水力旋流器的主要技术参数
水力旋流器介绍PPT幻灯片

PDV 旁通
PSV下游 去闭排罐
管线
PDV
污油去
污油罐
8
水力旋流器剖视图
核心部 件水力 旋流管
9
10
水力旋流器工作原理
水力旋流器是重力聚结器的一种,它利用两种液体的 密度差,借助于离心力,使油滴从水中分离出去。
含油污水沿切线方向进入圆筒涡旋段后形成旋流,进 入缩径段后由于截面的改变,使流速增大形成螺旋流态, 由于油和水的密度差,水附着于旋流管壁而油滴向中心移 动。流体进入细锥段后,截面不断缩小,流速继续增加, 离心力也随着增大,小油滴被挤入锥管中心聚合形成油心 ,在净化水沿着旋流管壁呈螺旋线向前流动的同时,低压 区的油芯向后流动并从溢流口排出,而净化水则由集水腔 流出,从而完成了油水分离。 (如下图所示)
如下图所示121314常规水力旋流管结构巨涛改进后水力旋流管结构151617inletoil2000ppmoutletoil3050ppm进口压力600kpag以上18影响水力旋流器分离效果的因素影响水力旋流器分离效果的因素19问题与讨论20水力旋流器在运行中必须控制好两个主要参数1操作必须控制在最大和最小流速之间对于泵送系统必须保持稳定的流速水力旋流器有一个最小速度
11
水力旋流管结构与作用
12
13
常规水力旋流管结构
巨涛改进后水力旋流管结构
14
流态模拟对比
15
改进后的优点
16
巨涛水力旋流管特点
Inlet oil < 20时间很短,占地面积小 适用于重度低于0.92油品 进口压力600kPag以上
17
Outlet oil=30-50ppm
压,差压比通常在1.7~2.0之间。
22
控制逻辑与保护
水力旋流器分级原理

水力旋流器分级原理水力旋流器最早在20世纪30年代末在荷兰出现。
水力旋流器是利用回转流进行分级的设备,并也用于浓缩、脱水以致选别。
它的构造很简单,如图3-16(a)、(b)所示。
主要是由一个空心圆柱体1和圆锥2连接而成。
圆柱体的直径代表旋流器的规格,它的尺寸变化范围很大,由50 mm到1000 non,通常为125~500 oun。
在圆柱体中心插入一个溢流管5,沿切线方向接有给矿管3,在圆锥体下部留有沉砂口4。
矿浆在压力作用下,沿给矿管给入旋流器内,随即在圆筒臃器壁限制下作回转运动。
粗颗粒因惯性离心力大而被抛向器壁,并逐渐向下流动由底部排出攻为沉砂。
细颗粒向器壁移动舶速度较小,被朝向中心流动的液体带动由中心溢流管排出,成为溢流。
水力旋流器是一种高效率的分级、脱泥设备,由于它的构造简单,便于制造,处理量大,在国内外已广泛使用。
它的主要缺点是消耗动力较大,且在高压给矿时磨损严重。
采用新的耐磨材料,如硬质合金、碳化硅等制作沉砂口和给矿口的耐磨件,可部分地解决这一问题。
此外,当用于闭路磨矿的分级时,因其容积小,对矿量波动没有缓冲能力,不如机械分级机工作稳定。
为明了矿物颗粒在旋流器内的分离过程,有必要先说明液流的运动特性。
矿浆给入旋流器后呈螺旋线状,一面回转一面向中心推移,最后由上下两端排出,如图3-17所示。
矿浆的这种流动属于空间运动体系,为此要查明液流的速度分布,须将旋流器内任一点的速度分解为三个互相垂直的方向,即切线方向、径向方向和平行于轴线的方向。
盖勒萨尔(D.F.Kel阻Ⅱ,1952年)曾以内径76 nun的透明水力旋流器,用光学方法观测加入水中的铝粉运动速度,在给水量约为50 L/min条件下,得到了下述三个方向速度的变化规律。
液体进入旋流器的初期沿轴向的运动方向基本是向下的,但由于下面的流动断面愈来愈小,内层矿浆即转而向上流动。
将轴向速度方向的转变点u.=0连接起来,可得到一个空间圆锥面,即图3-21中虚线AB所围成的锥形面。
国内外旋流器技术参数

