三角形全章热门考点整合应用

合集下载

三角形章节复习

三角形章节复习

三角形章节复习全章知识点梳理:一、三角形基本概念1. 三角形的概念由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

2.3. 三角形三边的关系(重点)三角形的任意两边之和大于第三边。

三角形的任意两边之差小于第三边。

(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。

已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b解题方法:①数三角形的个数方法:分类,不要重复或者多余。

②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可③给出多条线段的长度,要求从中选择三条线段能够组成三角形方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。

④已知三角形两边的长度分别为a,b,求第三边长度的范围方法:第三边长度的范围:|a-b|<c<a+b⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。

二、三角形的高、中线与角平分线1. 三角形的高从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD叫做△ABC的边BC上的高。

三角形的三条高的交于一点,这一点叫做“三角形的垂心”。

2. 三角形的中线连接△ABC的顶点A和它所对的对边BC的中点D,所得的线段AD叫做△ABC的边BC上的中线。

三角形三条中线的交于一点,这一点叫做“三角形的重心”。

三角形的中线可以将三角形分为面积相等的两个小三角形。

3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。

要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。

三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。

人教版八年级上第12章全等三角形热门考点整合应用训练含答案

人教版八年级上第12章全等三角形热门考点整合应用训练含答案

人教版八年级上第12章全等三角形热门考点整合应用训练含答案名师点金:本章主要学习了全等三角形的性质与判定及角平分线的性质与判定,对于三角形全等主要考查利用全等三角形证明线段或角的等量关系,以及判断位置关系等,对于角平分线主要考查利用角平分线的性质求距离、证线段相等.两个概念概念1:全等形1.如图,将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为N,Q,M,P的四个图形,填空:A与________对应;B与________对应;C与________对应;D与________对应.(第1题) 概念2:全等三角形2.如图,已知△ABE与△ACD全等,∠1=∠2,∠B=∠C,指出全等三角形中的对应边和对应角.(第2题)3.如图所示,已知△ABD≌△ACD,且B,D,C在同一条直线上,那么AD与BC有怎样的位置关系?为什么?(第3题)两个性质性质1:全等三角形的性质4.【·天水】(1)如图①,已知△ABC,以AB,AC为边分别向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE=CD;(2)如图②,已知△ABC,以AB,AC为边分别向△ABC外作正方形ABFD和正方形ACGE,连接BE,CD,猜想BE与CD有什么数量关系?并说明理由.(第4题)性质2:角平分线的性质5.如图,在正方形ABCD中,点E是BC的中点,点F在CD上,∠EAF=∠BAE.求证:AF=BC+FC.(第5题)判定1:全等三角形的判定6.课间,小明拿着老师的等腰直角三角尺玩,不小心掉到两堆砖块之间,如图所示.(1)求证:△ADC≌△CEB;(2)已知DE=35 cm,请你帮小明求出砖块的厚度a的大小(每块砖的厚度相同).判定2:角平分线的判定7.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC;(2)猜想写出AB+AC与AE之间的数量关系并给予证明.(第7题)四个技巧技巧1:构造全等三角形法8.