高中数学构造函数专题.docx

合集下载

专题08 导数压轴题之构造函数和同构异构详述(解析版)

专题08 导数压轴题之构造函数和同构异构详述(解析版)

导数章节知识全归纳专题08 导数压轴题之构造函数和同构异构(详述版)一.考试趋势分析:由于该内容在高考内容中考试频率相对比较低,然而它却在我们平时考试或是诊断型考试中出现又较高,并且该内容属于高中数学里面导数的基本考试题型之一,基本上尖子生里面的基础题,又是一般学生里面的压轴题,所以老师你觉得讲还是不讲呢?针对这个情况,作者进行了多年研究和分析,这个内容一定要详细讲述,并且结合技巧性让学生能够熟练掌握,优生几秒钟,一般学生几分钟就可以完成该题解答,是设计这个专题的核心目的! 二.所用知识内容: 1.导数八大基本求导公式:①0;C '=(C 为常数) ②()1;nn xnx-'=③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x xe e '= ⑥()ln x xa a a '=;⑦()1ln x x '=; ⑧()1l g log a a o x e x'= 2.常见构造:和与积联系:()()f x xf x '+,构造()xf x ;22()()xf x x f x '+,构造2()x f x ;3()()f x xf x '+,构造3()x f x ;…………………()()nf x xf x '+,构造()n x f x ;()()f x f x '+,构造e ()x f x .等等.减法与商联系:如()()0xf x f x ->',构造()()f x F x x=;()2()0xf x f x ->',构造2()()f x F x x =;………………… ()()0xf x nf x ->',构造()()nf x F x x =. ()()f x f x '-,构造()()ex f x F x =,()2()f x f x '-,构造2()()e xf x F x =,……………… ()()f x nf x '-,构造()()e nxf x F x =, 3.同构异构方法:1.顺反同构:顺即为平移拉伸后的同构函数,反即为乘除导致的凹凸反转同构函数. 2.同位同构:①加减同构是指在同构的过程中“加减配凑”,从而完成同构;②局部同构是指在同构过程中,我们可以将函数的某两个或者多个部分构造出同构式,再构造同构体系中的亲戚函数即可;③差一同构是指指对跨阶以及指数幂和对数真数差1,我们往往可考虑用同构秒杀之.三.导数构造函数典型题型: 1.构造函数之和差构造:例:1.已知定义在R 上的函数()f x 满足()220f =,且()f x 的导函数()f x '满足()262f x x >'+,则不等式()322f x x x >+的解集为( )A .{2}xx >-∣ B .{2}xx >∣ C .{2}xx <∣ D .{2∣<-xx 或2}x > 【答案】B 【分析】令函数()()322g x f x x x =--,求导,结合题意,可得()g x 的单调性,又()20g =,则原不等式等价于()()2g x g >,根据()g x 的单调性,即可得答案. 【详解】令函数()()322g x f x x x =--,则()()2620g x f x x =--'>',所以()g x 在R 上单调递增.因为()2g =()3222220f -⨯-⨯=,所以原不等式等价于()()02g x g >=,所以所求不等式的解集为{2}.xx >∣ 故选:B2.定义在()0,∞+上的函数()f x 满足()()10,42ln 2xf x f '->=,则不等式()xf e x <的解集为( ) A .()0,2ln 2 B .(),2ln 2-∞ C .()2ln 2,+∞ D .()1,2ln 2【答案】B 【分析】构造函数()()ln g x f x x =-,()0,x ∈+∞,先判断其导函数的正负,来确定该函数的单调性,再化简不等式为()()4xg e g <,根据单调性解不等式即可.【详解】设()()ln g x f x x =-,()0,x ∈+∞,则()()()110xf x g x f x x x'-''=-=>, 故()g x 在()0,∞+上单调递增,()()2l 4n 22ln 2404ln g f -===-,不等式()xf ex <,即()ln 0xxf e e-<,即()()4x g e g <,根据单调性知04x e <<,即ln 44x e e <=,得ln 4x <,即2ln 2x <,故解集为(),2ln 2-∞. 故选:B. 【点睛】 思路点睛:利用导数解不等式时,常常要构造新函数,新函数一方面与已知不等式有关,一方面与待求不等式有关,再结合导数判断单调性,利用单调性解不等式.变式:1.已知奇函数()f x 在R 上的导函数为()'f x ,且当(],0x ∈-∞时,()'1f x <,则不等式()()2101110102021f x f x x --+≥-的解集为( ) A .()2021,+∞ B .[)2021,+∞ C .(],2021-∞ D .(),2021-∞【答案】C 【分析】利用()'1f x <构造函数g (x ),即可得到函数g (x )的单调性,再将所解不等式转化为用g (x )表达的抽象函数不等式而得解. 【详解】因()'1f x <,即()10f x '-<,令()()g x f x x =-,则()0g x '<,()g x 在(,0]-∞上递减, 又()f x 是R 上的奇函数,则()g x 也是R 上的奇函数,从而有()g x 在R 上单调递减, 显然()()f x g x x =+,则有()()2101110102021f x f x x --+≥-(21011)(21011)[(1010)(1010)]2021g x x g x x x ⇔-+--+++≥-(21011)21011(1010)10102021g x x g x x x ⇔-+--+--≥- (21011)(1010)g x g x ⇔-≥+由()g x 在R 上单调递减得2101110102021x x x -≤+⇔≤, 所以所求不等式的解集为(],2021-∞. 故选:C 【点睛】关键点睛:解给定导数值特征的抽象函数不等式,根据导数值特征构造对应函数是解题的关键.2.构造函数之乘积构造:例:1.()f x 在()0,∞+上的导函数为()f x ',()()2xf x f x '>,则下列不等式成立的是( ).A .()()222021202220222021f f >B .()()222021202220222021f f <C .()()2021202220222021f f >D .()()2202220222021021f f <【答案】A 【分析】构造()2()f x g x x =,求导得3()2()0()xf x g x f x x '-'=>,知()2()f x g x x=在()0,∞+上为增函数,进而由(2022)(20221)g g >即可判断.【详解】令()2()f x g x x =,则243()()2()()2()x f x xf x xf x g x f x x x ''--'==, 因为在()0,∞+上的导函数为()()2xf x f x '>,所以在()0,∞+上()0g x '>,即()2()f x g x x=在()0,∞+上为增函数. 所以()()()()22202220212022202120222021f fg g >⇒>,即()()222021202220222021f f >.故选:A.2.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是( ) A .(,3)(0,3)-∞-B .()3,3-C .(3,0)(0,3)-⋃D .(,3)(3,)-∞-⋃+∞【答案】A 【分析】根据题目中信息其导函数为()f x ',若()2()0xf x f x '->可知,需构造函数2()()f x g x x=, 利用导函数判断函数()g x 的单调性,利用函数()g x 的单调性、奇偶性来解题,当0x > 时,即2()19f x x <,1()9g x <,当0x < 时,即2()19f x x >,1()9g x >. 【详解】 构造函数2()()f x g x x =,43'()2()'()2()'()xf x f x xf x f x g x x x x --=⋅= ,当0x > 时,()2()0xf x f x '->,故'()0g x >,()g x 在(0,)+∞ 上单调递增,又()f x 为偶函数,21y x =为偶函数, 所以2()()f x g x x=为偶函数,在,0()-∞ 单调递减. (3)1f -=,则(3)1f =,231(3)(3)39f g g -===(); ()19f x x x <, 当0x > 时,即2()19f x x <,1()(3)9g x g <=,所以(0,3)x ∈ ; 当0x < 时,即2()19f x x >,1()(3)9g x g >=-,所以(,3)x ∈-∞-. 综上所述,(,3)(0,3)x ∈-∞-⋃.故选:A 【点睛】需对题中的信息联想到构造函数利用单调性解不等式,特别是分为当0x > 时, 当0x < 时两种情况,因为两边同时除以x ,要考虑其正负.3.定义在R 上的连续函数()f x 的导函数为()'f x ,且cos ()(cos sin )()xf x x x f x '<+成立,则下列各式一定成立的是( ) A .(0)0f =B .(0)0f <C .()0f π>D .02f ⎛⎫=⎪⎝⎭π 【答案】C 【分析】设cos () ()e xx f x g x ⋅=,由条件可得()0g x '<,即()g x 在R 上单调递减,且02g π⎛⎫= ⎪⎝⎭,由此卡判断选项A ,B , C , 将2x π=代入条件可得02f π⎛⎫>⎪⎝⎭,可判断选项D. 【详解】由题可得cos ()sin ()cos ()xf x xf x xf x '-<,所以(cos ())cos ()xf x xf x '<,设cos () ()e x x f x g x ⋅=则(cos ())cos ()()0e xxf x xf x g x '-'=<, 所以()g x 在R 上单调递减,且02g π⎛⎫=⎪⎝⎭由(0)()2g g g ππ⎛⎫>>⎪⎝⎭可得() (0)0e f f ππ>>-, 所以(0)0f >,()0f π>,所以选项A 、B 错误,选项C 正确.把2x π=代入cos ()(cos sin )()xf x x x f x '<+,可得02f π⎛⎫> ⎪⎝⎭,所以选项D 错误,故选:C . 【点睛】关键点睛:本题考查构造函数,判断函数单调性判断函数值的符号,解答本题的关键是根据题意构造函数cos () ()e xx f x g x ⋅=,由条件得出其单调性,根据02g π⎛⎫= ⎪⎝⎭,判断选项,属于难题.变式:1.已知定义在0,2π⎛⎫⎪⎝⎭的函数()f x 的导函数为()f x ',且满足()()sin cos 0f x x f x x '-<成立,则下列不等式成立的是( )A64f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.36f ππ⎫⎫⎛⎛<⎪ ⎪⎝⎝⎭⎭C43ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D34f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】B 【分析】 构造函数()()sin f x g x x=,求导后可确定其单调性,利用单调性比较大小可判断各选项. 【详解】设()()sin f x g x x =,则2()sin ()cos ()0sin f x x f x x g x x -''=<,所以()g x 在0,2π⎛⎫⎪⎝⎭上是减函数, 所以()()64sin sin 64f f ππππ>()()64f ππ>,A 错;()()63sin sin 63f f ππππ>()()63f ππ>,B 正确; ()()34sin sin43f f ππππ>()()43ππ>,C 错;3f π⎛⎫ ⎪⎝⎭3π⎛⎫ ⎪⎝⎭与23f π⎛⎫ ⎪⎝⎭大小不确定,D 不能判断.故选:B . 【点睛】关键点点睛:本题考查比较大小问题,解题关键是构造新函数()()sin f x g x x=,由导数确定其单调性,从而可比较函数值大小.变式:2。

