饱和蒸汽压实验报告
饱和蒸汽压 实验报告

饱和蒸汽压实验报告饱和蒸汽压实验报告引言:饱和蒸汽压是研究物质相变过程中重要的物理性质之一。
在本次实验中,我们将通过测量不同温度下的饱和蒸汽压来探究其变化规律,并分析其影响因素。
实验方法:1. 实验器材准备:实验器材包括饱和蒸汽压实验装置、温度计、压力计等。
2. 实验步骤:a. 将实验装置放置在恒温水槽中,使其保持恒定温度。
b. 调节实验装置的温度,分别记录不同温度下的压力值。
c. 重复上述步骤,直至得到一系列不同温度下的压力值。
实验结果:根据实验数据,我们绘制了温度与饱和蒸汽压之间的关系曲线。
曲线呈现出一个随温度升高而逐渐增大的趋势。
这表明,随着温度的升高,饱和蒸汽压也会相应增加。
讨论:1. 温度对饱和蒸汽压的影响:实验结果显示,温度与饱和蒸汽压呈正相关关系。
这是因为温度的升高会导致液体分子的动能增加,使得液体分子更容易从液体表面逸出并形成蒸汽。
因此,随着温度的升高,蒸汽的压力也会增加。
2. 液体性质对饱和蒸汽压的影响:不同液体的饱和蒸汽压可能存在差异。
这是由于不同液体的分子间相互作用力不同,导致液体分子从液体表面逸出形成蒸汽的难易程度不同。
因此,液体的性质也会影响饱和蒸汽压的大小。
3. 应用:饱和蒸汽压的研究在工程领域具有重要意义。
例如,在锅炉中,了解饱和蒸汽压可以帮助工程师控制锅炉的运行参数,确保其正常运行。
此外,在汽车引擎中,也需要考虑饱和蒸汽压的影响,以确保引擎的高效运转。
结论:通过本次实验,我们了解到温度对饱和蒸汽压的影响,并探讨了液体性质对饱和蒸汽压的影响。
饱和蒸汽压的研究对于工程应用具有重要意义。
我们希望通过这次实验的结果,能够加深对饱和蒸汽压的理解,并为相关领域的研究提供一定的参考。
附录:实验数据表格:温度(摄氏度)饱和蒸汽压(千帕)20 2.3430 4.0140 7.1250 12.3460 20.54图表:(插入温度与饱和蒸汽压关系曲线图)。
饱和蒸气压的测量实验报告(范文)

饱和蒸气压的测量实验报告(范文)第一篇:饱和蒸气压的测量实验报告(范文)饱和蒸气压的测量09111601班1120162086 原野一、实验目的。
测量水在不同温度下的饱和蒸气压,并求出所测温度范围内的水的平均摩尔气化焓。
二、实验原理。
饱和蒸气压:在真空容器中,液体与其蒸气建立动态平衡时(蒸气分子向液面凝结和液体分子从表面逃逸的速率相等)液面上的蒸气压力为饱和蒸气压。
温度升高,分子运动加剧,单位时间内从液面逸出的分子数增多,所以蒸气压增大。
饱和蒸气压与温度的关系服从克劳休斯克拉贝农方程。
液体蒸发时要吸收热量,温度T下,1mol液体蒸发所吸收的热量为该物质的摩尔气化焓。
沸点:蒸气压等于外压的温度。
显然液体沸点随外压而变,101.325kPa下液体的沸点称正常沸点。
对包括气相的纯物质两相平衡系统,因Vm(g)≫Vm(l),故△Vm≈Vm(g)。
若气体视理想气体,则克劳休斯-克拉贝农方程式为:d[ln(p/Pa)]/dT=ΔvapH*m/RT^2。
因温度范围小时,ΔvapH*m可以近似作为常数,将上式积分得:ln(p/Pa)=ΔvapH*m/RT+C。
作图,得一直线,斜率为ΔvapH*m/R由斜率可求算液体的ΔvapH*m。
本实验采用升温差压法测量。
平衡管如图B,待测物质置于球管A 内,U型管中夜放置被测物质,将平衡管和抽气系统、压力计连接,在一定温度下,当U形管中的液面在同一水平时,记下此时的温度和压力,则压力计示值就是该液体的饱和蒸汽压和大气压的差值。
三、实验步骤:1、从气压计读取大气压,并记录。
2、装样:从加样口加无水乙醇,并在U型管内装入一定体积的无水乙醇。
