讲究前因后果,每一步都要前后呼应,抽象的数学也显示它模糊的美。
抽象给我们想象的余地,让我们思维海阔天空,给学生留有了思索和创新的空间。
抽象的数学不正展示它的魅力吗?数学上有很多知识是和对称有关的。
对称给人协调,平稳的感觉,象圆,正方体等,它们的形式是如此的匀称优美。
正是由于几何图形中有这些点对称、线对称、面对称,才构成了美丽的图案,精美的建筑,巧夺天工的生活世界,也才给我们带来丰富的自然美,多彩的生活美。
中学数学的美育性,除了上述一些方面,还有其它美妙的地方,只要我们用心挖掘和捕捉,就会发现数学蕴涵着如此丰富的美的因素,教师要善于挖掘美的素材,在学生感受美的同时既提高教学质量,又使教学韵味深厚。
第一章兴趣数学第一节七桥问题(一笔画问题)18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡,那里有七座桥。
如图1所示:河中的小岛A与河的左岸B、右岸C各有两座桥相连结,河中两支流间的陆地D与A、B、C各有一座桥相连结。
当时哥尼斯堡的居民中流传着一道难题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题。
七桥问题引起了著名数学家欧拉(1707—1783)的关注。
他把具体七桥布局化归为图所示的简单图形,于是,七桥问题就变成一个一笔画问题:怎样才能从A、B、C、D中的某一点出发,一笔画出这个简单图形(即笔不离开纸,而且a、b、c、d、e、f、g各条线只画一次不准重复),并且最后返回起点?欧拉经过研究得出的结论是:图是不能一笔画出的图形。
这就是说,七桥问题是无解的。
这个结论是如何产生呢?如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。
如果画笔经过一个n次,那么就有2n条线与该点相连结。
因此,这个图形中除起点与终点外的各点,都与偶数条线相连。
如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。
综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。
图2中的A点与5条线相连结,B、C、D各点各与3条线相连结,图中有4个与奇数条线相连的点,所以不论是否要求起点与终点重合,都不能一笔画出这个图形。
欧拉定理:如果一个图是连通的并且奇顶点的个数等于0或2,那么它可以一笔画出;否则它不可以一笔画出。
练习:你能笔尖不离纸,一笔画出下面的每个图形吗?试试看。
(不走重复线路)图例1图例2图例3图例42四色问题人人都熟悉地图,可是绘制一张普通的政区图,至少需要几种颜色,才能把相邻的政区或区域通过不同的颜色区分开来,就未必是一个简单的问题了。
这个地图着色问题,是一个著名的数学难题。
大家不妨用一张中国政区图来试一试,无论从哪里开始着色,至少都要用上四种颜色,才能把所有省份都区别开来。
所以,很早的时候就有数学家猜想:“任何地图的着色,只需四种颜色就足够了。
”这就是“四色问题”这个名称的由来。
四色问题又称四色猜想,是世界近代三大数学难题之一。
四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。
”用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。
”(右图)这里所指的相邻区域,是指有一整段边界是公共的。
如果两个区域只相遇于一点或有限多点,就不叫相邻的。
因为用相同的颜色给它们着色不会引起混淆。
数学史上正式提出“四色问题”的时间是在1852年。
当时伦敦的大学的一名学生法朗西斯向他的老师、著名数学家、伦敦大学数学教授莫根提出了这个问题,可是莫根无法解答,求助于其它数学家,也没有得到答案。
于是从那时起,这个问题便成为数学界的一个“悬案”。
一直到二十年前的1976年9月,《美国数学会通告》正式宣布了一件震撼全球数学界的消息:美国伊利诺斯大学的两位教授阿贝尔和哈根,利用电子计算机证明了“四色问题”这个猜想是完全正确的!他们将普通地图的四色问题转化为2000个特殊图的四色问题,然后在电子计算机上计算了足足1200个小时,作了100亿判断,最后成功地证明了四色问题,轰动了世界。
这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。
2麦比乌斯带每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。
这是德国数学家麦比乌斯(Möbius.A.F 1790-1868)在1858年发现的,自此以後那种带就以他的名字命名,称为麦比乌斯带。
有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。
