机器人手部结构详解及大量结构图
机器人手部结构

轮蜗杆或螺杆等机构组成复合式杠杆传动机构, 用以改变传动
比和运动方向等。
图 1.2.4 斜楔杠杆式手部
图1.2.5所示为滑槽式杠杆回转型手部简图, 杠杆形手指 4的一端装有V形指5,另一端则开有长滑槽。 驱动杆1上的圆
柱销2套在滑槽内, 当驱动连杆同圆柱销一起作往复运动时,
即可拨动两个手指各绕其支点(铰销3)作相对回转运动, 从而实 现手指的夹紧与松开动作。
1.2.1.机器人手部的功能及组成
• 功能 • 它的主要功能是:抓住工件,握持工件,释放工件。 • 抓住——在给定的目标位置和期望姿态上抓住工件,工 件在手爪内必须具有可靠的定位,保持工件与手爪之间准 确的相对位姿,并保证机器人后续作业的准确性。 • 握持——确保工件在搬运过程中或零件在装配过程中定 义了的位置和姿态的准确性。 • 释放——在指定点上除去手爪和工件之间的约束关系。 • 组成 • 驱动机构,传动机构,手指
指5固连在一起, 可绕支点回转。驱动力推动齿条作直线往复运
动, 即可带动扇齿轮回转, 从而使手指松开或闭合。
图 1.2.7 齿条齿轮杠杆式手部
(2) 平移型传动机构移动来实现张开或闭合动作的, 常用 于夹持具有平行平面的工件(如冰箱等)。 其结构较复杂,不如 回转型手部应用广泛。 ① 直线往复移动机构:实现直线往复移动的机构很多, 常 用的斜楔传动、齿条传动、螺旋传动等均可应用于手部结构。 如图1.9所示中,(a)为斜楔平移机构, (b)为连杆杠杆平移结 构, (c)为螺旋斜楔平移结构。 它们既可是双指型的, 也可是 三指(或多指)型的; 既可自动定心, 也可非自动定心。
工业机器人技术 机器人手部结构

知识准备
三、后驱RBR手腕结构
2. 手腕单元传动系统
手腕单元由B/T轴输入组件、B轴 减速摆动组件、T轴中间传动组件、 T轴减速输出组件,4个组件组成。 这四个组件安装在连接体1和摆动体 26中间。
各部分的结构如图所示。
任务实施
学习视频, 完成工作页内容
视频1
工业机器人技术与应用
任务一
项目三 工业机器人的机械系统
机器人手部结构
导入
什么是机器人的手部结构? 机器人的手部在哪里?
目录
学习目标
知识准备
任务实施
主题讨论
学习目标
学习目标
知识目标
1 前驱RBR手腕结构 2 后驱RBR手腕结构
学习重点
机器人RBR手腕结构
知识准备
一、机器人的基本结构
六自由度机器人的运动关节包括:J1轴(又称腰回转S 轴),J2轴(下臂摆动L轴),J3轴(上臂摆动U轴),J4 轴(手腕回转R轴),J5轴(腕摆动B轴),J6轴(手回转 T轴)。
“前驱”是指B轴和T轴的驱动电机直 接安装在上臂前段的内腔中。
这种结构对于小型机器人,手部负载 较低,采用的驱动电机体积小,重量轻, 布置在上臂前端,不会使上臂的重量增加 很多,又能够缩短传动链,简化结构。
知识准备
二、前驱RBR手腕结构
前驱RBR手腕传动系统由B轴减速摆 动、T轴中间传动、T轴减速输出三个组件 构成,这三个组件可以整体安装、拆卸。
B、T轴驱动电机2、26安装在上臂前 段内腔中,通过同步皮带和同步带轮向后面 传动系统传输动力。件
B轴减速摆动组件由摆动体、输入轴、 输出轴、谐波减速器的刚轮、柔轮、谐波 发生器组成,可整体安装,然后用键和螺 栓将同步带轮固定在输入轴上,即可完成 该组件的安装。
机器人手部结构

