超声波焊接机技术原理
超声波焊接机的工作原理

超声波焊接机的工作原理超声波焊接机是一种利用超声波振动将两个或多个工件连接在一起的设备。
它广泛应用于塑料焊接、金属焊接以及复合材料的加工等领域。
超声波焊接机的工作原理基于声波的传播和振动的产生。
1. 声波传播原理超声波是指频率高于20kHz的波动,其传播方式与常规声波有所不同。
超声波在空气中传播时,其能量损失较快,因此超声波焊接机通常在焊接过程中使用耦合剂,将超声波能量传递到工件上。
2. 振动系统超声波焊接机的振动系统由发生器、换能器和焊接头组成。
发生器产生高频电能,换能器将电能转换为机械振动,焊接头将振动传递给工件。
3. 换能器换能器是超声波焊接机的核心组件,它将电能转换为机械振动。
换能器通常由压电陶瓷材料制成,当施加电压时,压电陶瓷会发生压缩和膨胀,从而产生振动。
4. 焊接头焊接头是将振动传递给工件的部分。
它通常由金属材料制成,具有良好的导热性和机械性能。
焊接头的形状和尺寸根据焊接需求进行设计,以确保焊接质量和效率。
5. 焊接过程超声波焊接机的焊接过程包括以下几个步骤:a. 工件准备:将待焊接的工件放置在焊接头下方,确保工件表面清洁。
b. 施加压力:通过气缸或液压系统施加一定的压力,使工件紧密接触。
c. 发送超声波:发生器产生高频电能,换能器将电能转换为机械振动,通过焊接头将振动传递给工件。
d. 熔融和固化:工件在振动的作用下,摩擦产生热量,使接触面熔融,并在振动停止后迅速固化。
e. 冷却和固化:焊接完成后,对焊接区域进行冷却,使焊缝固化。
6. 焊接参数控制超声波焊接机的焊接参数包括振幅、压力、时间等。
这些参数的选择对焊接质量至关重要。
通常,焊接过程中需要根据工件材料、形状和尺寸等因素进行调整,以确保焊接质量和效率。
7. 优势和应用领域超声波焊接机具有以下优势:a. 高效快速:焊接速度快,一般只需几秒钟即可完成。
b. 焊接强度高:焊接接头强度高,接近或超过原材料的强度。
c. 无需添加材料:焊接过程中不需要焊接材料或填充剂,减少了成本和工艺复杂性。
超声波焊接机原理是什么

超声波焊接机原理是什么
超声波焊接是一种利用超声波振动引起的材料分子间的摩擦产生热量来实现焊接的方法。
其基本原理是通过将电能转化为超声波能,然后将超声波能转化为机械振动能,再通过焊接头传递给被焊接的材料。
具体来说,超声波焊接机中通常包含一个压头和一个换能器。
换能器将电能转化为超声波能,在超声波振动的作用下,焊接头不断地压在需要焊接的材料上。
由于焊接头的振动频率非常高(通常在20kHz以上),使焊接头在短时间内产生大量的微小振动,这种振动将会产生摩擦。
焊接头的振动能量被转移到焊接材料上,使材料表面分子不断地发生碰撞和摩擦,导致材料温度升高。
当材料温度升高到足够高时,材料变软,分子间的结合力变弱,焊接头的压力使材料表面分子之间发生扩散和交联,从而实现焊接。
总的来说,超声波焊接机利用超声波的振动引起的材料分子间的摩擦产生的热量,使材料表面温度升高,从而实现焊接。
这种焊接方法具有速度快、操作简单、能耗低等优点,在工业生产中得到广泛应用。
超声波焊接机的工作原理

超声波焊接机的工作原理超声波焊接机是一种常用于塑料焊接的设备,它利用超声波振动产生的热能来实现材料的熔接。
下面将详细介绍超声波焊接机的工作原理。
1. 超声波发生器:超声波焊接机的核心部件是超声波发生器。