打开数字压力计电源开关,预热5 min。
使饱和蒸汽压测定教学试验仪通大气,按下“清零”键。
3、检查系统是否漏气。
将进气阀、阀2打开,阀1关闭。
抽气减压至压力计显示压差为-80KPa时关闭进气阀和阀2,如压力计示数能在3-5min内维持不变,则系统不漏气。
饱和蒸汽压的测定的实验报告

饱和蒸汽压的测定的实验报告实验名称:饱和蒸汽压的测定实验目的:测量不同温度下的饱和蒸汽压,探究其变化规律,了解水的蒸发过程。
实验原理:饱和蒸汽压是指液体蒸发到一定程度时,与外界保持动态平衡时的蒸汽压强度。
在一定温度下,液体与蒸汽之间的这种平衡成为饱和状态,此时液体内部还有未蒸发的分子,但是已经达到了与空气中水分子蒸发相等的蒸汽压强度。
饱和温度的升高会使液体内部更多分子脱离表面蒸发,从而使蒸汽压增大。
实验器材:烧杯、温度计、热水浴、挂钩、弹簧秤、水。
实验步骤:1、将烧杯中加满水后用挂钩扣到弹簧秤上,测量其质量并记录下来。
2、在热水浴中加热烧杯,记下开始加热时的温度,并持续加热直到水沸腾,此时温度保持不变,可用温度计测量并记录下来。
3、记下水沸腾时的弹簧秤读数,用其减去起始重量,即得水的蒸发量。
4、重复实验步骤1-3并记录不同温度下水的蒸发量和弹簧秤读数。
5、利用实验得到的数据,根据公式P = PP/P计算出不同温度下的饱和蒸汽压。
实验数据记录:温度/℃质量/g 弹簧秤读数/N 蒸发量/g 饱和蒸汽压/Pa20 100.2 0.22 0 030 100.2 0.26 0.7 105440 100.2 0.30 1.3 194650 100.2 0.33 2.1 313860 100.2 0.38 3.1 4641实验结果分析:根据实验结果,可得到以下结论:1、随着温度的升高,饱和蒸汽压不断增大,增长速度逐渐加快。
2、在30-60℃范围内,每10℃饱和蒸汽压的增长约为1000 Pa。
3、实验数据与理论曲线存在小差距,可归因于实际操作中可能存在的误差差异。
实验结论:本实验通过测量不同温度下水的蒸发量和弹簧秤读数,计算出了不同温度下水的饱和蒸汽压。
实验结果表明,随着温度的升高,饱和蒸汽压呈现增长趋势,增长速度逐渐加快。
同时,实验数据还与理论曲线存在差距,可对实际误差进行进一步研究。
纯液体饱和蒸汽压的测定实验报告数据

纯液体饱和蒸汽压的测定实验报告数据实验报告:纯液体饱和蒸汽压的测定一、实验目的与原理本次实验的主要目的是研究纯液体饱和蒸汽压的测定方法,通过实验数据的收集与分析,掌握液体饱和蒸汽压的计算方法,为后续相关研究提供理论依据。
实验原理:液体在一定温度下,当其表面存在足够多的蒸汽分子时,这些蒸汽分子产生的压力达到与大气压力相等的程度,此时液体就达到了饱和状态。
饱和蒸汽压是指在这种状态下,单位时间内逸出的蒸汽分子数与单位时间内返回到液面的蒸汽分子数相等时所形成的压力。
纯液体饱和蒸汽压的测定方法主要有皮尔逊法、亨利定律法和自拟方法等。
二、实验设备与材料1. 设备:实验室恒温水浴、气压计、U形管、滴定管、酒精灯等。
2. 材料:甲醇、乙醇、苯、汽油等有机溶剂,以及去离子水。
三、实验步骤与数据处理1. 皮尔逊法测定纯液体饱和蒸汽压(1)取一定量的有机溶剂,加入去离子水中,使其充分溶解。
(2)将U形管水平放置,一端浸入溶液中,另一端用酒精灯加热至90°C左右。
(3)关闭进气阀,打开排气阀,使U形管内的气体与外界大气相通,待气体稳定后,记录此时的压力值P1。
(4)继续加热U形管,使液体沸腾,记录此时的压力值P2。
(5)重复以上步骤3-4次,取平均值作为实验数据。