专题01 函数与导数之构造函数(解析版)

专题01 函数与导数之构造函数(解析版)

专题01 构造函数一、考情分析函数与导数是高考必考的知识点,考试形式有选择题也有填空题,并且都以压轴题为主。

题目难度都偏大,对学生的思维能力考查都要求比较高。

构造函数,是我们高中数学处理和研究函数与导数的一种有效方法,通过分离变量和参数,构造新的函数去研究其新函数的单调性,极值点,从而使问题得到解决。

二、经验分享(常见函数构造类型)(1).常见函数的变形1. 对于不等式()k x f >'()0≠k ,构造函数()()b kx x f x g +-=.2. 对于不等式()()0'>+x f x xf ,构造函数()()x xf x g =3. 对于不等式()()0'>-x f x xf ,构造函数()()xx f x g =()0≠x 4. 对于不等式()()0'>+x nf x xf ,构造函数())(x f x x g n=5. 对于不等式()()0'>-x nf x xf ,构造函数()n x x f x g )(=6. 对于不等式()()0'>-x f x f ,构造函数()x e)(x f x g =7. 对于不等式()()0'>+x f x f ,构造函数())(x f e x g x=8. 对于不等式()()0'>+x kf x f ,构造函数())(x f e x g kx = (2).双变量函数的变形1.形如()b a f f ab ⎛⎫⎪⎝⎭或的函数,构造函数,令b a t t a b ==或者,求(t)f ; 2.对于(x)f ,形如1212(x )(x )f f x x --的函数,要结合图像构造函数的切线方程,求斜率;3.形如(x)g(x)f >或(x)g(x)f <的函数不等式,(1).可以构造函数)(-)(x g x f x F =)(,然后求)(x F 的最大值和最小值;(2).如果(x)0g >,我们也可以构造函数()(x)(x)f G xg =,求()G x 的最值 .三、题型分析(一) 与圆锥曲线(双参数)有关的构造函数例1.【四川省成都市2019届高三第一次诊断性考试,理科,12】设椭圆()012222>>=+b a by a x C :的左右顶点为A,B.P 是椭圆上不同于A,B 的一点,设直线AP,BP 的斜率分别为m,n ,则当()||ln ||ln 32323n m mnmn b a +++⎪⎭⎫ ⎝⎛-取得最小值时,椭圆C 的离心率为( ) A.51 B.22 C.54D.23【答案】D【解析】设()()(),,,0,,0,00y x P a B a A -,点P 在双曲线上,得()01220220>>=+b a bya x C :,220222)(a x a b y -=,所以a x y m +=00,a x y m -=00,化简,22a b mn -= 原式⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+-+⎪⎪⎪⎪⎭⎫⎝⎛--=b a b a b a b a a b a b a b b a ln 63232ln 62323232222 所以设1>=b a t ,构造函数t t t t t f ln 63232)(23++-=,求导可以得到: 2t = 时,函数取得最小值=)2(f ,2=ba,23=e 。