缓冲。为了更好地适应物体吸附面的倾斜状况,有的在橡胶吸
盘背面设计有球铰链。真空吸附取料手有时还用于微小无法抓 取的零件, 如图1.2.11所示。
图 1.2.10 真空吸附取料手
•
1.2.3.机器人手部的分类 • 由于被握工件的形状、尺寸、 重量、 材质 及表面状态等不同,因此机器人取料手是多 种多样的, 大致可分为以下几类: • (1) 夹钳式取料手; • (2) 吸附式取料手; • (3) 仿生多指灵巧手; • (4)其它手。
1.2.3.1 夹钳式取料手 • 夹钳式手部与人手相似, 是工业机器人广为 应用的一种手部形式。 它一般由手指(手爪) 和驱动机构、 传动机构及连接与支承元件 组成, 如图1.2.1所示, 能通过手爪的开闭动 作实现对物体的夹持。
用时, 往往采用如图1.2.15(b)所示的盘式电磁铁, 衔铁是固
定的, 衔铁内用隔磁材料将磁力线切断, 当衔铁接触磁铁物体 零件时, 零件被磁化形成磁力线回路,并受到电磁吸力而被吸
住。
图 1.2.15 电磁铁工作原理
图1.2.16所示为盘状磁吸附取料手的结构图。铁心1和磁盘
3之间用黄铜焊料焊接并构成隔磁环2,既焊为一体又将铁心和磁 盘分隔, 这样使铁心1成为内磁极, 磁盘3成为外磁极。其磁路
如图1.2.2所示的三种V型指的形状, 用于夹持圆柱形工件。 如图1.2.3所示的平面指为夹钳式手的指端,一般用于夹持方形工件(具有两 个平行平面), 板形或细小棒料。 另外,尖指和薄、长指一般用于夹持小型或柔性工件。 其中, 薄指一般用
于夹持位于狭窄工作场地的细小工件, 以避免和周围障碍物相碰; 长指一
机器人腕部结构分析

可编辑ppt
10
二自由度手腕图例:
BR手腕
BB手腕
RR手腕(属于单自由度)
可编辑ppt
11
1.按自由度的数目分(3):
三自由度手腕:
有R关节和B关节的组合构成的三自由 度手腕可以有多种型式,实现翻转、 俯仰和偏转功能。
可编辑ppt
12
三自由度手腕图例:
BBR手腕
R
BRR手腕
可编辑ppt
13
可编辑ppt
23
双回转油缸驱动手腕图例:
可编辑ppt
24
3.轮系驱动的二自由度BR手腕:
结构特点:
由轮系驱动可实现手腕回转和俯仰运动, 其中手腕的回转运动由传动轴S传递,手 腕的俯仰运动由传动轴B传递。
可编辑ppt
25
轮系驱动二自由度手腕图例(1):
回转运动:
轴 S 旋 转 → 锥 齿 轮 俯仰 副 Z1、Z2→ 锥 齿 轮 副 Z3、Z4→ 手 腕 与 锥齿 轮 Z4 为一体 → 手腕实现绕C轴的 旋转运动
可编辑ppt
28
轮系驱动二自由度手腕图例(3):
附加回转运动:
轴S不转而B轴回转→锥 齿 轮 Z3 不 转 → 锥 齿 轮 Z3、 Z4相啮合→迫使Z4绕C轴 线有一个附加的自转, 即为附加回转运动。 附加回转运动在实际使 用时应予以考虑。必要
时应加以利用或补偿。
可编辑ppt
29
附加运动动作分解:
轴主动
行星运动
齿轮固 定不动
可编辑ppt
30
4.轮系驱动的三自由度手腕:
结构特点:
该机构为由齿轮、链轮传动实现的偏转、 俯仰和回转三个自由度运动的手腕结构。
可编辑ppt
任务二机器人的手腕结构