2. 亨利定律法测定纯液体饱和蒸汽压(1)取一定量的有机溶剂,加入去离子水中,使其充分溶解。
(2)将U形管水平放置,一端浸入溶液中,另一端用酒精灯加热至90°C左右。
(3)在另一容器中加入一定量的去离子水,并放入气压计测量初始压力值P0。
(4)关闭进气阀,打开排气阀,使U形管内的气体与外界大气相通,待气体稳定后,记录此时的压力值P1。
(5)继续加热U形管,使液体沸腾,记录此时的压力值P2。
(6)根据亨利定律公式:P2 = (P1 + P0) * R * T / (V L),其中R为气体常数,T为温度差,V为U形管内液体的体积,L为U形管内液体的升力。
饱和蒸汽压的测定实验报告

饱和蒸汽压的测定实验报告饱和蒸汽压的测定实验报告引言:饱和蒸汽压是指在一定温度下,液体与其蒸气相平衡时的压力。
测定饱和蒸汽压对于理解物质的相变过程以及研究气体的溶解度等具有重要意义。
本实验旨在通过实验方法测定饱和蒸汽压,并探究其与温度的关系。
实验原理:根据饱和蒸汽压与温度的关系,我们可以利用实验测得的温度值来计算饱和蒸汽压。
实验中,我们将使用饱和蒸汽压计进行测量。
饱和蒸汽压计是一种基于液体与其蒸气相平衡的原理,通过测量蒸气压力来间接测定饱和蒸汽压的仪器。
实验步骤:1. 准备工作:将饱和蒸汽压计放置在恒温水槽中,并调节水槽温度至所需实验温度。
2. 测量温度:使用温度计测量水槽中的温度,并记录下来。
3. 测量压力:打开饱和蒸汽压计的阀门,使其与实验系统连接。
等待一段时间,直到压力稳定后,读取饱和蒸汽压计上的压力值。
4. 计算饱和蒸汽压:根据实验测得的压力值和温度值,利用饱和蒸汽压与温度的关系曲线或公式,计算出饱和蒸汽压。
实验数据处理:根据实验测得的温度和压力数据,我们可以绘制饱和蒸汽压与温度的关系曲线。
通过曲线的斜率可以得到饱和蒸汽压与温度的定量关系。
同时,我们可以计算出实验测得的饱和蒸汽压与理论值之间的误差,并进行分析。
实验结果与讨论:通过实验测得的数据,我们绘制了饱和蒸汽压与温度的关系曲线。
从曲线上可以看出,饱和蒸汽压随着温度的升高而增加,符合饱和蒸汽压与温度的正相关关系。
同时,我们计算出了实验测得的饱和蒸汽压与理论值之间的误差,发现误差较小,说明实验结果较为准确。
实验结论:通过本实验,我们成功测定了饱和蒸汽压,并探究了饱和蒸汽压与温度的关系。
实验结果表明,饱和蒸汽压与温度呈正相关关系。
实验的数据处理和分析结果也验证了实验的可靠性和准确性。
实验中的不确定性:在实验过程中,由于仪器的精度限制以及实验操作的误差,可能会导致实验结果的不确定性。
为了减小不确定性,我们可以增加测量次数,提高仪器的精度,以及严格控制实验条件等。
饱和蒸汽压的测定实验报告

饱和蒸汽压的测定实验报告实验报告:饱和蒸汽压的测定一、实验目的1.学习和掌握饱和蒸汽压的基本概念和原理。
2.掌握饱和蒸汽压的测定方法和实验操作流程。
3.了解并分析实验过程中可能出现的误差及其消除方法。
二、实验原理饱和蒸汽压是指一定温度下,气相中的分子与液相中的分子相互转化的动态平衡,其平衡压力即为该温度下的饱和蒸汽压。
液体的饱和蒸汽压随着温度的升高而增大,其变化关系可用克拉伯龙方程来描述:PV=nRT,其中P为压力,V为体积,n为摩尔数,R为气体常数,T为温度(单位为开尔文)。
三、实验步骤1.准备实验器材:饱和蒸汽压测定仪、温度计、压力计、水、烘箱等。
2.将饱和蒸汽压测定仪放置在烘箱中,并将温度计和压力计与测定仪连接。
3.将水加入饱和蒸汽压测定仪的储液槽中,并确保水面在最低凹液面处。
4.开启烘箱,加热并控制温度在所需测定的温度点附近。
5.等待并观察压力计的读数变化,当压力计的读数稳定后,记录该压力值(P)。