构造函数之专题训练

构造函数之专题训练

.. “构造函数”之专题训练一、选择题1.定义在(0,+∞)上的函数f(x)满足f(x)>0,且2f(x)<xf′(x)<3f(x)对x∈(0,+∞)恒成立,其中f′(x)为f(x)的导函数,则()A.<<B.<<C.<<D.<<2.已知函数f(x)满足:f(x)+2f′(x)>0,那么下列不等式成立的是()A. B.<C.>D.f(0)>e2f(4)3.若函数f(x)满足f′(x)-f(x)=2xe x,f(0)=1,其中f′(x)为f(x)的导函数,则当x>0时,′的最大值为()A. B.2 C.2 D.44.己知定义在R上的函数y=f(x)满足f(x)=f(4-x),且当x≠2时,其导函数f′(x)满足f′(x)>xf′(x),若a∈(2,3),则()A.f(log2a)<f(2a)<f(2)B.f(2a)<f(2)<f(log2a)C.f(2a)<f(log2a)<f(2)D.f(2)<f(log2a)<f(2a)5.设f(x)是定义在R上的奇函数,f(2)=0,当x>0时,有′<0恒成立,则>的解集为()A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)6.已知奇函数f(x)的定义域为R,其导函数为f′(x),当x>0时,xf′(x)-f(x)<0,且f(-1)=0,则使得f(x)<0成立的x的取值范围是()A.(-1,0)∪(1,+∞)B.(-∞,1)∪(0,1)C.(0,1)∪(1,+∞)D.(-∞,-1)∪(-1,0)7.已知偶函数f(x)(x≠0)的导函数为f′(x),且满足f(1)=0,当x>0时,xf′(x)<2f(x),则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-1,0)∪(0,1)8.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,f′(x)+>0,若a=,b=-3f(-3),c=,则a,b,c的大小关系正确的是()A.a<b<cB.a<c<bC.b<c<aD.c<a<b9.已知函数f(x)(x∈R)满足f(1)=1,且f′(x)<1,则不等式f(1g2x)<1g2x 的解集为()A.,B.(10,+∞)C.,D.,,∞10.定义在R上的函数f(x)满足f(x)+f′(x)<e,f(0)=e+2(其中e为自然对数的底数),则不等式e x f(x)>e x+1+2的解集为()A.(-∞,0)B.(-∞,e+2)C.(-∞,0)∪(e+2,+∞)D.(0,+∞)11.设函数f(x)的导函数为f′(x),对任意x∈R都有xf′(x)<f(x)成立,则()A.3f(2)>2f(3)B.3f(2)=2f(3)C.3f(2)<2f(3)D.3f(2)与2f(3)的大小不确定.12.已知函数f(x)是定义在R上的可导函数,f′(x)为其导函数,若对于任意实数,都有f(x)>f′(x),其中e为自然对数的底数,则()A.ef(2015)>f(2016)B.ef(2015)<f(2016)C.ef(2015)=f(2016)D.ef(2015)与f(2016)大小关系不确定13.设函数f′(x)的偶函数f(x)(x∈R且x≠0)的导函数,f(2)=0且当x>0时,xf′(x)-f(x)>0,则使f(x)<0成立的x的取值范围为()A.(-∞,-2)∪(0,2)B.(-2,0)∪(0,2)C.(-2,0)∪(2,+∞)D.(-∞,-2)∪(2,+∞)14.对于R上可导的任意函数f(x),若满足(x-1)f′(x)≥0,则必有()A.f(0)+f(2)<2f(1)B.f(0)+f(2)≤2f (1)C.f(0)+f(2)≥2f(1)D.f(0)+f(2)>2f (1)15.函数f(x)的定义域为R,f(-1)=2015,对任意的x∈R.都有f′(x)<3x2成立,则不等式f(x)<x3+2016的解集为()A.(-1,+∞)B.(-1,0)C.(-∞,-1)D.(-∞,+∞)16.已知函数y=f(x)(x∈R)的图象过点(1,0),f′(x)为函数f(x)的导函数,e 为自然对数的底数,若x>0,xf′(x)>1下恒成立,则不等式f(x)≤lnx的解集为()A.(0,]B.(0,1]C.(0,e]D.(1,e]17.已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1-x)的解集是()A.(,+∞)B.(-∞,)C.(-∞,0)∪(0,)D.(0,)18.已知函数y=f(x)定义在实数集R上的奇函数,且当x∈(-∞,0)时xf′(x)<-f(x)成立(其中f′(x)是f(x)的导函数),若a=f(),b=f(1),c=-2f(log2),则a,b,c的大小关系是()A.c>a>bB.c>b>aC.a>b>cD.a>c>b19.定义在区间(0,+∞)上的函数f(x)使不等式2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)为f(x)的导数,则()A.8<<16B.4<<8C.3<<4D.2<<320.已知定义在R上的函数f(x)的导函数为f′(x),且满足f′(x)>f(x),则下列结论正确的是()A.f(1)>ef(0)B.f(1)<ef(0)C.f(1)>f(0)D.f(1)<f(0)21.已知f(x)是定义在R上的奇函数,f(-1)=-1,且当x>0时,有xf′(x)>f(x),则不等式f(x)>x的解集是()A.(-1,0)B.(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(1,+∞)1.B2.A3.B4.C5.B6.A7.D8.B9.D 10.A 11.A 12.A 13.B 14.C 15.A 16.B 17.C 18.A 19.B 20.A 21.C高中数学试卷第2页,共10页.. “构造函数”之专题训练答案和解析【答案】1.B2.A3.B4.C5.B6.A7.D8.B9.D 10.A 11.A 12.A 13.B 14.C 15.A 16.B 17.C 18.A 19.B 20.A 21.C【解析】1. 解:令g(x)=,x∈(0,+∞),g′(x)=′,∵∀x∈(0,+∞),2f(x)<xf′(x)<3f(x)恒成立,∴f(x)>0,0<′,∴g′(x)>0,∴函数g(x)在x∈(0,+∞)上单调递增,∴<,∴<.令h(x)=,x∈(0,+∞),h′(x)=′,∵∀x∈(0,+∞),2f(x)<xf′(x)<3f(x)恒成立,∴h′(x)=′<0,∴函数h(x)在x∈(0,+∞)上单调递减,∴>,∴<.综上可得:<<,故选:B.分别构造函数g(x)=,x∈(0,+∞),h(x)=,x∈(0,+∞),利用导数研究其单调性即可得出.本题考查了利用导数研究其单调性极值与最值、构造函数法,考查了推理能力与计算能力,属于中档题.2. 