如图∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.求证:∠AEB=∠ADC.(第8题)9.如图,AB=DC,∠A=∠D,求证:∠ABC=∠DCB.(第9题)技巧2:构造角平分线法10.【中考·黄冈】已知:如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.(第10题)技巧3:截长(补短)法11.如图,AB∥CD,CE,BE分别平分∠BCD和∠CBA,点E在AD上,求证:BC =AB+CD.(第11题)技巧4:倍长中线法12.如图,CE,CB分别是△ABC,△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.(第12题)两种思想思想1:建模思想13.如图,某段河流的两岸是平行的,数学兴趣小组在老师的带领下不用涉水过河就测到了河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20步有一棵树C,继续前行20步到达D处;③从D处沿岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长就是河宽AB.请你证明他们做法的正确性.思想2:转化思想14.如图,已知AB=AE,∠C=∠D,BC=ED,点F是CD的中点,则AF平分∠BAE,为什么?(第14题)答案1.M ;N ;Q ;P2.解:AB 与AC ,AE 与AD ,BE 与CD 是对应边;∠B 与∠C ,∠2与∠1,∠BAE 与∠CAD 是对应角.3.解:AD ⊥BC. 理由略. 4.解:(1)完成作图,如图所示.(第4题)证明:∵△ABD 和△ACE 都是等边三角形, ∴AD =AB ,AC =AE ,∠BAD =∠CAE =60°.∴∠BAD +∠BAC =∠CAE +∠BAC ,即∠CAD =∠EAB. ∴△CAD ≌△EAB. ∴CD =EB ,即BE =CD. (2)BE =CD.理由如下:∵四边形ABFD 和四边形ACGE 都是正方形, ∴AD =AB ,AC =AE ,∠BAD =∠CAE =90°.∴∠BAD +∠BAC =∠CAE +∠BAC ,即∠CAD =∠EAB. ∴△CAD ≌△EAB. ∴CD =EB ,即BE =CD.5.证明:如图,过点E 作EG ⊥AF ,垂足为点G.连接EF. ∵∠BAE =∠EAF ,∴AE 为∠BAF 的平分线. 又∵EB ⊥AB ,EG ⊥AF ,∴EB =EG.在Rt △ABE 和Rt △AGE 中,⎩⎪⎨⎪⎧EB =EG ,AE =AE ,∴Rt △ABE ≌Rt △AGE(HL ),∴AB =AG . ∵在正方形ABCD 中,AB =BC ,∴BC =AG.又∵点E 是BC 的中点, ∴BE =EC =EG .在Rt △EGF 和Rt △ECF 中,⎩⎪⎨⎪⎧EG =EC ,EF =EF ,∴Rt △EGF ≌Rt △ECF(HL ). ∴GF =CF ,∴AF =AG +GF =BC +FC.(第5题)6.(1)证明:由题意得AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∠ACD +∠BCE =90°.∴∠ACD +∠CAD =90°,∴∠BCE =∠CAD.在△ADC 和△CEB 中,⎩⎪⎨⎪⎧∠ADC =∠CEB ,∠CAD =∠BCE ,AC =CB ,∴△ADC ≌△CEB(AAS ).(2)解:由题意得AD =4a ,BE =3a.由(1)知△ADC ≌△CEB ,∴DC =BE =3a ,CE =AD =4a ,∴DE =DC +CE =7a.∵DE =35 cm ,∴a =5 cm .答:砖块的厚度a 为5 cm .7.(1)证明:∵DE ⊥AB 于E ,DF ⊥AC 于F ,∴∠E =∠AFD =∠DFC =90°,在Rt △BDE 和Rt △CDF 中,∵BD =CD ,BE =CF ,∴Rt △BDE ≌Rt △CDF ,∴DE =DF ,∴AD 平分∠BAC.(2)解:AB +AC =2AE.证明如下:由(1)可知AD 平分∠BAC ,∴∠EAD =∠CAD.在△AED 与△AFD 中,∵∠EAD =∠CAD ,∠E =∠AFD =90°,AD =AD ,∴△AED ≌△AFD ,∴AE =AF.又∵BE =CF ,∴AB +AC =AE -BE +AF +CF =AE +AE =2AE.8.证明:过点B ,C 分别作CA ,BA 延长线的垂线,垂足分别为F ,G. 