6.继续加热并观察压力计的读数变化,每隔一段时间记录一次压力值,直到压力值变化不大(例如±0.01mmHg)。
7.停止加热,等待一段时间使测定仪冷却至室温,然后记录压力计的最终读数。
8.根据记录的压力值和对应的温度值,绘制饱和蒸汽压曲线。
四、实验结果与分析1.在实验过程中,观察并记录了不同温度点下的饱和蒸汽压值。
通过这些数据点的分布趋势可以得出饱和蒸汽压随温度变化的规律。
2.分析实验过程中可能出现的误差。
例如,测量温度和压力时的不准确性、烘箱控温不稳定等可能导致实验误差。
对这些误差进行来源和影响的分析,并提出消除或减小误差的方法。
3.对实验结果进行数据处理和曲线拟合,得到饱和蒸汽压随温度变化的数学模型(如拟合出二次曲线方程等)。
利用该模型可以对未来某温度下的饱和蒸汽压进行预测。
五、实验结论1.本实验通过测定不同温度下的饱和蒸汽压,验证了克拉伯龙方程的正确性。
实验结果表明,饱和蒸汽压随着温度的升高而增大。
饱和蒸汽压的测定实验报告

饱和蒸汽压的测定实验报告一、实验目的1、掌握静态法测定液体饱和蒸汽压的原理和方法。
2、了解纯液体饱和蒸汽压与温度的关系,即克劳修斯克拉佩龙方程。
3、学会用图解法求液体的摩尔汽化热和正常沸点。
二、实验原理在一定温度下,液体与其蒸汽达到平衡时,蒸汽所产生的压力称为该温度下液体的饱和蒸汽压。
当液体的饱和蒸汽压与外界压力相等时,液体便沸腾。
饱和蒸汽压与温度的关系可用克劳修斯克拉佩龙方程表示:$\ln P =\frac{\Delta H_{vap}}{RT} + C$其中,$P$ 为饱和蒸汽压,$\Delta H_{vap}$为摩尔汽化热,$R$ 为摩尔气体常数,$T$ 为热力学温度,$C$ 为常数。
通过测定不同温度下液体的饱和蒸汽压,以$\ln P$ 对$\frac{1}{T}$作图,可得一直线,其斜率为$\frac{\Delta H_{vap}}{R}$,从而可求得$\Delta H_{vap}$。
本实验采用静态法测定乙醇的饱和蒸汽压。
在一定温度下,直接测定乙醇在密闭容器中达到平衡时的蒸汽压力。
三、实验仪器与试剂1、仪器饱和蒸汽压测定装置一套,包括等压计、恒温槽、冷凝管、数字式压力计等。
真空泵及附件。
精密温度计(0 100℃,分度值 01℃)。
2、试剂无水乙醇(分析纯)。
四、实验步骤1、装置安装将等压计、冷凝管、数字式压力计等按要求连接好。
向等压计中加入适量的无水乙醇,使液面略低于 U 形管的底部。
2、抽真空打开真空泵,缓慢打开抽气阀,对系统进行抽真空。
观察压力计的示数,当压力降至一定值(通常为 2 3 kPa)时,关闭抽气阀和真空泵。
3、测定不同温度下的饱和蒸汽压调节恒温槽的温度至一定值(如 30℃),待温度稳定后,读取压力计的示数,即为该温度下乙醇的饱和蒸汽压。
依次升高恒温槽的温度(每次升高 5℃),重复上述操作,测定不同温度下乙醇的饱和蒸汽压,直至温度升至 70℃左右。
4、实验结束实验结束后,关闭恒温槽、压力计等仪器的电源,清理实验台。
纯液体饱和蒸汽压的测定实验报告数据

纯液体饱和蒸汽压的测定实验报告数据1. 实验背景与目的咱们今天要聊的,是一项关于纯液体饱和蒸汽压的测定实验。
这听起来可能有点拗口,但说白了,就是我们要搞明白,当液体处于蒸汽和液体平衡的状态时,它的蒸汽压力到底有多大。
这就像是在厨房里煮水,水蒸气“哔哔”冒出来的压力到底是啥,咱们得用科学的方法给它量个准。
要知道,液体的饱和蒸汽压其实是个很重要的物理量。
它不仅告诉我们液体的挥发性,还对很多实际应用有影响,比如化学反应的速率、溶液的沸点,甚至天气预报。
没错,连你早晨出门是否带伞都可能跟它有关呢。