超声波发生器通过电能转换为机械振动,产生频率在20kHz至70kHz之间的超声波。
2. 换能器:超声波发生器将电能转换为机械振动后,通过换能器将机械振动转换为超声波振动。
换能器由压电陶瓷材料制成,当施加电压时,压电陶瓷会发生机械振动。
3. 振动焊头:超声波振动通过焊头传递到工件上。
焊头通常由钛合金制成,具有良好的导热性能和机械强度。
焊头的形状和尺寸根据焊接材料和焊接要求进行设计。
4. 工件准备:要进行超声波焊接,首先需要将要焊接的工件准备好。
通常需要清洁工件表面,确保无油污和杂质。
接下来,将工件放置在焊接夹具中,以确保工件的位置和稳定性。
5. 焊接过程:当超声波振动通过焊头传递到工件时,工件表面的分子开始振动,并因摩擦产生热能。
这种热能使工件表面温度升高,直到材料熔化。
然后,焊头施加一定的压力,将熔化的材料压合在一起。
随着焊接时间的增加,熔化的材料逐渐冷却固化,形成焊接接头。
6. 控制系统:超声波焊接机配备了先进的控制系统,可以实现焊接过程的自动化和精确控制。
控制系统可以调节焊接参数,如振幅、焊接时间和压力,以适应不同材料和焊接要求。
超声波焊接机的工作原理基于超声波振动产生的热能,通过将材料熔化并压合在一起来实现焊接。
它具有焊接速度快、焊接强度高、无需使用焊接材料和填充剂等优点,广泛应用于汽车制造、电子产品制造、医疗器械等领域。
超声波焊接机原理

超声波焊接机原理超声波焊接机是一种常用于塑料焊接的设备,利用超声波的机械振动来实现焊接过程。
它可以在短期内实现高效、可靠的焊接,并且不需要使用额外的焊接材料或者添加剂。
超声波焊接机的工作原理可以分为以下几个步骤:1. 超声波振动系统:超声波焊接机通过压电陶瓷换能器将电能转换为机械振动能量。
这种换能器通常由陶瓷片和金属片组成,当施加电压时,陶瓷片会发生压缩和膨胀,从而产生高频的机械振动。
2. 聚焦系统:超声波焊接机利用聚焦系统将超声波能量集中到焊接部位。
聚焦系统通常由焊头和振动块组成。
焊头是一个金属块,它通过振动块与换能器连接,将超声波能量传递给焊接部位。
3. 塑料熔融:焊接部位通常由两个塑料件组成。
当超声波能量传递到焊接部位时,塑料件会受到振动力的作用,产生磨擦热。
这种磨擦热会使塑料件表面温度升高,进而使塑料熔融。
4. 压力施加:在塑料熔融的同时,超声波焊接机还会施加一定的压力。
这种压力可以匡助塑料件更好地接触并形成焊接接头。
同时,压力还可以促进熔融塑料的流动,使其充满焊接接头的空隙。
5. 冷却:当塑料熔融充满焊接接头后,超声波焊接机会住手振动,并保持一定的压力,使焊接接头冷却。
冷却过程中,熔融塑料会重新固化,形成坚固的焊接接头。
超声波焊接机的原理基于超声波的特性,其频率通常在20kHz至40kHz之间。
超声波具有高频率、短波长和高能量密度的特点,这使得它可以在短期内产生大量的热量,实现快速焊接。
超声波焊接机广泛应用于汽车、电子、医疗器械、家电等行业,可以用于焊接塑料零件、组装电子元件、封装器件等。
它具有焊接速度快、焊接质量高、无需额外材料等优点,因此被广泛使用。
总结起来,超声波焊接机利用超声波的机械振动和磨擦热原理,通过施加压力将塑料件熔融并形成焊接接头。
它是一种高效、可靠的焊接方法,广泛应用于各个领域。
超声波焊接机的工作原理

超声波焊接机的工作原理超声波焊接机是一种常见的焊接设备,它利用超声波的能量来实现材料的焊接。