手部(末端操作器) 工业机器人的 机械结构 手腕 手臂 机身 确定手部作业方向
工业机器人的手腕
课程目标
掌握机器人的手腕结构组成 掌握机器人的手腕工作原理 掌握机器人手腕的作用
工业机器人的手腕
机器人的手腕是连接手部与手臂的部件,它的主要作用是支承手 部,因此它具有独立的自由度,以满足机器人手部完成复杂动作的要 求。 一、手腕的分类
工业机器人的手腕
工业机器人按自由度数目
二自由度手腕 三自由度手腕
按驱动方式
直接驱动手腕
远距离传动手腕
工业机器人的手腕
二、手腕的典型结构 确定手部作业方向一般需要3个自由度 (1)臂转 绕小臂轴线方向的旋转。
(2)手转 使手部绕自身的轴线方向旋转。
(3)腕摆 使手部相对于臂进行摆动。
柔顺性概念
柔顺装配技术有两种:一种是从检测、控制的角度,采取各种不同的 搜索方法,实现边校正边装配。另一种是从机械结构的角度在手腕部配置 一个柔顺环节,以满足柔顺装配的要求。
机器人腕部结构

1、定义:腕部是臂部和手部的连接件,起支承手部和改变手部姿态的作用。
2、手腕的自由度:⏹为了使手部能处于空间任意方向,要求腕部能实现对空间三个坐标轴X、Y、Z的旋转运动。
这便是腕部运动的三个自由度,分别称为翻转R(Roll)、俯仰P(Pitch)和偏转Y(Yaw)。
⏹并不是所有的手腕都必须具备三个自由度,而是根据实际使用的工作性能要求来确定。
腕部坐标系手腕的偏转手腕的仰俯手腕的回转3、手腕的设计要求⏹结构紧凑、重量轻;⏹动作灵活、平稳,定位精度高;⏹强度、刚度高;⏹与臂部及手部的连接部位的合理连接结构,传感器和驱动装置的合理布局及安装等。
4、手腕的分类(1)二自由度手腕:可以由一个R关节和一个B关节联合构成BR关节实现,或由两个B关节组成BB关节实现,但不能由两个RR关节构成二自由度手腕,因为两个R关节的功能是重复的,实际上只起到单自由度的作用。
BR手腕BB手腕RR手腕(属于单自由度)(2)三自由度手腕:有R关节和B关节的组合构成的三自由度手腕可以有多种型式,实现翻转、俯仰和偏转功能。
BBR手腕BRR手腕5.按手腕的驱动方式分:⏹直接驱动手腕:⏹驱动源直接装在手腕上。
这种直接驱动手腕的关键是能否设计和加工出尺寸小、重量轻而驱动扭矩大、驱动性能好的驱动电机或液压马达。
⏹远距离传动手腕:⏹有时为了保证具有足够大的驱动力,驱动装置又不能做得足够小,同时也为了减轻手腕的重量,采用远距离的驱动方式,可以实现三个自由度的运动。
液压直接驱动BBR手腕图例远距离传动手腕图例6、典型结构(1)摆动液压缸(又称回转液压缸):⏹结构:⏹由缸体、隔板、叶片、花键套等主要部件构成。
其中叶片7固定在转子上,用花键将转子与驱动轴连接,用螺栓2将隔板与缸体连接。
⏹工作原理:⏹在密封的缸体内,隔板与活动叶片之间围成两个油腔,相当油缸中的无杆腔和有杆腔。
液压力作用在活动叶片的端面上,对传动轴中心产生力矩使被驱动轴转动。
摆动缸转角在270°左右。
机器手爪结构.