解:∵f(x)+2f′(x)>0,可设f(x)=,∴f(1)=,f(0)=e0=1,∴f(1)>,故选:A.根据题意可设f(x)=,然后代入计算判断即可.本题主要考查了初等函数的导数运算公式,关键是构造函数,属于基础题.3. 解:由题意,()′=2x,∴=x2+b,∴f(x)=(x2+b)e x,∵f(0)=1,∴b=1,∴f(x)=(x2+1)e x,f′(x)=(x+1)2e x,∴当x>0时,′=1+≤2,当且仅当x=1时取等号,∴当x>0时,′的最大值为2.故选:B.利用函数f(x)满足f′(x)-f(x)=2xe x,f(0)=1,求出f(x),再代入利用基本不等式即可得出结论.本题考查导数知识的运用,考查基本不等式,考查学生的计算能力,确定f(x)是关键.4. 解:∵定义在R上的函数y=f(x)满足f(x)=f(4-x),∴函数f(x)关于x=2对称,由f′(x)>xf′(x),得(x-2)f′(x)<0,则x>2时,f′(x)<0,此时函数单调递减,当x<2时,f′(x)>0,此时函数单调递增.∴当x=2时,f(x)取得极大值,同时也是最大值.若a∈(2,3),则4<2a<8,1<log2a<2,∴2<4-log2a<3,∴2<4-log2a<2a,即f(2)>f(4-log2a)>f(2a),即f(2a)<f(log2a)<f(2),故选:C根据条件得到函数关于x=2对称,由f′(x)>xf′(x),得到函数的单调性,利用函数的单调性和对称轴即可得到结论.本题主要考查函数单调性和对称性的应用,利用导数和函数单调性的关系是解决本题的关键,综合考查函数性质的应用.5. 解:设g(x)=,f(x)是R上的奇函数,∴g(x)为偶函数;x>0时,′′<;∴g(x)在(0,+∞)上单调递减,g(2)=0;∴由g(x)>0得,g(x)>g(2);∴g(|x|)>g(2);∴|x|<2,且x≠0;∴-2<x<0,或0<x<2;∴>的解集为(-2,0)∪(0,2).故选:B.可设g(x)=,根据条件可以判断g(x)为偶函数,并可得到x>0时,g′(x)高中数学试卷第4页,共10页.<0,从而得出g(x)在(0,+∞)上单调递减,并且g(2)=0,从而由g(x)>g (2)便可得到|x|<2,且x≠0,这样即可得出原不等式的解集.考查奇函数、偶函数的定义,根据导数符号判断函数单调性的方法,根据函数单调性解不等式的方法,知道偶函数g(x)>g(2)等价于g(|x|)>g(2).6. 解:设g(x)=,则g′(x)=′,∵当x>0时,xf′(x)-f(x)<0,∴当x>0时,g′(x)<0,此时函数g(x)为减函数,∵f(x)是奇函数,∴g(x)=是偶函数,即当x<0时,g(x)为增函数.∵f(-1)=0,∴g(-1)=g(1)=0,当x>0时,f(x)<0等价为g(x)=<0,即g(x)<g(1),此时x>1,当x<0时,f(x)<0等价为g(x)=>0,即g(x)>g(-1),此时-1<x<0,综上不等式的解集为(-1,0)∪(1,+∞),故选:A根据条件构造函数g(x)=,求函数的导数,判断函数的单调性和奇偶性,将不等式进行转化求解即可.本题主要考查不等式的求解,根据条件构造函数,利用导数研究函数的单调性,以及将不等式进行转化是解决本题的关键.7. 解:根据题意,设函数,当x>0时,′′<,所以函数g(x)在(0,+∞)上单调递减,又f(x)为偶函数,所以g(x)为偶函数,又f(1)=0,所以g(1)=0,故g(x)在(-1,0)∪(0,1)的函数值大于零,即f(x)在(-1,0)∪(0,1)的函数值大于零.故选:D.构造函数设函数,利用导数得到,g(x)在(0,+∞)是增函数,再根据f(x)为偶函数,根据f(1)=0,解得f(x)>0的解集.本题考查了抽象函数的奇偶性与单调性,考查了构造函数及数形结合的思想.解决本题的关键是能够想到通过构造函数解决.8. 解:定义域为R的奇函数y=f(x),设F(x)=xf(x),∴F(x)为R上的偶函数,∴F′(x)=f(x)+xf′(x)∵当x≠0时,f′(x)+>0.∴当x>0时,x•f′(x)+f(x)>0,当x<0时,x•f′(x)+f(x)<0,即F(x)在(0,+∞)单调递增,在(-∞,0)单调递减..F()=a=f()=F(ln),F(-3)=b=-3f(-3)=F(3),F(ln)=c=(ln)f (ln)=F(ln3),∵ln<ln3<3,∴F(ln)<F(ln3)<F(3).即a<c<b,故选:B.根据式子得出F(x)=xf(x)为R上的偶函数,利用f′(x)+>0.当x>0时,x•f′(x)+f(x)>0;当x<0时,x•f′(x)+f(x)<0,判断单调性即可证明a,b,c 的大小.本题考查了导数在函数单调性的运用,根据给出的式子,得出需要的函数,运用导数判断即可,属于中档题.9. 解:设g(x)=f(x)-x,则函数的导数g′(x)=f′(x)-1,∵f′(x)<1,∴g′(x)<0,即函数g(x)为减函数,∵f(1)=1,∴g(1)=f(1)-1=1-1=0,则不等式g(x)<0等价为g(x)<g(1),则不等式的解为x>1,即f(x)<x的解为x>1,∵f(1g2x)<1g2x,∴由1g2x>1得1gx>1或lgx<-1,解得x>10或0<x<,故不等式的解集为,,∞,故选:D构造函数g(x)=f(x)-x,求函数的导数,利用导数研究函数的单调性,求出不等式f(x)<x的解为x>1,即可得到结论.本题主要考查不等式的求解,构造函数,求函数的导数,利用函数单调性和导数之间的关系是解决本题的关键.10. 解:设g(x)=e x f(x)-e x+1-2(x∈R),则g′(x)=e x f(x)+e x f′(x)-e x+1=e x[f(x)+f′(x)-e],∵f(x)+f′(x)<e,∴f(x)+f′(x)-e<0,∴g′(x)<0,∴y=g(x)在定义域上单调递减,∵f(0)=e+2,∴g(0)=e0f(0)-e-2=e+2-e-2>0,∴g(x)>g(0),∴x<0,∴不等式的解集为(0,+∞)故选:A.构造函数g(x)=e x f(x)-e x+1-2(x∈R),研究g(x)的单调性,结合原函数的性质高中数学试卷第6页,共10页.和函数值,即可求解.本题考查函数的导数与单调性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.11. 解:设函数y=,则y′=′,∵xf′(x)<f(x),∴y′<0,可得y=对任意x∈R,函数y是减函数,∴<,可得3f(2)>2f(3).故选:A.构造函数,利用函数的单调性判断即可.本题考查函数的单调性的判断与应用,构造函数,求解导函数判断单调性是解题的关键.12. 解:令g(x)=,由题意,则g′(x)=′<0,从而g(x)在R上单调递减,∴g(2016)<g(2015).即<,∴e2015f(2016)<e2016f(2015),即ef(2015)<f(2016),故选:A.