3分割图形分割图形是使我们的头脑灵活,增强观察能力的一种有趣的游戏。
我们先来看一个简单的分割图形的题目──分割正方形。
在正方形内用4条线段作“井”字形分割,可以把正方形分成大小相等的9块,这种图形我们常称为九宫格。
用4条线段还可以把一个正方形分成10块,只是和九宫格不同的是,每块的大小不一定都相等。
那么,怎样才能用4条线段把正方形分成10块呢?请你先动脑筋想想,在动脑的同时还要动手画一画其实,正方形是不难分割成10块的,下面就是其中两种分割方法。
练习:想一想,用4条线段能将正方形分成11块吗?应该怎样分?5数学故事(1)奇特的墓志铭在大数学家阿基米德的墓碑上,镌刻着一个有趣的几何图形:一个圆球镶嵌在一个圆柱内。
相传,它是阿基米德生前最为欣赏的一个定理。
在数学家鲁道夫的墓碑上,则镌刻着圆周率π的35位数值。
这个数值被叫做。
”鲁道夫数”。
它是鲁道夫毕生心血的结晶。
大数学家高斯曾经表示,在他去世以后,希望人们在他的墓碑上刻上一个正17边形。
因为他是在完成了正17边形的尺规作图后,才决定献身于数学研究的……不过,最奇特的墓志铭,却是属于古希腊数学家丢番图的。
他的墓碑上刻着一道谜语般的数学题:“过路人,这座石墓里安葬着丢番图。
他生命的1/6 是幸福的童年,生命的1/12是青少年时期。
又过了生命的1/7他才结婚。
婚后5年有了一个孩子,孩子活到他父亲一半的年纪便死去了。
孩子死后,丢番图在深深的悲哀中又活了4年,也结束了尘世生涯。
过路人,你知道丢番图的年纪吗?” 丢番图的年纪究竟有多大呢?设他活了X岁,依题意可列出方程。
这样,要知道丢番图的年纪,只要解出这个方程就行了。
这段墓志铭写得太妙了。
谁想知道丢番图的年纪,谁就得解一个一元一次方程;而这又正好提醒前来瞻仰的人们,不要忘记了丢番图献身的事业。
在丢番图之前,古希腊数学家习惯用几何的观点看待遇到的所有数学问题,而丢番图则不然,他是古希腊第一个大代数学家,喜欢用代数的方法来解决问题。
现代解方程的基本步骤,如移项、合并同类项、,方程两边乘以同一因子等等,丢番图都已知道了。
他尤其擅长解答不定方程,发明了许多巧妙的方法,被西方数学家誉为这门数学分支的开山鼻祖。
丢番图也是古希腊最后一个大数学家。
遗憾的是,关于他的生平。
后人几乎一无所知,既不知道他生于何地,也不知道他卒于何时。
幸亏有了这段奇特的墓志铭,才知道他曾享有84岁的高龄。
(2)希腊十字架问题图上那只巨大的复活节彩蛋上有一个希腊十字架,从它引发出许多切割问题,下面是其中的三个。
(a)将十字架图形分成四块,用它们拼成一个正方形;有无限多种办法把一个希腊十字架分成四块,再把它们拼成一个正方形,下图给出了其中的一个解法。
奇妙的是,任何两条切割直线,只要与图上的直线分别平行,也可取得同样的结果,分成的四块东西总是能拼出一个正方形。
(b)将十字架图形分成三块,用它们拼成一个菱形;(c)将十字架图形分成三块,用它们拼成一个矩形,要求其长是宽的两倍。
第二章最完美的数完美数又称为完全数,最初是由毕达哥拉斯(Pythagoras)的信徒发现的,他们注意到:数6有一个特性,它等于它自己的因子(不包括它自身)的和: 6=1+2+3,下一个具有同样性质的数是28, 28=1+2+4+7+14接着是496和8128.他们称这类数为完美数.欧几里德在大约公元前350-300年间证明了:若2n-1是素数,则数2n-1[2n-1] (1) 是完全数.两千年后,欧拉证明每个偶完全数都具有这种形式.这就在完全数与梅森数(形式为12n的素数)之间建立了紧密的联系,到1999年6月1日为止,共发现了38个梅森素数,这就是说已发现了38个完全数.1:完全数是非常奇特的数,它们有一些特殊性质,例如每个完全数都是三角形数,即都能写成n(n+1)/2.6=1+2+3=3*4/228=1+2=3+4+5+6+7=7*8/2496=1+2+3+4+...+31=31*32/2 ....2n-1(2n-1)=1+2+3+...+(2n-1)=(2n-1)2n/22:把它们(6除外)的各位数字相加,直到变成一位数,那么这个一位数一定是1;它们都是连续奇数的立方和(6除外),22(23-1)=28=13+3324(25-1)=496=13+33+53+7326(27-1)=8128=13+33+53+73+93+113+133+153.... 2n-1(2n-1)=13+33+53+...+(2(n+1)/2-1)33:除了因子1之外,每个完全数的所有因子(包括自身)的倒数和等于1,比如:1/2+1/3+1/6=11/2+1/4+1/7+1/14+1/28=1 ....4:完全数都是以6或8结尾的,如果以8结尾,那么就肯定是以28结尾.注意以上谈到的完全数都是偶完全数,至今仍然不知道有没有奇完全数,如果真的存在奇完全数.