在△ABF 和△ACG 中, ⎩⎪⎨⎪⎧∠BFA =∠CGA =90°,∠FAB =∠GAC ,AB =AC ,∴△ABF ≌△ACG(AAS ). ∴BF =CG.在Rt △BEF 和Rt △CDG 中,⎩⎪⎨⎪⎧BF =CG ,BE =CD , ∴Rt △BEF ≌Rt △CDG(HL ).∴∠AEB =∠ADC.点拨:判定两个三角形全等时,先根据已知条件或求证的结论确定三角形,再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.9.证明:分别取AD ,BC 的中点N ,M ,连接BN ,CN ,MN ,则有AN =ND ,BM =MC.在△ABN 和△DCN 中,⎩⎪⎨⎪⎧AN =DN ,∠A =∠D ,AB =DC ,∴△ABN ≌△DCN(SAS ). ∴∠ABN =∠DCN ,NB =NC. 在△NBM 和△NCM 中,⎩⎪⎨⎪⎧NB =NC ,BM =CM ,NM =NM ,∴△NBM ≌△NCM(SSS ). ∴∠NBC =∠NCB.∴∠NBC +∠ABN =∠NCB +∠DCN , 即∠ABC =∠DCB.点拨:证明三角形全等时常需添加适当的辅助线,辅助线的添加以能创造已知条件为上策,如本题取AD ,BC 的中点就是把中点作为了已知条件.分散证明,也是几何证明中的一种常用技巧.10.证明:连接AD.∵AB =AC ,BD =CD ,AD =AD , ∴△ABD ≌△ACD ,∴∠BAD =∠CAD , ∴AD 是∠EAF 的平分线. ∵DE ⊥AB ,DF ⊥AC ,∴DE =DF.11.证明:(方法一——截长法)如图①,在BC 上取一点F ,使BF =BA.连接EF ,∵CE ,BE 分别平分∠BCD ,∠CBA ,∴∠3=∠4,∠1=∠2. 在△ABE 和△FBE 中, ⎩⎪⎨⎪⎧BA =BF ,∠1=∠2,BE =BE.∴△ABE ≌△FBE(SAS ). ∴∠A =∠5.∵AB ∥CD ,∴∠A +∠D =180°,而∠5+∠6=180°,∴∠6=∠D. 在△EFC 和△EDC 中,⎩⎪⎨⎪⎧∠6=∠D ,∠3=∠4,EC =EC ,∴△EFC ≌△EDC(AAS ),∴FC =DC ,∴BC =BF +CF =AB +CD.(方法二——补短法)如图②,延长BA 至点F ,使BF =BC ,连接EF ,∵CE ,BE 分别平分∠BCD ,∠CBA ,∴∠1=∠2=12∠ABC ,∠3=∠4=12∠BCD. 在△BEF 和△BEC 中,⎩⎪⎨⎪⎧BF =BC ,∠1=∠2,BE =BE ,∴△BEF ≌△BEC(SAS ).∴EF =EC ,∠F =∠3=∠4.∵AB ∥CD ,∴∠7=∠D.在△AEF 和△DEC 中,⎩⎪⎨⎪⎧∠7=∠D ,∠F =∠4,EF =EC.∴△AEF ≌△DEC(AAS ),∴AF =CD.∵BC =BF =AB +AF ,∴BC =AB +CD.(第11题)12.证明:如图,延长CE 到点F ,使EF =CE ,连接FB ,则CF =2CE. ∵CE 是△ABC 的中线,∴AE =BE.在△BEF 和△AEC 中,⎩⎪⎨⎪⎧BE =AE ,∠BEF =∠AEC ,EF =EC ,∴△BEF ≌△AEC(SAS ).∴∠EBF =∠EAC ,BF =AC.过点A 作AG ⊥BC 于点G ,则∠AGC =∠AGB =90°.∵∠ABC =∠ACB ,AG =AG ,∴△AGC ≌△AGB.∴AC =AB.又∵∠ABC =∠ACB ,∴∠CBD =∠BAC +∠ACB =∠EBF +∠ABC =∠CBF. ∵CB 是△ADC 的中线,∴AB =BD.又∵AB =AC ,AC =BF ,∴BF =BD.在△CBF 和△CBD 中,⎩⎪⎨⎪⎧CB =CB ,∠CBF =∠CBD ,BF =BD ,∴△CBF ≌△CBD(SAS ).∴CF =CD.∴CD =2CE.(第12题)13.证明:由做法知:在△ABC 和△EDC 中,⎩⎪⎨⎪⎧∠ABC =∠EDC =90°,BC =DC ,∠ACB =∠ECD ,∴△ABC ≌△EDC(ASA ).∴AB =ED ,即他们的做法是正确的.14.解:连接BF ,EF.∵点F 是CD 的中点,∴CF =DF.在△BCF 和△EDF 中,⎩⎪⎨⎪⎧BC =ED ,∠C =∠D ,CF =DF ,∴△BCF ≌△EDF(SAS ).∴BF =EF.在△ABF 和△AEF 中,⎩⎪⎨⎪⎧AB =AE ,BF =EF ,AF =AF ,∴△ABF ≌△AEF(SSS ).∴∠BAF =∠EAF.∴AF 平分∠BAE.。