下面将详细介绍超声波焊接机的工作原理。
1. 超声波发生器:超声波焊接机的核心部件是超声波发生器。
超声波发生器通过电能转换为高频机械振动,产生超声波能量。
2. 换能器:超声波发生器通过换能器将电能转换为机械振动能量。
换能器通常由压电陶瓷材料制成,当电流通过陶瓷时,它会振动并产生超声波。
3. 振动系统:振动系统由换能器、振动焊头和振动块组成。
换能器的振动能量通过振动焊头传递给要焊接的材料。
4. 焊接部件:超声波焊接机通常有两个焊接部件,分别是焊头和焊座。
焊头是固定在振动系统上的,它将超声波能量传递给焊接材料。
焊座是用于支撑和固定被焊接材料的部件。
5. 焊接过程:当超声波能量传递到焊接材料时,它会产生磨擦和热量。
焊接材料因为受到振动的作用而变软,形成塑性状态。
在振动的同时,焊接材料的份子间结合力也会发生改变,使得两个焊接部件在高温和高压的作用下形成坚固的焊接接头。
6. 控制系统:超声波焊接机还配备了控制系统,用于控制焊接过程的参数,如振动频率、振幅、焊接时间等。
控制系统可以根据不同的焊接要求进行调整,以确保焊接质量和效率。
超声波焊接机的工作原理可以简单总结为:通过超声波发生器产生高频机械振动能量,换能器将电能转换为机械振动能量,振动系统将能量传递给焊接部件,焊接部件产生磨擦和热量,使得焊接材料形成坚固的焊接接头。
超声波焊接机具有焊接速度快、焊接质量高、不产生污染等优点,广泛应用于塑料、金属、纺织品等行业。
它被广泛应用于汽车创造、电子设备创造、医疗器械创造等领域,为各行各业的生产提供了高效、可靠的焊接解决方案。
超声波焊接机的工作原理

超声波焊接机的工作原理超声波焊接机是一种常用于金属和塑料焊接的设备,它利用超声波振动将工件加热并连接在一起。
以下是超声波焊接机的工作原理的详细解释。
1. 超声波发生器:超声波焊接机的核心部件是超声波发生器。
它产生高频的电信号,并将其转换为机械振动。
2. 换能器:超声波发生器的电信号被传递到换能器上。
换能器是由压电陶瓷材料制成的,能够将电信号转换为机械振动。
换能器的振动频率通常在20kHz到70kHz之间。
3. 振动焊头:换能器产生的机械振动通过焊头传递给工件。
焊头通常由钛合金制成,具有良好的导热性和机械强度。
4. 压力系统:超声波焊接机通过压力系统将工件保持在一定的压力下。
这有助于确保焊接的质量和稳定性。
5. 聚焦角:焊头的设计通常具有特定的聚焦角度,以确保超声波能够集中在焊接区域。
聚焦角度的选择取决于工件的材料和形状。
6. 界面磨擦:焊接过程中,焊头施加在工件上的压力会产生界面磨擦。
这种磨擦会产生热量,使工件表面温度升高。
7. 塑性变形:由于焊头的振动和界面磨擦,工件表面的温度升高,材料开始软化。
在一定的压力下,工件开始发生塑性变形。
8. 熔融:随着温度的升高和塑性变形的发生,工件表面的材料开始熔融。
熔融的材料填充在焊接区域,并与另一工件表面的熔融材料相互融合。
9. 冷却固化:焊接完成后,焊接区域的温度会逐渐降低。
熔融的材料会在冷却过程中固化,形成坚固的焊接点。
超声波焊接机的工作原理基于超声波的机械振动和界面磨擦产生的热量。
它可以实现快速、高效、无污染的焊接过程,适合于各种金属和塑料材料的连接。
必能信超声波焊接机工作原理

必能信超声波焊接机工作原理
超声波焊接机是一种常用的无损连接技术,其主要工作原理是利用高频超声波振动引起的热量和压力,在连接两个或更多物体时产生强大的摩擦热来融合它们。