第三章有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.1.括号的使用在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.例1计算:分析中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算.例2 计算下式的值:211×555+445×789+555×789+211×445.分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.解原式=(211×555+211×445)+(445×789+555×789)=211×(555+445)+(445+555)×789=211×1000+1000×789=1000×(211+789)=1 000 000.说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧.例3在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然n-(n+1)-(n+2)+(n+3)=0.这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.所以,所求最小非负数是1.说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.2.用字母表示数我们先来计算(100+2)×(100-2)的值:(100+2)×(100-2)=100×100-2×100+2×100-4=1002-22.这是一个对具体数的运算,若用字母a代换100,用字母b 代换2,上述运算过程变为(a+b)(a-b)=a2-ab+ab-b2=a2-b2.于是我们得到了一个重要的计算公式(a+b)(a-b)=a2-b2,①这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.例4计算 3001×2999的值.解 3001×2999=(3000+1)(3000-1)=30002-12=8 999 999.例5计算 103×97×10 009的值.解原式=(100+3)(100-3)(10000+9)=(1002-9)(1002+9)=1004-92=99 999 919.例6计算:分析与解直接计算繁.仔细观察,发现分母中涉及到三个连续整数:12 345,12 346,12 347.可设字母n=12 346,那么12 345=n-1,12 347=n+1,于是分母变为n2-(n-1)(n+1).应用平方差公式化简得n2-(n2-12)=n2-n2+1=1,即原式分母的值是1,所以原式=24 690.例7计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).分析式子中2,22,24,…每一个数都是前一个数的平方,若在(2+1)前面有一个(2-1),就可以连续递进地运用(a+b)(a-b)=a2-b2了.解原式=(2-1)(2+1)(22+1)(24+1)(28+1)×(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)×(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=……=(232-1)(232+1) =264-1.例8 计算:分析在前面的例题中,应用过公式(a+b)(a-b)=a2-b2.这个公式也可以反着使用,即a2-b2=(a+b)(a-b).本题就是一个例子.通过以上例题可以看到,用字母表示数给我们的计算带来很大的益处.下面再看一个例题,从中可以看到用字母表示一个式子,也可使计算简化.例9计算:我们用一个字母表示它以简化计算.1.观察算式找规律例10某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.分析与解若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2)=1800-1=1799,平均分为 90+(-1)÷20=89.95.例11计算1+3+5+7+…+1997+1999的值.分析观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.解用字母S表示所求算式,即S=1+3+5+…+1997+1999.①再将S各项倒过来写为S=1999+1997+1995+…+3+1.