新人教版八年级上册数学[《三角形》全章复习与巩固—知识点整理及重点题型梳理](基础)

新人教版八年级上册数学[《三角形》全章复习与巩固—知识点整理及重点题型梳理](基础)

新人教版八年级上册数学[《三角形》全章复习与巩固—知识点整理及重点题型梳理](基础)本文是一份新人教版八年级上册数学知识点梳理及巩固练重难点突破的精品文档,主要讲解了三角形的相关概念和性质。

研究目标包括:认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系;理解三角形的高、中线、角平分线的概念,通过作图提高学生的基本作图能力,并能运用图形解决问题;能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题;通过观察和实地操作知道三角形具有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用;了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力。

重点梳理了三角形的相关概念和性质,其中包括三角形三边的关系,三角形按“边”分类,三角形的重要线段(包括高、中线、角平分线)等。

三角形三边关系的应用包括判断三条线段能否组成三角形,求已知两边长的第三边长的取值范围等。

同时,三角形还可以按边分类,分为不等边三角形、底边和腰不相等的等腰三角形和等边三角形。

三角形的重要线段包括高、中线和角平分线,它们的作用分别是作垂线、分割三角形、平分角度等。

此外,三角形的三条高所在的直线相交于一点的位置情况有三种,分别是锐角三角形交点在三角形内、直角三角形交点在直角顶点、钝角三角形交点在三角形外。

最后,本文还提到了多边形、多边形的对角线、正多边形以及镶嵌等有关的概念,以及多边形内角和及外角和的计算方法,帮助学生掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力。

已知一个多边形的边数,可以求出它的内角和。

反之,已知一个多边形的内角和,可以求出它的边数。

多边形的外角和恒等于360°,与边数无关。

根据外角和公式,可以求出正多边形的边数,也可以根据正多边形的边数求出外角度数。

冀教版八年级上册数学第13章 全等三角形 全章热门考点整合应用

冀教版八年级上册数学第13章 全等三角形 全章热门考点整合应用
的,数学兴趣小组在老师的带领下不用涉水过河就测到了河 的宽度,他们是这样做的: ①在河流的一条岸边B点,选对岸 正对的一棵树A;②沿岸边直走20步有一 棵树C,继续前行20步到达D处;③从D处 沿与岸边垂直的方向行走,当到达A树正好被C树遮挡住的E 处时停止行走;④测得DE的长就是河宽AB.请你证明他们做 法的正确性.
冀教版八年级上
第十三章全等三角形
集训全课堂章 热 门 考 点 整 合 应 用
习题链接
温馨提示:点击 进入讲评
1A52C6来自374
8
答案呈现
9 10 11 12
1 下列说法正确的是( A ) A.每一个命题都有逆命题 B.每一个定理都有逆定理 C.真命题的逆命题一定是真命题 D.真命题的逆命题一定是假命题
AP=AP, ∴△ABP≌△AMP(SAS),∴PB=PM. 在△PCM 中,CM>PM-PC, ∴AM-AC>PB-PC.∴AB-AC>PB-PC.
9 如图,在△ABC中,D为BC的中点.若AB=10,AC= 5,求AD的取值范围.
解:如图,延长AD至点E,使DE= AD,连接BE,则AE=2AD.
3 如图,将标号为A,B,C,D的正方形沿图中的虚线剪 开后,得到标号为N,Q,M,P的四个图形,填空:
A与________对应;B与________对应; C与___M_____对应;D与____N____对应.
Q
P
4 如图,已知△ABE与△ADC全等,∠1=∠2,∠B= ∠C,指出全等三角形中的对应边和对应角.
7 如图,∠BAC是钝角,AB=AC,D,E分别在AB,AC 上,且CD=BE.求证:∠AEB=∠ADC.
证明:过B,C分别作CA,BA延长线的垂线,垂足分别为 F,G.