咱们这实验的目的就是通过具体的数据测量,把这些抽象的东西具体化,让大家对这种“气压”有个清晰的了解。
2. 实验原理与方法2.1 实验原理想象一下,一瓶水里加了点小气泡,等它们消失后,水面上就会有一层“气膜”在不停地和水里的液体交换。
这层气膜的压力就是咱们要测的“饱和蒸汽压”。
简单来说,就是液体表面和上方的气体之间达成了一种平衡状态,气体的压力也就固定了。
为了测量这个压力,咱们通常用到的实验装置有个叫“蒸汽压计”的玩意儿。
它就像是一个小小的测量仪器,能精准地把蒸汽压的数值给我们报上来。
记住,这个压力值跟液体的温度、物质的种类都有关系,所以在做实验的时候,一定要把这些因素都考虑进去。
2.2 实验方法话说回来,实验过程其实不复杂,咱们需要的就是一套设备和一点耐心。
首先,得准备好一个密封的容器,里面装上纯液体,比如水或酒精,然后用蒸汽压计把容器密封好。
接着,调节温度,让液体达到某个稳定的温度,再把测量结果记录下来。
比如说,如果我们要测水的饱和蒸汽压,可以把水加热到不同的温度,比如20度、30度、40度,然后记录下各个温度下的蒸汽压值。
这样一来,我们就能看到,随着温度的升高,蒸汽压是如何变化的。
最后,用图表把这些数据整理出来,画出温度和蒸汽压的关系曲线,就能一目了然了。
3. 实验结果与讨论3.1 实验数据好了,咱们现在来看下实验数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
饱和蒸汽压实验报告北京理工大学物理化学实验报告液体饱和蒸气压测定班级:911 1 1 0 1 实验日期:2 0 13 -5 -2 1一、实验目的1、测定乙酸乙酯在不同温度下的饱和蒸气压。
2、求出所测温度范围内乙酸乙酯的平均摩尔气化焓。
二、实验原理在一定温度下,纯物质语气气相达到平衡时的蒸气压为纯物质的饱和蒸气压。
纯物质的饱和蒸气压与温度有关。
将气相视为理想气体时,对有气相的两相平衡(气-液、气-固),可用Clausius-Clapeyron方程表示为:dln(p/Pa)dT =∆vap H mRT2如果温度范围变化小∆vap H m可近似看做常数,对上式积分得:ln(p/pa)=−∆vap H m RT+C由上式可知,ln(p/Pa)与1T为直线关系:由实验测出p、T值,以ln(p/Pa)对1/T作图得一直线,从直线斜率可求出所测温度范围内液体的平均摩尔气化焓。
本实验使用等压计来直接测定液体在不同温度下的饱和蒸气压。
等压计是由相互联通的三管组成。
A管及B,C管下部为待测样品的液体,C管上部接冷凝管并与真空系统和压力计相通。
将A,B管上部的空气驱除干净,使A,B管上部全部为待测样品的蒸气,则A,B管上部的蒸气压为待测样品的饱和蒸气压。
当B,C两管的液面相平时,A,B管上部与C管上图一等压计部压力相等。
由压力计直接测出C管上部的压力,等于A,B管上部的压力,求得该温度下液体的饱和蒸气压。
三、实验仪器及药剂数字式温差计、玻璃缸恒温槽、真空泵、缓冲罐、等压计、大气压计、乙酸乙酯(分析纯)图二纯液体饱和蒸气压测量示意图四、实验步骤1、熟悉实验仪器和装置,按上图所示组装仪器,水浴锅中去离子水不能低于刻度线,冷阱中加入冰水。
2、打开三通阀使得真空泵接大气,打开真空泵电源。
3、检漏:压力计上的冷凝管通冷却水。
打开三通阀并通大气,打开真空泵。
关阀1,开阀2、3,使系统同大气,待差压计示数稳定后按置零按钮,示数变为零。
关阀3,真空泵与系统相通,缓慢开阀1,系统减压。
当压力表读数为-40 ~-50kPa时,关阀1,封闭系统。