②将①,②两式左右分别相加,得2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)=2000+2000+…+2000+2000(1000个2000)=2000×1000.从而有 S=1000 000.说明一般地,一列数,如果从第二项开始,后项减前项的差都相等(本题3-1=5-3=7-5=…=1999-1997,都等于2),那么,这列数的求和问题,都可以用上例中的“倒写相加”的方法解决.例13计算 1+5+52+53+…+599+5100的值.分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.解设S=1+5+52+…+599+5100,①所以5S=5+52+53+…+5100+5101.②②—①得4S=5101-1,说明如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于5),那么这列数的求和问题,均可用上述“错位相减”法来解决.例14计算:分析一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.练习1.计算下列各式的值:(1)-1+3-5+7-9+11-…-1997+1999;(2)11+12-13-14+15+16-17-18+…+99+100;(3)1991×1999-1990×2000;(4)4726342+472 6352-472 633×472 635-472 634×472636;(6)1+4+7+ (244)2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.第四章归纳与发现归纳的方法是认识事物内在联系和规律性的一种重要思考方法,也是数学中发现命题与发现解题思路的一种重要手段.这里的归纳指的是常用的经验归纳,也就是在求解数学问题时,首先从简单的特殊情况的观察入手,取得一些局部的经验结果,然后以这些经验作基础,分析概括这些经验的共同特征,从而发现解题的一般途径或新的命题的思考方法.下面举几个例题,以见一般.例1如图2-99,有一个六边形点阵,它的中心是一个点,算作第一层;第二层每边有两个点(相邻两边公用一个点);第三层每边有三个点,…这个六边形点阵共有n层,试问第n层有多少个点?这个点阵共有多少个点?分析与解我们来观察点阵中各层点数的规律,然后归纳出点阵共有的点数.第一层有点数:1;第二层有点数:1×6;第三层有点数:2×6;第四层有点数:3×6;……第n层有点数:(n-1)×6.因此,这个点阵的第n层有点(n-1)×6个.n层共有点数为例2在平面上有过同一点P,并且半径相等的n个圆,其中任何两个圆都有两个交点,任何三个圆除P点外无其他公共点,那么试问:(1)这n个圆把平面划分成多少个平面区域?(2)这n个圆共有多少个交点?分析与解(1)在图2-100中,设以P点为公共点的圆有1,2,3,4,5个(取这n个特定的圆),观察平面被它们所分割成的平面区域有多少个?为此,我们列出表18.1.由表18.1易知S2-S1=2,S3-S2=3,S4-S3=4,S5-S4=5,……由此,不难推测S n-S n-1=n.把上面(n-1)个等式左、右两边分别相加,就得到S n-S1=2+3+4+…+n,因为S1=2,所以下面对S n-S n-1=n,即S n=S n-1+n的正确性略作说明.因为S n-1为n-1个圆把平面划分的区域数,当再加上一个圆,即当n个圆过定点P时,这个加上去的圆必与前n-1个圆相交,所以这个圆就被前n-1个圆分成n部分,加在S n-1上,所以有S n=S n-1+n.(2)与(1)一样,同样用观察、归纳、发现的方法来解决.为此,可列出表18.2.由表18.2容易发现a1=1,a2-a1=1,a3-a2=2,a4-a3=3,a5-a4=4,……a n-1-a n-2=n-2,a n-a n-1=n-1.n个式子相加注意请读者说明a n=a n-1+(n-1)的正确性.例3 设a,b,c表示三角形三边的长,它们都是自然数,其中a≤b≤c,如果b=n(n是自然数),试问这样的三角形有多少个?分析与解我们先来研究一些特殊情况:(1)设b=n=1,这时b=1,因为a≤b≤c,所以a=1,c可取1,2,3,….若c=1,则得到一个三边都为1的等边三角形;若c≥2,由于a+b=2,那么a+b不大于第三边c,这时不可能由a,b,c构成三角形,可见,当b=n=1时,满足条件的三角形只有一个.(2)设b=n=2,类似地可以列举各种情况如表18.3.这时满足条件的三角形总数为:1+2=3.(3)设b=n=3,类似地可得表18.4.这时满足条件的三角形总数为:1+2+3=6.通过上面这些特例不难发现,当b=n时,满足条件的三角形总数为:这个猜想是正确的.因为当b=n时,a可取n个值(1,2,3,…,n),对应于a的每个值,不妨设a=k(1≤k≤n).