三角形全章热门考点整合应用

三角形全章热门考点整合应用

全章热门考点螯合应用名师点金:本辛学习的主要知识有三角形和多边形,其中三角形中主要学习了与三角形有关的线段和三角形内角.外角相关的知识,多边形中主要学习了多边形的内角和与外角和, 一般考查的题型包括三角形的计数,三角形的三边关系,三角形的中线、高、角平分线,三角形內角和及外角性质,多边形的内角和与外角和等.概念1:与三角形有关的概念BL 如图,在ZIABC中.D是BC边上一点,E是AD边上一点・(1)以AC为边的三角形共有 ___ 个,它们是(2)Z1是厶_______ 和^ _________ 的内角:⑶在^ACE中,ZCAE的对边是 ___________ .概念2:与多边形有关的概念2.卜•列说法正确的是()久由一些线段首尾顺次相接组成的图形叫做多边形B.多边形的两边所在宜线组成的角是这个多边形的内角或外角C・各个角都相等,各条边都相等的多边形是正多边形D.连接多边形的两个顶点的线段,叫做多边形的对角线三种线段线段三角形的高3.如图,D 为△ABC 中AC 边上一点,AD=h DC=2, AB=4, E 是AB ±一点. 且△DEC的面积等于△ABC而枳的一半,求EB的长.AC(第3题)线段2:三角形的中线4.如图,在△ABC 中,E 是边BC±一点,EC=2BE,点D 是AC 的中点.连接AE, BD 交于点 E 已知 S AABC ~ 12,则 S AADF ~S ABEF ~C ・3D ・4线段3:三角形的角平分线5.如图,在△ABC 中,AF 是中线,AE 是角平分线,AD 是离,ZBAC=90。

. FC=6,则根据图形填空:(1)BF= (2)Z BAE=关系三角形的三边关系6.已知:如图,四边形ABCD 是任意四边形,AC 与BD 交于点0•试说明:AC+BD >j(AB + BC+CD+DA)・解:在△OAB 中有 OA+OB>AB, 在△OAD 中有. 在△ODC 中有中有•••OA+OB+OA+OD+OD+OC+OC+OB>AB+BC+CD+DA ・ZCAE= (3)Z ADB =Z ADC=C(第4•••AC+BD 订AB+BC+CD+DA).关系2:三角形内角、外角的关系7.已知:如图,在△ABC 中,ZC>ZB ・ AD, AE 分别是△ABC 的高和角平分线. (1) 若ZB=30。

冀教版七年级下册数学第9章 三角形 全章热门考点整合专训

冀教版七年级下册数学第9章 三角形 全章热门考点整合专训

15.在△ABC 中,∠B=20°+∠A,∠C=∠B-10°. 求∠A 的度数.
解:由题意得∠C=∠B-10°=20°+∠A-10°=10°+∠A, ∴∠A+∠B+∠C=∠A+20°+∠A+10°+∠A=3∠A+30°= 180°.∴∠A=50°.
解:∵PA+PB>AB,PB+PC>BC, PC+PA>AC. ∴2(PA+PB+PC)>AB+BC+AC.
8.【2019·河北石家庄新华区期中】如图,△ABC中,∠B=55°,∠C=63°,
DE∥AB,则∠DEC等于( )
A.63°B.113°C.55°D.62°
D
9.如图,△ABC 中,AD 是高,AE,BF 是角平分线,它们相 交于点 O,∠CAB=50°,∠C=60°,求∠DAE 和∠BOA 的 度数.解:∵∠CAB=50°,∠C=60°, ∴∠ABC=180°-50°-60°=70°. ∵AD 是高,∴∠ADC=90°, ∴∠DAC=180°-90°-∠C=30°. ∵AE,BF 是角平分线,
解:连接 GA,GB,GC. ∵BD 是 AC 边上的高,∴S△ABC=12AC·BD. ∵GF⊥AB,GE⊥AC,GH⊥BC, ∴S△ABC=S△ABG+S△BCG+S△ACG=12AB·GF+12BC·GH+12AC·GE. 又∵AB=BC=AC,∴S△ABC=12AC·(GF+GE+GH)=12AC·BD. ∴GF+GE+GH=BD.
解:∵a,b,c 是三角形的三边长, ∴a-b-c<0,b-c-a<0,c-a+b>0, ∴原式=-(a-b-c)-(b-c-a)+(c-a+b)=-a+b+c-b+ c+a+c-a+b=3c-a+b.
11.【中考·四川资阳】等腰三角形的两边长 a,b 满足|a-4|+(b -9)2=0,求这个等腰三角形的周长.