造函数g(x)=,通过求导判断其单调性,从而确定选项.本题是构造函数的常见类型,大多数题型是结合着选项中的结构和题中的条件来构造函数,形式灵活多变,考生需要多看多做多总结,才容易掌握此题型.13. 解:令g(x)=,∴g′(x)=′,∵x>0时,xf′(x)-f(x)>0,∴x>0时,g′(x)>0,∴g(x)在(0,+∞)上是增函数,∵f(2)=0,∴g(2)==0,当0<x<2,g(x)<g(2)=0,即f(x)<0,当x>2时,g(x)>g(2)=0,即f(x)>0,∵f(x)是偶函数,∴当-2<x<0,f(x)<0,故不等式f(x)<0的解集是(-2,0)∪(0,2),故选:B.构造函数g(x)=,利用导数得到,g(x)在(0,+∞)是增函数,再根据f(x).为奇函数,根据f(2)=0,解得f(x)<0的解集.本题考查了抽象函数的奇偶性与单调性,考查了构造函数及数形结合的思想.解决本题的关键是能够想到通过构造函数解决.14. 解:∵(x-1)f′(x)≥0,∴当x≥1时,f′(x)≥0,当x<1时,f′(x)≤0;故f(x)在(-∞,1)上不增,在[1,+∞)上不减,故f(0)≥f(1),f(2)≥f(1);故f(0)+f(2)≥2f(1),故选C.由题意,当x≥1时,f′(x)≥0,当x<1时,f′(x)≤0;从而可得f(x)在(-∞,1)上不增,在[1,+∞)上不减,故f(0)≥f(1),f(2)≥f(1);从而可得.本题考查了导数的综合应用,属于中档题.15. 解:令g(x)=f(x)-x3-2016,g′(x)=f′(x)-3x2,∵对任意的x∈R.都有f′(x)<3x2成立,∴对任意的x∈R,g′(x)<0,∴g(x)=f(x)-x3-2016在R上是减函数,且g(-1)=f(-1)+1-2016=2015+1-2016=0,故不等式f(x)<x3+2016的解集为(-1,+∞),故选:A.令g(x)=f(x)-x3-2016,求导g′(x)=f′(x)-3x2,从而确定不等式的解集.本题考查了导数的综合应用及函数的性质的判断与应用.16. 解:构造函数g(x)=f(x)-lnx(x>0),则g′(x)=f′(x)-=′>0,∴g(x)=f(x)-lnx在(0,+∞)上单调递增,∵f(x)≤lnx,∴g(x)≤0=g(1),∴0<x≤1,故选:B.构造函数g(x)=f(x)-lnx(x>0),确定g(x)=f(x)-lnx在(0,+∞)上单调递增,f(x)≤lnx,化为g(x)≤0=g(1),即可得出结论.本题考查导数知识的运用,考查函数的单调性,正确构造函数是关键.17. 解:∵f(x)是定义域为{x|x≠0}的偶函数,∴f(-x)=f(x).对任意正实数x满足xf′(x)>-2f(x),∴xf′(x)+2f(x)>0,∵g(x)=x2f(x),∴g′(x)=2xf(x)+x2f′(x)>0.∴函数g(x)在(0,+∞)上单调递增,∴g(x)在(-∞,0)递减;由不等式g(x)<g(1-x),∴>><或<<>,高中数学试卷第8页,共10页.解得:0<x<,或x<0∴不等式g(x)<g(1-x)的解集为:{x|0<x<或x<0}.故选:C.f(x)是定义域为{x|x≠0}的偶函数,可得:f(-x)=f(x),对任意正实数x满足xf′(x)>2f(-x),可得:xf′(x)+2f(x)>0,由g(x)=x2f(x),可得g′(x)>0.可得函数g(x)在(0,+∞)上单调递增.即可得出.本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题.18. 解:当x∈(-∞,0)时,xf′(x)<-f(x),即xf′(x)+f(x)<0,∴[xf(x)]′<0,∴令F(x)=xf(x),由函数y=f(x)是定义在R上的奇函数,则F(x)为偶函数,且在(-∞,0)上是减函数,在(0,+∞)上是增函数,由c=-2f(log2)=-2f(-2)=2f(2)=g(2),a=f()=g(),b=f(1)=g(1),由1<<2,可得b<a<c.故选:A.由f(x)为奇函数得到f(-x)=-f(x),有xf′(x)+f(x)<0,由导数的积的运算得到[xf(x)]′<0,令F(x)=xf(x),则F(x)为偶函数,且在(-∞,0)上是减函数,在(0,+∞)上是增函数,由c=-2f(-2)=2f(2)=g(2),a=f()=g (),b=f(1)=g(1),即可得到所求大小关系.本题主要考查函数的性质及应用,考查奇偶函数的定义及应用,函数的单调性及应用,以及应用导数的运算法则构造函数的能力,是函数的综合题.19. 解:令g(x)=,则g′(x)=′=′,∵xf′(x)<3f(x),即xf′(x)-3f(x)<0,∴g′(x)<0在(0,+∞)恒成立,即有g(x)在(0,+∞)递减,可得g(2)<g(1),即<,由2f(x)<3f(x),可得f(x)>0,则<8;令h(x)=,h′(x)=′=′,∵xf′(x)>2f(x),即xf′(x)-2f(x)>0,∴h′(x)>0在(0,+∞)恒成立,即有h(x)在(0,+∞)递增,可得h(2)>h(1),即>f(1),则>4.即有4<<8.故选:B.令g(x)=g(x)=,h(x)=,求出g(x),h(x)的导数,得到函数g(x),.h(x)的单调性,可得g(2)<g(1),h(2)>h(1),由f(1)>0,即可得到4<<8.本题考查了函数的单调性问题,考查导数的应用,构造g(x)=,h(x)=,求出g(x)和h(x)的导数,得到函数g(x)和h(x)的单调性是解题的关键,本题是一道中档题.20. 解:令g(x)=,则g′(x)=′=′,∵f′(x)>f(x),∴g′(x)>0,g(x)递增,∴g(1)>g(0),即>,∴f(1)>ef(0),故选:A.令g(x)=,利用导数及已知可判断该函数的单调性,由单调性可得答案.该题考查利用导数研究函数的单调性,由选项恰当构造函数是解决该题的关键所在.21. 解:∵f(x)是定义在R上的奇函数,令g(x)=,∴g(x)为偶函数,又当x>0时,xf′(x)>f(x),∴g′(x)=′>0;∴g(x)在(0,+∞)上是增函数,在(-∞,0)上是减函数;又f(-1)=-1,∴f(1)=1,g(1)=1;当x>0时,∵不等式f(x)>x,∴>1,即g(x)>g(1),∴有x>1;当x<0时,∵不等式f(x)>x,∴<1,即g(x)<g(-1),∴有-1<x<0;当x=0时,f(0)=0,不等式f(x)>x不成立;综上,不等式f(x)>x的解集是(-1,0)∪(1,+∞).构造函数g(x)=,根据题意得出g(x)为偶函数,且x>0时,g′(x)>0,g(x)是增函数;讨论x>0、x<0和x=0时,不等式f(x)>x的解集情况,求出解集即可.本题考查了函数奇偶性的应用问题,也考查了不等式的解法与应用问题,考查了构造函数的应用问题以及分类讨论的应用问题,是综合性题目.高中数学试卷第10页,共10页。