由于b≤c<a+b,即n≤c<n+k,所以c可能取的值恰好有k个(n,n+1,n+2,…,n+k-1).所以,当b=n时,满足条件的三角形总数为:例4设1×2×3×…×n缩写为n!(称作n的阶乘),试化简:1!×1+2!×2+3!×3+…+n!×n.分析与解先观察特殊情况:(1)当n=1时,原式=1=(1+1)!-1;(2)当n=2时,原式=5=(2+1)!-1;(3)当n=3时,原式=23=(3+1)!-1;(4)当n=4时,原式=119=(4+1)!-1.由此做出一般归纳猜想:原式=(n+1)!-1.下面我们证明这个猜想的正确性.1+原式=1+(1!×1+2!×2+3!×3+…+n!×n)=1!×2+2!×2+3!×3+…+n!×n=2!+2!×2+3!×3+…+n!×n=2!×3+3!×3+…+n!×n=3!+3!×3+…+n!×n=…=n!+n!×n=(n+1)!,所以原式=(n+1)!-1.例5设x>0,试比较代数式x3和x2+x+2的值的大小.分析与解本题直接观察,不好做出归纳猜想,因此可设x等于某些特殊值,代入两式中做试验比较,或许能启发我们发现解题思路.为此,设x=0,显然有x3<x2+x+2.①设x=10,则有x3=1000,x2+x+2=112,所以x3>x2+x+2.②设x=100,则有x3>x2+x+2.观察、比较①,②两式的条件和结论,可以发现:当x值较小时,x3<x2+x+2;当x值较大时,x3>x2+x+2.那么自然会想到:当x=?时,x3=x2+x+2呢?如果这个方程得解,则它很可能就是本题得解的“临界点”.为此,设x3=x2+x+2,则x3-x2-x-2=0,(x3-x2-2x)+(x-2)=0,(x-2)(x2+x+1)=0.因为x>0,所以x2+x+1>0,所以x-2=0,所以x=2.这样(1)当x=2时,x3=x2+x+2;(2)当0<x<2时,因为x-2<0,x2+x+2>0,所以(x-2)(x2+x+2)<0,即x3-(x2+x+2)<0,所以x3<x2+x+2.(3)当x>2时,因为x-2>0,x2+x+2>0,所以(x-2)(x2+x+2)>0,即x3-(x2+x+2)>0,所以x3>x2+x+2.综合归纳(1),(2),(3),就得到本题的解答.练习七1.试证明例7中:2.平面上有n条直线,其中没有两条直线互相平行(即每两条直线都相交),也没有三条或三条以上的直线通过同一点.试求:(1)这n条直线共有多少个交点?(2)这n条直线把平面分割为多少块区域?然后做出证明.)3.求适合x5=656356768的整数x.(提示:显然x不易直接求出,但可注意其取值范围:505<656356768<605,所以502<x<602.)第五章生活中的数学(储蓄、保险与纳税)储蓄、保险、纳税是最常见的有关理财方面的数学问题,几乎人人都会遇到,因此,我们在这一讲举例介绍有关这方面的知识,以增强理财的自我保护意识和处理简单财务问题的数学能力.1.储蓄银行对存款人付给利息,这叫储蓄.存入的钱叫本金.一定存期(年、月或日)内的利息对本金的比叫利率.本金加上利息叫本利和.利息=本金×利率×存期,本利和=本金×(1+利率经×存期).如果用p,r,n,i,s分别表示本金、利率、存期、利息与本利和,那么有i=prn,s=p(1+rn).例1设年利率为0.0171,某人存入银行2000元,3年后得到利息多少元?本利和为多少元?解i=2000×0.0171×3=102.6(元).s=2000×(1+0.0171×3)=2102.6(元).答某人得到利息102.6元,本利和为2102.6元.以上计算利息的方法叫单利法,单利法的特点是无论存款多少年,利息都不加入本金.相对地,如果存款年限较长,约定在每年的某月把利息加入本金,这就是复利法,即利息再生利息.目前我国银行存款多数实行的是单利法.不过规定存款的年限越长利率也越高.例如,1998年3月我国银行公布的定期储蓄人民币的年利率如表22.1所示.用复利法计算本利和,如果设本金是p元,年利率是r,存期是n 年,那么若第1年到第n年的本利和分别是s1,s2,…,s n,则s1=p(1+r),s2=s1(1+r)=p(1+r)(1+r)=p(1+r)2,s3=s2(1+r)=p(1+r)2(1+r)=p(1+r)3,……,s n=p(1+r)n.例2小李有20000元,想存入银行储蓄5年,可有几种储蓄方案,哪种方案获利最多?解按表22.1的利率计算.(1)连续存五个1年期,则5年期满的本利和为20000(1+0.0522)5≈25794(元).(2)先存一个2年期,再连续存三个1年期,则5年后本利和为20000(1+0.0558×2)·(1+0.0522)3≈25898(元).(3)先连续存二个2年期,再存一个1年期,则5年后本利和为。