(1)夹钳式
传动机构:它是向手指传递运动和动力,以实现夹 紧和松开动作的机构。 1)回转型传动机构
夹钳式手部中较多的是回转型手部,其手指就是一 队(或几对)杠杆,再同斜楔、滑槽、连杆、齿轮、 蜗轮蜗杆或螺杆等机构组成复合式杠杆传动机构, 来改变传力比、传动比及运动方向等。
(1)夹钳式
回 转 型 传 动 机 构
(1)夹钳式
2)平移型传动机构 平移型夹钳式手部是通过手指的指面作直线往复运动或 平面移动来实现张开或闭合动作的,常用于夹持具有平 行平面的工件(如箱体等)。其结构较复杂,不如回转 型应用广泛。平移型传动机构据其结构,大致可分平面 平行移动机构和直线往复移动机构两种类型。
(1)夹钳式
平 移 型 传 动 机 构
(1)夹钳式 驱动装置:它是向传动机构提供动力的 装置。按驱动方式不同有液压、气动、 电动和机械驱动之分。 支架:使手部与机器人的腕或是不靠夹紧力来夹持工件,而是 利用手指对工件钩、拖、捧等动作来拖持工件。 应用钩拖方式可降低驱动力的要求,简化手部 结构,甚至可以省略手部驱动装置。它适用于 在水平面内和垂直面内作低速移动的搬运工作, 尤其对大型笨重的工件或结构粗大而质量较轻 且易变形的工件更为有利。
3.仿人机器人的手部
(1)柔性手
(2)多指灵活手
(2)钩拖式手部
有驱动装置
工作原理:依靠机构内力 来平衡工件重力而保持拖 持状态。驱动液压缸5以 较小的力驱动杠杆手指6 和7回转,使手指闭合至 拖特工件的位置。手指与 工件的接触点均在其回转 支点O1、O2的外侧,因此 在手指拖持工件后,工件 本身的重量不会使手指自 行松脱。
(2)钩拖式手部
弹簧式手部靠弹 簧力的作用将工件夹 紧,手部不需要专用 的驱动装置,结构简 单。它的使用特点是 工件进入手指和从手 指中取下工件都是强 制进行的。由于弹簧 力有限,故只适用于 夹持轻小工件。
《机器人手臂》PPT课件

h
34
五轴关节型机器人手臂运动图例(1):
偏转 肘转
俯仰
肩转
腰转
腰转姿态
h
35
五轴关节型机器人手臂运动图例(2):
肩关节、肘关节与手腕的协调
h
36
5.关节型机械臂的结构(2)
各运动的实现:
腕部的旋转:
电转机运M动5n→5 减速器R5→链轮副C5→锥齿轮副G5→旋 腕部俯仰:
电机M4→减速器R4→链轮副C4→俯仰运动n4 肘关节摆动:
h
5
工字钢(GB706-88):
1、工字钢的型号与高度尺 寸h有关,如:10号工字钢 即指其高度尺寸为100mm。
2、其它参数如截面积、单 位长度的理论质量、截面静 力矩等可查相应的设计手册。
3、工字钢的长度按长度系 列购买。如:5~19m。
h
6
工字钢
工字钢也称钢梁,是截面为工字形的长 条钢材。其规格以腰高( h)*腿宽(b)*腰 厚(d)的毫数表示,如“工160*88*6”, 即表示腰高为160毫米,腿宽为88毫米, 腰厚为6毫米的工字钢。工字钢的规格也 可用型号表示,型号表示腰高的厘米数, 如工16#。
h
25
丝杆螺母传动手臂升降机构
P47 图2.41
h
26
3.手臂俯仰运动机构
机器人手臂的俯仰运动一般采用活塞油 (气)缸与连杆机构联用来实现。手臂的 俯仰运动用的活塞缸位于手臂的下方, 其活塞杆和手臂用铰链连接, 缸体采用 尾部耳环或中部销轴等方式与立柱联接, 如图2.42、图2.43所示。此外,还有采用 无杆活塞缸驱动齿轮齿条或四连杆机构 实现手臂的俯仰运动。
电关节机摆M3动→n两3 级同步带传动B3、B3′→减速器R3→肘 肩关节的摆动:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回转型图例
平动型图例
用作图法分析当主动件左移才处于某个位置时,手指所处的位置。
平移型图例
⏹手指式:
⏹外夹式、内撑式、内外夹持式。
⏹平移式、平动式、旋转式。
⏹二指式、多指式。
⏹单关节式、多关节式。
⏹吸盘式:
⏹负压吸盘:真空式、喷气式、挤气式。
⏹磁力吸盘:永磁吸盘、电磁吸盘。
可用来吸附鸡蛋、锥颈瓶等物件。
扩大了真空吸盘在机器人上的应用。
回转动力源1和6驱动构件2和5顺时针或逆时针旋转,通过平行四边形机构带动手指3和4作平动,夹紧或释放工件。
手爪装有限位开关5和7。
在指爪4沿垂直方向接近工件6的过程中,限位开关检测手爪与工件的相对位置。
当工件接触限位开关时发信号,汽缸通过连杆3驱动指爪夹紧工件。