超声波焊接机的工作原理如下:
1. 超声波振动:超声波焊接机通过发生器将电能转换为高频机械振动,将频率提高到20 kHz以上,一般为20-40 kHz。
2. 运动传递:超声波振动通过波导传递到焊接头,使其在垂直方向上产生振动。
3. 摩擦热:当两个焊接部位受到振动作用时,它们之间的接触面产生大量的摩擦热,摩擦热可以使材料表面融化并形成熔池。
4. 压力作用:超声波焊接机的压头施加一定的垂直压力,使两个焊接部位之间的熔池流动并形成结合。
焊接头的几何形状和压力的大小对焊接质量有影响。
5. 冷却:当焊接头的振动停止时,熔池会迅速冷却,形成一条新的连接线。
超声波焊接机通常用于连接塑料、金属和复合材料等物体。
它具有不需要熔剂、不锈钢等特殊情况下很好的焊接效果,而且焊接速度快,能耗低,不会污染环境等优点。
- 1 -。
超声波焊接机的工作原理

超声波焊接机的工作原理IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】超声波焊接机的工作原理超音波焊接机的工作原理是:是通过振荡电路振荡出高频信号由换能器转化成机械能(即频率超出人耳听觉阈的高频机械振动能),该能量通过焊头传导到塑料工件上,以每秒上几十万次的振动加上压力使塑料工件的接合面剧烈摩擦后熔化。
振动停止后维持在工件上的短暂压力使两焊件以分子链接方式凝固为一体。
一般焊接时间小于1秒钟,所得到的焊接强度可与本体相媲美。
超声波塑料焊接机可用于热塑性塑料的对焊,也用于铆焊、点焊、嵌入、切除等加工工艺。
根据产品的外观来设计模具的大小、形状。
超声波塑料焊接机由气压传动系统、控制系统、超声波发生器、换能器及工具头和机械装置等组成。
1、气动传动系统包括有:过滹器、减压阀、油雾器、换向器、节流阀、气缸等。
工作时首先由空压机驱动冲程气缸,以带动超声换能器振动系统上下移动,动力气压在中小功率的超声波焊接中气压根据焊接需要调定。
2、控制系统控制系统由时间继电器或集成电路时间定时器组成。
主要功能是:一是控制气压传动系统工作,使其焊接时在定时控制下打开气路阀门,气缸加压使焊头下降,以一定压力压住被焊物件,当焊接完后保压一段时间,然后控制系统将气路阀门换向,使焊头回升复位;二是控制超声波发生器工作时间,本系统使整个焊接过程实现自动化,操作时只启动按钮产生一个触发脉冲,便能自动地完在本次焊接全过程。
整个控制系统的顺序是:电源启动一触发控制信号气压传动系统,气缸加压焊头下降并压住焊触发超声发生器工作,发射超声并保持一定焊接时间去除超声发射继续保持一定压力时间退压,焊头回升焊接结束。
3、超声波发生器(1)功率较大的超声波塑料焊接机,发生器信号采用锁相式频率自动跟踪电路,使发生器输出的频率基本上与换能器谐振频率一致。
(2)功率在500W以上的超声波塑料焊接机所用发生器采用自激式功率振荡器,也具有一定的频率跟踪能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波焊接机技术原理超声波焊接机工作原理是:通过物体上下振动,使焊接件伸缩发热熔接。
其机械原理是:把电能转化成机械能。
当超声换能器产生的能量传送到焊区,由于焊区,即两个焊接的交界面处声阻大,因此会产生局部高温。
由于塑料导热性差,热量聚集在焊区,使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。