高中数学:构造函数方法(经典)

高中数学:构造函数方法(经典)

高中数学:构造函数常见构造函数方法:1.利用和差函数求导法则构造(1))()()()0(0)()(x g x f x F x g x f +=⇒<>'+'或;(2))(-)()()0(0)(-)(x g x f x F x g x f =⇒<>''或;(3)kx x f x F k x f -=⇒<>')()()(k )(或;2.利用积商函数求导法则构造(1))()()()0(0)()()(g )(x g x f x F x g x f x x f =⇒<>'+'或;(2))0)(()(g )()()0(0)()(-)(g )(≠=⇒<>''x g x x f x F x g x f x x f 或;(3))()()0(0)()(x x xf x F x f x f =⇒<>+'或;(4))0(x)()()0(0)(-)(x ≠=⇒<>'x x f x F x f x f 或;(5))()()0(0)(n )(x x f x x F x f x f n =⇒<>+'或;(6))0(x)()()0(0)(n -)(x n ≠=⇒<>'x x f x F x f x f 或;(7))(e )()0(0)()(x f x F x f x f x =⇒<>+'或;(8))0(e )()()0(0)(-)(x≠=⇒<>'x x f x F x f x f 或;(9))(e )()0(0)(k )(x f x F x f x f kx =⇒<>+'或;(10))0(e )()()0(0)(k -)(kx≠=⇒<>'x x f x F x f x f 或;(11))(sin )()0(0tanx )()(x xf x F x f x f =⇒<>'+或;(12))0(sin sinx)()()0(0tan )(-)(≠=⇒<>'x x f x F x x f x f 或;(13))0(cos cos )()()0(0)(tanx )(≠=⇒<>+'x xx f x F x f x f 或;(14))(cos )()0(0)(tanx -)(x f x F x f x f =⇒<>'或;(15)()+lna ()0(0)()()x f x f x F x a f x '><⇒=或;(16)()()lna ()0(0)()x f x f x f x F x a '-><⇒=或;考点一。

高中数学:构造函数方法(经典)

高中数学:构造函数方法(经典)

高中数学:构造函数常见构造函数方法:1.利用和差函数求导法则构造(1))()()()0(0)()(x g x f x F x g x f +=⇒<>'+'或;(2))(-)()()0(0)(-)(x g x f x F x g x f =⇒<>''或;(3)kx x f x F k x f -=⇒<>')()()(k )(或;2.利用积商函数求导法则构造(1))()()()0(0)()()(g )(x g x f x F x g x f x x f =⇒<>'+'或;(2))0)(()(g )()()0(0)()(-)(g )(≠=⇒<>''x g x x f x F x g x f x x f 或;(3))()()0(0)()(x x xf x F x f x f =⇒<>+'或;(4))0(x)()()0(0)(-)(x ≠=⇒<>'x x f x F x f x f 或;(5))()()0(0)(n )(x x f x x F x f x f n =⇒<>+'或;(6))0(x)()()0(0)(n -)(x n ≠=⇒<>'x x f x F x f x f 或;(7))(e )()0(0)()(x f x F x f x f x =⇒<>+'或;(8))0(e )()()0(0)(-)(x≠=⇒<>'x x f x F x f x f 或;(9))(e )()0(0)(k )(x f x F x f x f kx =⇒<>+'或;(10))0(e )()()0(0)(k -)(kx≠=⇒<>'x x f x F x f x f 或;(11))(sin )()0(0tanx )()(x xf x F x f x f =⇒<>'+或;(12))0(sin sinx)()()0(0tan )(-)(≠=⇒<>'x x f x F x x f x f 或;(13))0(cos cos )()()0(0)(tanx )(≠=⇒<>+'x xx f x F x f x f 或;(14))(cos )()0(0)(tanx -)(x f x F x f x f =⇒<>'或;(15)()+lna ()0(0)()()x f x f x F x a f x '><⇒=或;(16)()()lna ()0(0)()x f x f x f x F x a '-><⇒=或;考点一。

高三数学专题构造函数

高三数学专题构造函数

f x k 0, 因 此
1
1k
g
g0f
f
k1
k 1k
1
0f k
1k k1
1 ,1所以选 C.
k1
1
考点:利用导数研究不等式 【方法点睛】 利用导数解抽象函数不等式, 实质是利用导数研究对应函数单调性, 而对应函数需要构造 . 构
造 辅助函 数常根 据导数法则进 行:如 f x
f x构造 g x
fx ex , f x f x 0 构 造
, 1) ∪ (1 ,+∞)
考点:函数性质综合应用
2.若定义在 R 上的函数 f x 满足 f 0
1,其导函数 f x k 1 ,则下列结论中一定错误的是( )
1 A. f
k
1
B.
k
1 f
k
1 k1
C. f 1 k1
1 D. k1
1 f
k1
k k1
【答案】 C
【 解 析 】 试 题 分 析 : 令 g x f x kx , 则 g x'
g x ex f x , xf x f x 构造 g x
fx , xf x f x 0 构造 g x xf x 等
x
3.设定义在 (0 ,+∞ ) 上的函数 f(x) 满足 xf ′(x) - f(x) = xlnx , f 1 1 ,则 f(x)(
)
ee
A. 有极大值,无极小值
B.
有极小值,无极大值
C. 4 f 2017 2 f 2018 f 2016 D. 4 f 2017 2 f 2018 f 2016
【答案】 C
6 . 已 知 函 数 f x 在 0, 上 单 调 递 减 , f ' x 为 其 导 函 数 , 若 对 任 意 x 0, 都 有