专题01 三角形(突破核心考点)【知识梳理+解题方法+专题过关】 (解析版)

专题01 三角形(突破核心考点)【知识梳理+解题方法+专题过关】 (解析版)

专题01三角形(突破核心考点)【聚焦考点+题型导航】考点一三角形三边关系考点二三角形的稳定性考点三三角形中的高线、中线、角平分线考点四三角形的内角、外角考点五多边形的对角线、内角和【知识梳理+解题方法】一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3)三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示.二、三角形的三边关系定理:三角形任意两边之和大于第三边.推论:三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.三、三角形的分类1.按角分类:ìïìííïîî直角三角形三角形锐角三角形斜三角形钝角三角形要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.2.按边分类:ìïìííïîî不等边三角形三角形底边和腰不相等的等腰三角形等腰三角形等边三角形要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;③等边三角形:三边都相等的三角形.四、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下:线段名称三角形的高三角形的中线三角形的角平分线文字语言从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.三角形中,连接一个顶点和它对边中点的线段.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.图形语言作图语言过点A 作AD ⊥BC 于点D .取BC 边的中点D ,连接AD .作∠BAC 的平分线AD ,交BC 于点D .标示图形符号语言1.AD是△ABC的高.2.AD是△ABC中BC边上的高.3.AD⊥BC于点D.4.∠ADC=90°,∠ADB=90°.(或∠ADC=∠ADB=90°)1.AD是△ABC的中线.2.AD是△ABC中BC边上的中线.3.BD=DC=12BC4.点D是BC边的中点.1.AD是△ABC的角平分线.2.AD平分∠BAC,交BC于点D.3.∠1=∠2=12∠BAC.推理语言因为AD是△ABC的高,所以AD⊥BC.(或∠ADB=∠ADC=90°)因为AD是△ABC的中线,所以BD=DC=12BC.因为AD平分∠BAC,所以∠1=∠2=12∠BAC.用途举例1.线段垂直.2.角度相等.1.线段相等.2.面积相等.角度相等.注意事项1.与边的垂线不同.2.不一定在三角形内.—与角的平分线不同.重要特征三角形的三条高(或它们的延长线)交于一点.一个三角形有三条中线,它们交于三角形内一点.一个三角形有三条角平分线,它们交于三角形内一点.五、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性。

三角形 知识点+考点+典型例题(含答案)

三角形  知识点+考点+典型例题(含答案)