一、超声波模治具架设不准确、受力不平均怎么办?在一般认为超音波作业时,产品与模具表面只要接触准确就可以得到应该的超声波焊接机熔接效果,其实这只是表面的看法,超音波既然是摩擦振,就会产生音波传导的现象.我们如果单只观察硬件(模治具)的稳合程度,而忽略了整合型态的超音波作业方式,必定会产生舍本逐末或误判的后果,所以在此必须先强调超音波熔接的作业方式是传导音波,使成振动摩擦转为热能而熔接. 这时候超音波模治具的稳合程度、产品截面的高低、肉厚、深浅、材质的组织,必定无法是百分之百承受相同的压力。
另一方面上模(H o r n)输出的能量,每一点都有其误差值,并非整个面发出的能量都相同。
就这整体而言,势必产生产品熔接线熔接程度的差异。
所以也就必须作修正,如何修正,那就是靠超音波熔接机本身的水平螺丝,或是贴较薄的胶带或铝箔来克服了。
二、塑料产品材质配合不当?每一种塑料材质的熔点,各有不同,例如ABS塑料材质的熔点约115℃,耐隆约175℃、PC之145℃以上、PE约85℃为例:ABS与PE二种材质的熔点差距太大,超音波熔接势必困难。
而ABS与PC二种材质,亦有差距,但已非前项差距如此之大,是以尚可熔接,但在超音波功率相同,能量扩大相同的情况下,相异的塑料材质,绝无法比相同材质的熔接效果好。
热熔塑胶分析图:三、超声波机台输出能量不足该怎么处理?客户在购买超音波熔接机时,通常较难预料未来产品发展的规格,所以会遇到较大产品对象超出超音波标准熔接的情形。
此时在不增加成本的预算下,只得以现有设备来作业生一、超声波模治具架设不准确、受力不平均怎么办?在一般认为超音波作业时,产品与模具表面只要接触准确就可以得到应该的熔接效果,其实这只是表面的看法,超音波既然是摩擦振,就会产生音波传导的现象.我们如果单只观察硬件(模治具)的稳合程度,而忽略了整合型态的超音波作业方式,必定会产生舍本逐末或误判的后果,所以在此必须先强调超音波熔接的作业方式是传导音波,使成振动摩擦转为热能而熔接. 这时候超音波模治具的稳合程度、产品截面的高低、肉厚、深浅、材质的组织,必定无法是百分之百承受相同的压力。
另一方面上模(H o r n)输出的能量,每一点都有其误差值,并非整个面发出的能量都相同。
就这整体而言,势必产生产品熔接线熔接程度的差异。
所以也就必须作修正,如何修正,那就是靠超音波熔接机本身的水平螺丝,或是贴较薄的胶带或铝箔来克服了。
四、塑料产品材质配合不当?每一种塑料材质的熔点,各有不同:例如:ABS塑料材质的熔点约115℃,耐隆约175℃、PC之145℃以上、PE约85℃为例:ABS与PE二种材质的熔点差距太大,超音波熔接势必困难。
而ABS与PC二种材质,亦有差距,但已非前项差距如此之大,是以尚可熔接,但在超音波功率相同,能量扩大相同的情况下,相异的塑料材质,绝无法比相同材质的熔接效果好。
五、超声波机台输出能量不足该怎么处理?客户在购买超音波熔接机时,通常较难预料未来产品发展的规格,所以会遇到较大产品对象超出超音波标准熔接的情形。
此时在不增加成本的预算下,只得以现有设备来作业生产。
碰到此种用小机台作大对象的情形,通常采取的方式有分好几次熔接、增加超音波输出功率(增加段)或增加熔接时间、压力等。
然而这也产生了质量不稳定的现象,因为电压与气压直接影响到超音波输出功率的稳定性。
也就是说上班或尖峰时间,使用超音波作业的产品质量,与大家都下班后的质量稳定是不相同的。