高三数学专题 构造函数

高三数学专题 构造函数

构造函数一、单选题1.设函数f ′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf ′(x)-f(x)<0,则使得f(x)>0成立的x 的取值范围是( )A. (-∞,-1)∪(0,1)B. (-1,0)∪(1,+∞)C. (-∞,-1)∪(-1,0)D. (0,1)∪(1,+∞) 【答案】A考点:函数性质综合应用2.若定义在R 上的函数()f x 满足()01f =-,其导函数()1f x k '>>,则下列结论中一定错误的是( ) A. 11f k k ⎛⎫<⎪⎝⎭ B. 111f k k ⎛⎫> ⎪-⎝⎭ C. 1111f k k ⎛⎫<⎪--⎝⎭ D. 111k f k k ⎛⎫> ⎪--⎝⎭ 【答案】C【解析】试题分析:令()()g x f x kx =-,则()()g'0x f x k '=->,因此()()1111g 001111111k k g f f f k k k k k k ⎛⎫⎛⎫⎛⎫>⇒->⇒>-= ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,所以选C. 考点:利用导数研究不等式【方法点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e=, ()()0f x f x '+<构造()()xg x e f x =, ()()xf x f x '<构造()()f x g x x=, ()()0xf x f x +<'构造()()g x xf x =等3.设定义在(0,+∞)上的函数f(x)满足xf ′(x)-f(x)=xlnx , 11f e e⎛⎫= ⎪⎝⎭,则f(x)( ) A. 有极大值,无极小值 B. 有极小值,无极大值 C. 既有极大值,又有极小值 D. 既无极大值,又无极小值 【答案】D点睛:根据导函数求原函数,常常需构造辅助函数,一般根据导数法则进行:如()()f x f x '-构造()()xf xg x e =, ()()f x f x '+构造()()xg x e f x =, ()()xf x f x '-构造()()f x g x x=,()()xf x f x '+构造()()g x xf x =等4.设函数()f x 在R 上存在导函数()f x ',对于任意实数x ,都有()()26f x x f x =--,当(),0x ∈-∞时,()2112f x x +'< 若()()222129f m f m m +≤-+-,则m 的取值范围为( )A. [)1,-+∞ B. 1,2⎡⎫-+∞⎪⎢⎣⎭ C. 2,3⎡⎫-+∞⎪⎢⎣⎭D. [)2,-+∞ 【答案】C【解析】()()22330f x x f x x -+--=,设()()23g x f x x =-,则()()()0,g x g x g x +-=∴为奇函数,又()()()1''6,2g x f x x g x =-<-∴在(),0x ∈-∞上是减函数,从而在R 上是减函数,又()()22212129f m f m m m +≤-++-,等价于()()()()22232232f m m f m m +-+≤----,即()()22,22g m g m m m +≤-∴+≥-,解得23m ≥-,故选C.【方法点睛】利用导数研究函数的单调性、构造函数求参数范围, 属于难题.联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.5.设定义在R 上的函数()y f x =满足任意t R ∈都有()()12f t f t +=,且(]0,4x ∈时, ()()f x f x x'>,则()()()2016,42017,22018f f f 的大小关系( )A. ()()()22018201642017f f f <<B. ()()()22018201642017f f f >>C. ()()()42017220182016f f f <<D. ()()()42017220182016f f f >> 【答案】C6.已知函数()f x 在0,2π⎛⎫⎪⎝⎭上单调递减, ()'f x 为其导函数,若对任意0,2x π⎛⎫∈ ⎪⎝⎭都有()()'tan f x f x x <,则下列不等式一定成立的是A. 236f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭ B. 646f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C. 6326f f ππ⎛⎫⎛⎫>⎪⎪⎝⎭⎝⎭D. 346f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭【答案】D点睛:本题考查函数的导数与函数单调性的关系,解题的关键是根据题意构造新函数()()f x g x sinx=,并利用导数分析()g x 的单调性.7.已知定义在R 上的函数(f x ),其导函数为()f x ',若()()3f x f x '-<-, ()04f =,则不等式()3x f x e >+的解集是( )A. (),1-∞B. ()1,+∞C. ()0,+∞D. (),0-∞ 【答案】D点睛:利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.8.已知定义域为R 的奇函数()y f x =的导函数为()y f x =',当0x ≠时, ()()0f x f x x+'>,若1122a f ⎛⎫=⎪⎝⎭, ()1b f =--, 11ln ln 22c f ⎛⎫= ⎪⎝⎭,则a , b , c 的大小关系正确的是( ) A. a b c << B. c a b << C. b c a << D. a c b << 【答案】D【解析】设h (x )=xf (x ), ∴h ′(x )=f (x )+x •f ′(x ),∵y=f (x )是定义在实数集R 上的奇函数, ∴h (x )是定义在实数集R 上的偶函数, 当x >0时,h'(x )=f (x )+x •f ′(x )>0,∴此时函数h (x )单调递增.∵a=12f (12)=h (12),b=﹣f (﹣1)=f (1)=h (1), c=(ln 12)f (ln 12)=h (ln 12)=h (﹣ln2)=h (ln2),又1>ln2>12,∴b >c >a . 故答案为:D 。

高中数学构造函数解决导数问题专题复习

高中数学构造函数解决导数问题专题复习

高中数学构造函数解决导数问题专题复习高中数学构造函数解决导数问题专题复习【知识框架】【考点分类】考点一、直接作差构造函数证明;两个函数,一个变量,直接构造函数求最值;【例1-1】(14顺义一模理18)已知函数()(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)若在区间上函数的图象恒在直线下方,求的取值范围.【例1-2】(13海淀二模文18)已知函数.(Ⅰ)当时,若曲线在点处的切线与曲线在点处的切线平行,求实数的值;(Ⅱ)若,都有,求实数的取值范围.【练1-1】(14西城一模文18)已知函数,其中.(Ⅰ)当时,求函数的图象在点处的切线方程;(Ⅱ)如果对于任意,都有,求的取值范围.【练1-2】已知函数是常数.(Ⅰ)求函数的图象在点处的切线的方程;(Ⅱ)证明函数的图象在直线的下方;(Ⅲ)讨论函数零点的个数.【练1-3】已知曲线.(Ⅰ)若曲线C在点处的切线为,求实数和的值;(Ⅱ)对任意实数,曲线总在直线:的上方,求实数的取值范围.【练1-4】已知函数,求证:在区间上,函数的图像在函数的图像的下方;【练1-5】.已知函数;(1)当时,求在区间上的最大值和最小值;(2)若在区间上,函数的图像恒在直线下方,求的取值范围。

【练1-6】已知函数;(1)求的极小值;(2)如果直线与函数的图像无交点,求的取值范围;答案:考点二、从条件特征入手构造函数证明【例2-1】若函数在上可导且满足不等式,恒成立,且常数,满足,求证:。

【例2-2】设是上的可导函数,分别为的导函数,且满足,则当时,有()A.B.C.D.【练2-1】设是上的可导函数,,求不等式的解集。

【练2-2】已知定义在的函数满足,且,若,求关于的不等式的解集。

【练2-3】已知定义域为的奇函数的导函数为,当时,若,则下列关于的大小关系正确的是()DA.B.C.D.【练2-4】已知函数为定义在上的可导函数,且对于任意恒成立,为自然对数的底数,则()CA.B.C.D.【练2-5】设是上的可导函数,且,求的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I1例]定义在]R上的函数/(・T)满足:/(x) + f\x)> 1,/(()) =4,则不等式e x f(x) >e x + 3 (其中e为自然对数的底数)的解集为()。

A: (O.+oo)B: (—00,0) U (3, +oo)C: (-00, 0) U ((), +8)D: (3,+oc)(单选)定义在(O.+x)上的函数/仗)满足:/(x) > xf(x)9且/(2) = 4,则不等式f(x) - 2x > 0 的解集为()。

A. (2,4-oc)B. (0.2)C. (0.4)D. (4. -Foo) (单选)已知定义在R上的可导函数"==/(“)的导函数为fk),满足/(")</©),且/(()) = 2,则不等式凹> 2的解集为()。

e4*A. (―x.())B. (0.+oc)C. (一oo・2)D. (2,+oc)(单选)定义域为R的可导函数"二几门的导函数为d 满足/(」・)>/‘(・“,且/(0)=1,则不等式凹V 1的解集为()。

A.(—oo.())B.(0, +x)C.(—oo.2)D.(2. +oc)(单选)函数/何的定义域为R, /(-1) = 2,对任意T€R,f(x) > 2,则f(x) > 2x + 4 的解集为()oA. (― 1. +oo)B. (-oo.-l)C. (2・+x)D. (—oo. 一2)函数/(x)的定义域为R, /(-1) = 2015,对任意的XER .都有f\x) < 3z2成立,则不等式/(.r) < r34-2016 的解集为()A. (―l.+oc)B. (-1,0)C・(-oc. -1)D. (-oo.-Foo)F 例7(单选)函数/⑴的定义域是R, /(0) = 2,对任意』€R, /(」•) + #⑴>1,则不等式八・/(」・)>严+ 1的解集为()。