第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。

②三角形按边分为两类:等腰三角形和不等边三角形。

2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。

注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。

但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。

)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。

(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全章热门考点整合应用名师点金:本章学习的主要知识有三角形和多边形,其中三角形中主要学习了与三角形有关的线段和三角形内角、外角相关的知识,多边形中主要学习了多边形的内角和与外角和,一般考查的题型包括三角形的计数,三角形的三边关系,三角形的中线、高、角平分线,三角形内角和及外角性质,多边形的内角和与外角和等.两个概念概念1:与三角形有关的概念(第1题)1.如图,在△ABC中,D是BC边上一点,E是AD边上一点.(1)以AC为边的三角形共有____个,它们是____________________________;(2)∠1是△________和△________的内角;(3)在△ACE中,∠CAE的对边是________.概念2:与多边形有关的概念2.下列说法正确的是()A.由一些线段首尾顺次相接组成的图形叫做多边形B.多边形的两边所在直线组成的角是这个多边形的内角或外角C.各个角都相等,各条边都相等的多边形是正多边形D.连接多边形的两个顶点的线段,叫做多边形的对角线三种线段线段1:三角形的高3.如图,D为△ABC中AC边上一点,AD=1,DC=2,AB=4,E是AB上一点,且△DEC的面积等于△ABC面积的一半,求EB的长.(第3题)线段2:三角形的中线(第4题)4.如图,在△ABC 中,E 是边BC 上一点,EC =2BE ,点D 是AC 的中点.连接AE ,BD 交于点F.已知S △ABC =12,则S △ADF -S △BEF =()A .1B .2C .3D .4线段3:三角形的角平分线5.如图,在△ABC 中,AF 是中线,AE 是角平分线,AD 是高,∠BAC =90°,FC =6,则根据图形填空:(1)BF =________,BC =________;(2)∠BAE =________°,∠CAE =________°;(3)∠ADB =________°,∠ADC =________°.(第5题)(第6题)三个关系关系1:三角形的三边关系6.已知:如图,四边形ABCD 是任意四边形,AC 与BD 交于点O.试说明:AC +BD >12(AB +BC +CD +DA).解:在△OAB 中有OA +OB >AB ,在△OAD 中有____________,在△ODC 中有____________,在△________中有____________,∴OA +OB +OA +OD +OD +OC +OC +OB >AB +BC +CD +DA ,即________________________.∴AC +BD >12(AB +BC +CD +DA).关系2:三角形内角、外角的关系7.已知:如图,在△ABC 中,∠C >∠B ,AD ,AE 分别是△ABC 的高和角平分线.(1)若∠B =30°,∠C =50°,求∠DAE 的度数;(2)∠DAE 与∠C -∠B 有何关系?(第7题)(第8题)关系3:多边形内角、外角的关系8.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的四个外角.若∠A =120°,则∠1+∠2+∠3+∠4=________.两种计算计算1:三角形中的边角计算9.【2015·资阳)等腰三角形的两边长a ,b 满足|a -4|+(b -9)2=0,求这个等腰三角形的周长.计算2:多边形中的边角计算10.已知:从n边形的一个顶点出发共有4条对角线;从m边形的一个顶点出发的所有对角线把m边形分成6个三角形;正t边形的边长为7,周长为63.求(n-m)t的值.两个技巧技巧1:巧用面积法解决问题11.如图,在△ABC中,CE⊥AB于点E,AD⊥BC于点D,且AB=3,BC=6,则CE与AD有怎样的数量关系?(第11题)(第12题)技巧2:巧用整体法解决问题12.如图,∠BAK+∠B+∠C+∠CDE+∠E+∠F+∠MGN+∠H+∠K=________.四种思想思想1:转化思想13.如图所示的模板按规定AB,CD的延长线相交成80°的角,因交点不在板上,不便测量,但工人师傅测得∠BAE=122°,∠DCF=155°,此时,AB,CD的延长线相交所成的角是否符合规定?为什么?(第13题)思想2:分类讨论思想14.阅读两名同学对下题的解答过程.一个等腰三角形的周长为28cm,其中一边长为8cm,则这个三角形另外两边的长分别是多少?李明说应这样解:设腰长为x cm,则2x+8=28,解得x=10,所以这个三角形的另外两边的长均为10cm.