然而大家都下了班再使用超音波,那就不是工作效率了。
所以这时采取的对策就是气压源采取独立方式;要求在0.02m/m 以下之产品在超音波机台加装稳压设备;调整出力段数、增加功率,但一般状况超音波作业时功率输出最好能掌握在2~4 段之间,如一定要在5~6 段作业,则生产作业时间必须尽量缩短,以避免零件、振动子的损耗。
增加能量扩大器(H o r n上模)的扩大。
但扩大程度如果超出4:1,将对H o r n本身、音波、电流有极大的影响.焊接方法图片展示:六、焊接产品质量不稳定,怎么解决?最好的办法,选择大单位的超声波焊接设备,例如,我们欣宇产品就很好的.质量无法稳定最主要因素是输出功率不能稳定,以导致无法形成稳定的摩擦热能。
而如何让功率输出稳定机台输出功率;〈1〉H o r N 扩大比;〈2〉气压源;〈3〉电压源等四项。
1、机台输出功率+H o r N扩大比率=实际可用功率。
由此可知在一定产品实施超音波熔接时,于规划与设计的观点而言,机台输出功率愈强,相对H o r N的扩大比所设计的也愈小。
反之机台输出功率愈小,H o r N设计的扩大比也愈大。
例如:2200W的超音波熔接机,H o r N的扩大比是2.5 倍。
换成3200W超音波熔接机时,H o r N的扩大比可能只要1.5倍即可。
然而并非强调超音波熔接机输出的功率要大,而是要对一项塑料产品实施超音波熔接时,给予最适合的环境作业,其间尚需考虑成本的预算,产品的功能需求,熔接标准等考虑再来规划出完整的工作设备与超音波使用技巧。
2、在了解上述各种影响超音波熔接质量的关键性原因后,工程师在设计时,首当熟悉并评估1. 产品质量要求功能标准;现有超音波设备;3. 决定产品设计的形态、技巧如超音波导熔线、产品定位、材质)。
因为既然可用设备资源已经固定,那就必须用产品设计的技巧来配合现有可用的设备才是正确的。
4、在我们确定人为因素(1 ~ 2项)都无问题时,会发生质量不稳定现象,那肯定一个事实:即气压与电压产生的影响。
在我们多年来处理质量不能稳定现象时,也同时发现,在工作时间内无法达到的质量标准,却在大家都下班,停止电压、气压多数同时使用时,意外的达到质量要求标准。
因此也发现多人或多单位使用共同的气压与电压源时,由于空气压缩机通常我们会设定空气储存筒里面的气压低于2 ~ 4kg的情况时再自动打气充填这是一项形成的误差原因。
而气压源经过管路到达熔接机时,由于熔接速度快,第一次超音波熔接的气压与第二次或第三次存留于管路的气压亦形成误差,如此将形成周期性或非周期性的质量异动。
而电压也由于电力公司输出同时供数百万人都有机会同时使用,此时产生的电压降也不是我们所能控制,如此气压与电压的变量,确确实实的造成能量输出的变化,而影响精密质量的重要因素。
当然必须列为诊断项目。
七、超声波熔接后,移位了怎么办?1.降低熔接压力。
2.底模加高,使其超过熔接线2m/m 以上。
3.使用超音波传导熔接。
4.上模(HRON)压到产品才发振。
5.修改塑料产品,增强定位。
六、超声波熔接后,产生伤痕(断、震裂、烫伤)怎么办?1.降低压力。
2.减少延迟时间(提早发振)。
3.减少熔接时间。
4.引用介质覆盖(如PE袋)。
5.模治具表面处理(硬化或镀铬)。
6.机台段数降低或减少上模扩大比。
7.易震裂或断之产品,治具宜制成缓冲,如软性树脂或覆盖软木塞等(此项指不影响熔接强度)。