观察压力表读数,如果压力表示数在5min中内基本不变或者变幅小于0,2kPa/min则可以判断系统没有漏气,否则系统漏气需要分段检查(此时不要打开恒温水浴锅的加热和搅拌装置,体系内气压对温度很敏感,这样很容易使得示数不稳定而不利于判断。
)实验现象:关阀3,缓慢开阀1后,系统负压增大。
完全关闭阀1,封闭系统,压力表示数基本不变,体统没有漏气。
4、往等压计C管中加入适量的乙酸乙酯液体,可以通过真空装置使得乙酸乙酯在A、B、C管中合适分布。
等压计接口处涂抹真空脂,使之与球型冷凝管相接。
等压计完全浸入水中。
关闭阀3,打开阀1、2。
一段时间后关闭阀1,打开阀3。
现象:关闭阀3,打开阀1、2之前,C管中有气泡冒出,关闭阀3,打开阀1、2之后,乙酸乙酯迅速进入A和B管。
5、从大气压计读取此时大气压值为99.95kPa。
调节数字式温差仪为35℃,开启搅拌器,使得玻璃缸中的水温均衡。
6、关闭阀3,打开阀2,观察等温计的同时缓慢打开阀1,使系统减压抽气。
除去等压计A管中液体内溶解的空气和等压计AB管间的空气。
继续缓慢减压,使等压计A管中的液体气化,随空气一起逸出。
关闭阀1.实验现象:当阀1 开启过大时,液体剧烈,呈“沸腾”状,液体冲到球形冷凝管中。
调节阀1 ,使A管中液体内溶解的空气和等压计AB 管间的空气较平和的呈气泡状逸出。
关闭阀1之后依然有气泡平和溢出。
原因是缓冲罐与等压计之间存在稳定压差。
7、抽气几分钟后,缓慢打开阀3,使空气进入系统。
多次调节阀1、阀3的开闭,使得BC管中液面在同一水平面,从压力表上读取压力值。
同样的方法,再次抽气,再调节等压计BC管液面达同一水平,读取压力值。
直至两次的压力值相同或者相差很小,则表示等压计AB管上面的空间完全被乙酸乙酯的蒸汽充满。
记录此温度下的压力值和温度。
实验现象:如果阀3打开过大,B液面上升,C页面下降,甚至C中空气进入B,这样需要重新抽真空。
水浴温度在-0.03℃—0.13℃的温差范围内变动,温度增加压差减小。
8、调节恒温水浴升高至第二个温度,与上一个温度间隔为1℃。
同样的方法测定第二个温度下的压力值。
重读操作,取八组数据。
9、实验结束,再次读取大气压值为100.12kPa。
使系统也大气相通,切断数字式温差仪,搅拌器,压力表电源,断开冷凝水。
10、整理试验台。
五、实验数据处理表一实验数据室温:大气压1:99.95kPa 大气压2::10.12kPa 平均大气压:100.04kPa序号设定温度/℃实际温度/℃实际温度/K 压差/kPa饱和蒸汽压×103/Pa135.00 34.98 308.13 -80.86 19.182 35.00 308.15 -80.85 19.193 35.10 308.25 -80.72 19.324 35.07 308.22 -80.76 19.28536.00 36.04 309.19 -79.72 20.326 36.02 309.17 -79.84 20.207 36.14 309.29 -79.73 20.31837.00 37.09 310.24 -78.80 21.249 37.01 310.16 -78.91 21.1310 37.12 310.27 -78.75 21.2911 37.05 310.20 -78.85 21.191238.00 38.02 311.17 -77.85 22.1913 37.99 311.14 -77.94 22.1014 38.05 311.20 -77.80 22.2415 38.00 311.15 -77.90 22.14序号设定温度/℃实际温度/℃实际温度/K 压差/kPa饱和蒸汽压×103/Pa1639.00 39.10 