张钢说应这样解:设底边长为x cm,则2×8+x=28,解得x=12,所以这个三角形的另外两边的长分别为8cm,12cm.试判断李明与张钢两人的解答过程是否正确,若正确,请写出判断的依据;若不正确,请你写出正确的解答过程.思想3:方程思想15.在△ABC中,∠B=20°+∠A,∠C=∠B-10°,求∠A的度数.思想4:从特殊到一般的思想16.三角形没有对角线,四边形ABCD有2条对角线AC和BD(如图①),五边形ABCDE 有5条对角线AC,AD,BE,BD,CE(如图②).想一想:六边形(如图③)有几条对角线?n 边形有几条对角线?(第16题)答案1.(1)3;△ACE ,△ACD ,△ACB (2)BCE ;CDE(3)CE 2.C3.解:如图,过点E 作EF ⊥AC 于点F ,则S △DEC S △AEC =12DC·EF12AC·EF =DC AC =23.过点C 作CG ⊥AB 于点G ,则S △AEC S △ABC =12AE·CG12AB·CG =AE AB =AE4.∴S △DEC S △AEC ·S △AEC S △ABC =23×AE 4,即S △DEC S △ABC =AE 6.又∵S △DEC S △ABC =12,∴AE 6=12,∴AE =3,∴BE =AB -AE =1,即BE 的长为 1.(第3题)点拨:同(等)高的两个三角形的面积比等于底边长的比.4.B点拨:连接CF.设S △BEF =x ,因为EC =2BE ,点D 是AC 的中点,所以S △ADF=S △CDF ,S △ABD =S △BCD =12S △ABC =6,S △CEF =2S △BEF =2x ,所以S △ABF =S △BCF =3x.S △ADF=S △CDF =6-3x.由图形,得S △AEC =2S △ABE ,即2x +(6-3x)+(6-3x)=2(x +3x),解得x =1,所以6-3x =6-3×1=3,所以S △ADF -S △BEF =2.故选B .5.(1)6;12(2)45;45(3)90;906.OA +OD >AD ;OD +OC >CD ;OBC ;OB +OC >BC ;2(AC +BD)>AB +BC +CD +DA 7.解:(1)∵∠B +∠C +∠BAC =180°,∠B =30°,∠C =50°,∴∠BAC =180°-30°-50°=100°.又∵AE 是△ABC 的角平分线,∴∠BAE =12∠BAC =50°.∵∠AEC 为△ABE 的外角,∴∠AEC =∠B +∠BAE =30°+50°=80°.∵AD 是△ABC 的高,∴∠ADE =90°.∴∠DAE =90°-∠AEC =90°-80°=10°.(2)由(1)知,∠DAE =90°-∠AEC =90°B +12∠又∵∠BAC =180°-∠B -∠C.∴∠DAE =90°-∠B -12(180°-∠B -∠C)=12(∠C -∠B).8.300°9.解:∵|a -4|+(b -9)2=0,∴|a -4|=0,(b -9)2=0.∴a =4,b =9.若腰长为4,则4+4<9,不能构成三角形.若腰长为9,则9+4>9,能构成三角形,∴这个等腰三角形的周长为9+9+4=22.10.解:由题意知n =4+3=7,m =6+2=8,t =63÷7=9,所以(n -m)t =(7-8)9=(-1)9=-1.11.解:根据△ABC 的面积=12AB·CE =12BC·AD ,得12×3·CE =12×6·AD ,所以CE =2AD.12.540°点拨:连接AG ,GD.在△MAG 与△MHK 中,∵∠MAG +∠MGA +∠AMG =180°,∠H +∠K +∠HMK =180°,∠AMG =∠HMK ,∴∠MAG +∠MGA =∠H +∠K.同理,∠NGD +∠NDG =∠E +∠F.∴∠BAK +∠B +∠C +∠CDE +∠MGN +∠E +∠F +∠H +∠K =∠BAK +∠MAG +∠MGA +∠MGN +∠NGD +∠NDG +∠CDE +∠C +∠B =∠BAG +∠AGD +∠GDC +∠C +∠B =540°.13.解:不符合规定,理由如下:延长AB ,CD 相交于G ,∵多边形AEFCG 为五边形,∴∠G =540°-90°-90°-122°-155°=83°≠80°,∴不符合规定.(第13题)14.解:李明、张钢两人的解法均不全面.正确的解答过程如下:当该等腰三角形的底边长为8cm 时,腰长为(28-8)×12=10(cm ).当该等腰三角形的腰长为8cm 时,底边长为28-2×8=12(cm ).根据三角形三边关系可验证这两种情况均成立.所以这个三角形的另外两边的长是10cm ,10cm 或8cm ,12cm .点拨:本题中没有明确8cm 是等腰三角形的底边长还是腰长,需对其进行分情况讨论,并用三角形的三边关系进行验证.15.解:∠C =∠B -10°=20°+∠A -10°=10°+∠A ,所以∠A +∠B +∠C =∠A +20°+∠A +10°+∠A =3∠A +30°=180°,所以∠A =50°.16.解:六边形有9条对角线,由四边形有2条对角线,五边形有5条对角线,六边形有9条对角线,推断n 边形有n (n -3)2条对角线.。

相关文档
最新文档