8.易断裂产品于直角处加R角。
八、超声波熔接后,发现变形扭曲怎么办?1.降低压力(压力最好在2kg 以下)。
2.减少超音波熔接时间(降低强度标准)。
3.增加硬化时间(至少0.8 秒以上)。
4.分析超音波上下模是否可局部调整(非必要时)。
5.分析产品变形主因,予以改善。
九、超声波熔接后,内部零件破坏怎么办?1.提早超音波发振时间(避免接触发振)。
2.降低压力、减少超音波熔接时间(降低强度标准)。
3.减少机台功率段数或小功率机台。
4.降低超音波模具扩大比。
5.底模受力处垫缓冲橡胶。
6.底模与制品避免悬空或间隙。
7.H o r N(上模)逃孔后重测频率。
8.上模逃孔后贴上富弹性材料(如硅利康)。
九、超声波熔接后,产品发现毛边或溢料怎么办?1.降低压力、减少超音波熔接时间(降低强度标准)。
2.减少机台功率段数或小功率机台。
3.降低超音波模具扩大比。
4.使用超音波机台微调定位固定。
5.修改超音波导熔线。
十、超声波熔接后,发现产品尺寸不稳定怎么调?1.增加熔接安全系数(依序由熔接时间、压力、功率)。
2.启用微调固定螺丝(应可控制到0.02m/m)。
3.检查超音波上模输出能量是否足够(不足时增加段数)。
4.检查治具定位与产品承受力是否稳合。
5.修改超音波导熔线。
十一、超声波熔接后时,产品总是单边烫伤怎么办?超音波振动熔接,并非单纯直线纵向振动(挠曲与横向振动不在此本次讨论中),而是形成交叉式纵向下降振动,而上模超音波输出端能量亦是有一定的强弱分布点,气压、电压、机台虽决定功率输出能量的稳定性,但能量分布点亦呈现比例性增减。
如果发现超音波熔接时制品总是单点烫伤,即表示上模该点输出能量与产品该点形成应力对应,此时若改变超音波振动面的接触点,将可改善热能集束产生的烫伤。
十二、超声波焊接原理超声波焊接是熔接热塑性塑料制品的高科技技术,各种热塑性胶件均可使用超声波焊接处理,而不需加溶剂,粘接剂或其他辅助品,其优点是增加多倍生产率,降低成本,提高产品质量。
超声波塑胶焊接原理:由发生器产生20KHZ,(或15KHZ)的高压,高频信号,通过换能系统,把信号转换为高频机械振动,加于塑料制品工件上,通过工作表面及内在分子间的磨擦而使传导到接口的温度升高,当温度达到此工件本身的熔点时,使工件焊接口迅速溶化,继而填充于接口间的空隙,当振动停止,工件同时在一定的压力下冷却定型,便达成完美的焊接。
十三、塑料件材料对超声波焊接的影响1.超声波在塑料件中传播,塑料件或多或少对超声波能量有吸收和衰减,从而对超声加工效果产生一定的影响,塑料一般有非晶体材料之分,按硬度有硬胶和软胶之分,还有模数的区分,通俗地来说,硬度高,低熔点的塑料超声加工性能优于硬度低、高熔点的塑料。
因此,这就牵涉到超声波加工距离的远近问题,2、塑料件的加工条件对超声焊接的影响塑料件经过注塑、挤压或吹塑等的不同加工形式以及不同的加工条件都会形成对超声焊接产生一定影响的因素。
A:湿度缺陷:湿度缺陷一般在制作有条纹或疏松的塑料件过程中形成,湿度缺陷在焊接中衰减有用能量,使密封位渗水,加长焊接时间,所以湿度高的塑料件在焊接前要作烘干处理。
如聚甲醛等。
B:注塑过程的影响:注塑过程参数的调整会引致如下缺陷:①尺寸变化(收缩、弯曲变形)②重量变化③表面损伤④统一性不佳C:保存期:塑料件注塑加工出来后,一般最少放置24小时后,再进行焊接,以消除塑料件本身应力、变形等因素。