A. 叶 > 0}B. [x\.r < 0}C. {JC\I < -1,或T > 1}D. {x\x < -1,或0<r c 1}(单选)已知“町的定义域为(0・+oo), /©)为/(•「) 的导函数,且满足/(.r) < -.「/J),则不等式f(T + 1) >(Z — 1)/(/2— 1)的解集是()OA. (0.1)B. (l.+oc)C・(1.2)D. (2.4-00)F 例定义在IR上的可导函数/(对,当(L+oo)时,(x - — f(x) > 0恒成立,a = /(2),b = ^/(3),c =(刀 + 1)/(迈),贝!Ja、b、c的大小关系为()。

A: c < a < 6B: 6 < c < aC9. a < c < bD: c < 6 < o(单选)定义在R上的函数/仃)满足(・r + 2)r(.r) < 0(其中厂(”)是函数/(”)的导数),又o = /(logi 3), “ =/((*"),c = /(ln3),贝0 ( ) oA. </ < 6 < rB. I)< c <(iC. c < r/ < I)D. c < b < a(单选)定义在(6 :)上的函数/(.r),厂(•门是它的导函数,且恒有f(x) < f^x) taiix成立,贝(J ( ) ©A. ⑹&)<尼)6 3B. /(l)<2/(J)sinl6D.⑹吟)> 迈荷(单选)定义在R上的函数.々)满足:/©)〉/([)恒成立,若.门< .r2>则冲/(・八2)与严/(•□)的大小关系为()。

A. 十八/仗2)>严/(忑I)B. e"7(.r2)<e X2/ki)C. e J'1/(.r2) = e T V(.ri)D. /(・")与e r V(.ri)的大小关系不确定P例13(单选)已知函数匕=/⑴对任意的』• e R满足2•了(」•)一2Z/(T) In2 X),(其中尸⑴是函数/(丁)的导函数),则下列不等式成立的是()。

A. 2/(-2) < /(-I)B. 2/(1) > /(2)C. 4/(-2) > /(0)D. 2/(0) >/(1)•例14(单选)已知/(・『)为R上的可导函数,且对任意-relR 均有/(.r) > /(.r),则以下说法正确的是()。

A. e 2017(-2014) </(0),B. r ol4f(-2014) </(0),C. e2O17(-2014) >/(0), D. e 2O14/(-2014) >/(0), (单选)已知/(.门为定义在((),+00)上的可导函数, 且/(工)> 工尸(加)恒成立,则不等式- /(.r) > 0 X 的解集为()。

A. (0.1)B. (1.2)C. (1.4-oo)D. (2.4-00)(单选)已知函数/仗)(zeR),满足/(1) = 1,且贝II 不等式+ -的解集为( ■ 2 2)。

A ・(0,召)B ・(()・—)U (10, +oo)C •(訥D. (10.+oc)■例 17定义在((), + oo)上的可导函数人对的导数为f (⑦),且 4、6/(e)>3/(e 2)>2/(e 3)B 、 6/(e)<3/(^)<2/(e 3)C 、 6/(e)>2/(e 3)>3/(e 2) 2 6/(e)<2/(e 3)<3/(e 2)/(2014) > e 2014/(0) /(2014) < e 2O1,/(0) /(2014) < e 2014/(0) /(2014) > e 2O14/(0)■例18(单选)设函数/(』)的导函数为r(.r),若对任意工€ R都有f⑴>/⑴成立,则()。

A./(ln2014)<2014/(0)B./(ln2014)=2014/(0)C./(ln2014)>2014/(0)D./(ln2014)^2014/(0)的大小关系不确定—(单选)已知函数/(.r + 2)是偶函数,且当.r>2时满足xf(x) > 2f(x) + /(x),贝IJ ( ) oA. 2/(1) < /(4)B・2/(#)〉/(3)厶C./(())< 4尼)(单选)设函数尸Q・)是奇函数/(") (zCR)的导数,/(-1) = 0,当x>0W, xf f(x)-f(x}<09则使得fU) > 0成立的•『的取值范围是()。

A. (―oc.—1 )U(0,1)B. (一1.0)U(l,+x)C. (一8._l)u(-1,0)D. (0.1)U(l.+oo)(单选)设函数.©)是定义在It上的偶函数,尸⑴为其导函数。

当0>0时,f(T)+x-f(x)>0t且"1) = 0,则不等式x-f(x)>0的解集为()。

A. (-l.O)U(O.l)B. ( — 1.0) U (1,+oc)C. (—oo. -1) U (1,+x)D・(—oo. —1) U (0,1)(单选)已知函数〃 =/(『)是定义在R上的奇函数,且/©)-/(『)〉()(其中/£・)是/(”)导函数)恒成立。

若心一打(1),则心O 厶6, c的大小关系是()。

A. a > 6 > cB- c > a > bC・c > b > aD, b > c > a(单选)已知函数/(")是定义在/?上的奇函数,/(i) = o,当工>()时,有:r//(,r);/Cr)成立,则不等式/(,.) > 0的解集是()。

A. (-1.0) U (l,4-oo)B. (-1,0)C. (1,4-oc)D. (—oo.—1) U (1.4-oc)唯一的例外■例24(单选)设函数f(・r)是定义在(-oo,0)上的可导函数,其导函数为r(.r),且由.r/z U)>.r2 + 2/(z),则不等式4丁@ + 2014) 一(『+ 2014)7(-2) > 0的解集为 ()。

A. (—oo.—2012)B. (-2012.0)C. (-OO.-201G)D. (-201G.0)也许并不是构造I■例24(单选)函数儿・)在定义域R内可导,若/(!•) =/(2-Z),且@-1)作)>0,若a = /(0), " = /( +)‘ e = /(3),贝Ikhb.c的大小关系是()。

A. a > b> cB・c > a > bC. I)> a > cD・c > b > a(单选)已知函数g@)是偶函数,/(.r) = g(.r - 2)且当0*2时,其导函数尸⑴满足(丁-2)尸(巧>(),若l<a<3,则()。

A. /(4°) < /(3) < /(log3a)B・f(3) < /(log3a) < f(4a)C. /(log3a) < f(3) < f(4°)D. /(log3a) < f(4a) < f(3)(单选)已知尸(』•)是定义在R上的函数/(”)的导函数,且/(刃=/(5-刃肩-刃尸@) V 0.若X\ < J-2.J-1 + r2 < 5,则下列结论中正确的是()。

A・ /(xi) < f(x2)B. /(a*i) > f(jr2)C・ /(心)+ /(工2)< 0D・ /(xi) + /(x2)>0R例27设定义在(0, +oo)上的函数满足xf f(x) - /(x) = xlnx, /(-)=则几⑦)( e e)oA:有极大值,无极小值B:有极小值,无极大值C:即有极大值,又有极小值D:即无极大值,也无极小值测验题已知函数y = f(x)对任意的x € (-f, f)满足r(x)cosx + /(x)sinx > 0 , 则不等式成立的是()。

A V2/(-f) < 人-于) C /(0) > 2/(f)B < /(f) D /(O) > v^Af)测验题定义在R 上的函数人町满足:/(x) > 1且f(x) + f\x) > 1 ,几0) = 5, 则不等式ln[/(x) -1] > ln4-x 的解集为()。

相关文档
最新文档