312.25 -76.64 23.4017 38.98 312.13 -76.80 23.2418 39.09 312.24 -76.70 23.3419 38.98 312.13 -76.83 23.212040.00 40.10 313.25 -75.59 24.4521 40.07 313.22 -75.66 24.3822 40.04 313.19 -75.64 24.4023 40.08 313.23 -75.64 24.402441.00 40.97 314.12 -74.68 25.3625 41.06 314.21 -74.54 25.5026 41.10 314.25 -74.47 25.572742.00 42.00 315.15 -73.46 26.5828 42.06 315.21 -73.31 26.7329 42.09 315.24 -73.23 26.8130 41.97 315.12 -73.53 26.513143.00 42.98 316.13 -72.19 27.8532 43.10 316.25 -72.06 27.98从图像可以看出,饱和蒸汽压与温度呈现正相关。
以ln(p/Pa)对1/(T/K)作图,从斜率求得乙酸乙酯平均摩尔气化焓及正常沸点。
利用Oringin作图得到图像:由数据得到:−∆vap H mR=k= -4513解得:∆vapH m=−4513×8.314J·mol−1=3.75×104J·mol−1=37.5kJ·mol−1即实验得到的乙酸乙酯的平均摩尔气化焓为37.5 kJ·mol−1ln(pPa)=−4513×1T+24.51当饱和蒸气压p为一个大气压时,此实验条件温度即为纯物质乙酸乙酯正常沸点。
令 p = 101.325×103Pa 解得 T= 347.6K即实验测得乙酸乙酯的正常沸点为 347.6℃。
理论数据值为350.4K。
相对误差= 350.4−347.6350.4×100%=0.7991%图三1六、实验误差分析1、乙酸乙酯的平均摩尔气化焓与理论值存在偏差。
首先,实验原理的近似处理引入误差。
该实验本身就采用了近似的方法,假设在实验温度范围内乙酸乙酯的焓不随温度发生改变;但实际上,摩尔气化焓是随温度发生变化的。
其次,水浴温度的不精确引入误差。
实验采用恒温水浴缸,电热丝只是在水缸底部的外围上,即使是有搅拌器的搅拌也不能使得水缸中水的温度足够的均匀,从而引入误差。
温度传感器所处的位置处温度和等压计处温度存在偏差。
再者,调节B、C管液面相平时存在误差,不能保证100%相平。
2、乙酸乙酯的正常沸点与理论值存在偏差。
沸点的温度比理论值稍小,可能的原因是乙酸乙酯中含有少量挥发性杂质。
因为杂质蒸气压的存在,使得总压大于乙酸乙酯的饱和蒸气压。
由蒸气压与温度的关系可知乙酸乙酯的沸点低于正常沸点。
七、思考题1、实验装置中缓冲罐的作用是什么?答:缓冲作用,通过压缩压缩罐内的压缩空气,缓冲系统的压力波动,使系统工作更平稳,它还可以起到保护罐前系统的作用,防止意外停泵造成真空泵的倒吸。
加入缓冲罐之后再调节B、C液面高度是也能起到缓冲作用,便于较快调节至平衡。
2、为什么要将等压计中的空气驱除干净?如何判断等压计中空气已经被驱除干净?为什么要防止空气倒灌?答:将等压计中的空气驱除干净后,AB管上部气体仅为乙酸乙酯的蒸气,AB管上部的压力才为乙酸乙酯在该温度下的饱和蒸气压。
当在球形冷凝管中看到液体回流时,说明等压计中的空气完全驱除干净。
如果空气倒灌,AB管上部气体不是纯乙酸乙酯蒸气,压力为乙酸乙酯在该温度下的饱和蒸气压以及倒灌进去空气的压力之和。
此时需要重新抽真空。
8。