国内外旋流器技术参数1、澳大利亚重介旋流器流量参数说明:以上数据基于9倍的重介旋流器直径的压力下所得数据.*表示参考指标,Φ1150重介旋流器的Ep参考值约为0.022,Φ1300重介旋流器的Ep参考值约为0.018,选用更大直径的重介旋流器所取得的分选效果要相对好一些。
表中入料固体物流量所对应的介质与煤的体积比为2。
5:1,实际选用时应取2.8:1或3:1。
2、国内旋流器2。
1无压给料三产品重介质旋流器原理三产品重介质旋流器是由一台圆筒—圆锥型旋流器与一台锥结合型旋流器串联而成。
筒型旋流器呈30°倾斜放置,在上部与筒-锥型旋流器相串接.介质由筒型旋流器下部沿切线方向给入,原煤则由上部中心管给入。
分选是从低密度进行,低密度的煤由第一段筒型旋流器的下部溢流管排出,中间产品由上部排出,沿切线方向进入第二段筒-锥型旋流器,在该处获得最终中煤和矸石。
从三产品旋流器的第一段不仅可以得到质量高的精煤和稀的重介质,而且可以有效地提高第二段的分选密度。
特点无压给料三产品重介质旋流器可用一种原始密度的悬浮液选出三种产品。
具有入料粒度上限高、处理能力大、分选效率高的特点。
使用无压给料大大简化了选煤厂的工艺配置,设备费用及投资及厂房投资均可大幅度降低。
同时无压给料,还降低了设备的运行费用。
适用范围高硫、较难选、难度和极难选原煤主要技术特征2。
2有压给料两产品重介质旋流器工作原理在重介质旋流器中的煤与矸石受重力与离心力的作用,当颗粒密度大于悬浮液密度时,所受作用力方向与离心加速度方向相同,颗粒在旋流器介质中做离心运动,集中在外层.由于干扰下沉作用,紧贴器壁的是大矸石,其次是中等粒度、小粒度矸石汇合形成螺旋运动的矸石带,当矿浆到达锥体部分时离心力急剧增加,形成明显颗粒带。
当颗粒密度小于悬浮液密度时,颗粒在旋流器中作向心运动,并集中在旋流器的中心轴附近,呈螺旋运动形成中煤和精煤带。
当煤浆运动到溢流管时,精煤和中煤被压向溢流管,在此处由于溢流管底部的涡流作用发生了二次分选。
水力旋流器的操作参数与物性参数对其性能影响研究

液 相 粘 度
“l
流 器 的操作性 能上 来 说 ,分级 能 力 的大小 是 旋流器
点 :结 构 简 单 紧 凑 ,易 于 安 装 和 操 作 ;无 运 动 部
件 ,几乎 不需 要维 护 ;设备 成本 低廉 ;体积小 ,附
属 设备 占地 面积 也小 ,单位 面积 处理 量大 ,可 节省
现 场空 间 ;易于 连续 化操 作及 自动 控 制等 。
从 我 国现有 的选矿 行业 以及 火 电厂脱硫 制浆分 级使用 的水力旋流器来看 ,由于引进的国家及厂家不 同,因此规格众多 ,结构差异很大 ,因而操作条件千 差万别 。在实 际生产上为 了更好地使用设备 ,充分发 挥其功效 ,提高产量 ,就要通过调节旋流器的物性参 数和操作 参数来 满足生产 要求 。主要 因素见 右表 。
的一个 最主 要 的性 能 。旋 流器 是一 种 耗 能的分 离 设
备 ,具体 的能耗 的大 小是 由被 处理 的物料 经 过旋 流 器 时 的压 降 的大 小来 表示 的 ,因此一 个旋 流器 的压 降 大小 构成 了旋 流器 的第 二个 性 能参 数 。从磨 机 出 来 的分散 相颗 粒 不是 单一 粒径 的颗粒 ,而是 由不 同 粒 径 的颗 粒组 成 ,可 以用 分级 效率 来 衡量 固 液水 力 旋 流器 的性 能 。压 力 降 为各种 旋 流器 的通 用性 能 参
Ab t a t T e a h e e n sa d p o r s ft er s a c n o e ai n p r me e n u sa c a a t ro y r c c o e i s r c : h c iv me t n r g e so e e r h o p r o a a t ra d s b t n e p r mee fh d o y l n s h t s se t a l e iwe . e ma nf co st a a a t r fe t e s p a i n e c e c f y r c c o e a e a a y e i h y tmai l r v e d Th i a t r t r mee f c e a t f i n y o d o y l n n l z d wh c ma e c y h p a h t r o i h r ks f rh r p i z in o y r c co e u t e tmia o fh d o y l n . o t Ke r s h d o y l n ; p r t n p a tr s b t n e p a t r y wo d : y r c co e o e a i a me e ; u sa c a me e o r r
水力旋流器

水力旋流器目录水力旋流器构造及原理:流体运动的基本形式单元参数设计技术参数:水力旋流器简史水力旋流器水力旋流器水力旋流器[1]是利用离心力来加速矿粒沉降的分级设备,它需要压力给矿,故消耗动力大,但占地面积小、价格便宜,处理量大,分级效率高,可获得很细的溢流产品,多用于第二段闭路磨矿中的分级设备。
水力旋流器是用于分离去除污水中较重的粗颗粒泥砂等物质的设备。
有时也用于泥浆脱水。
分压力式和重力式两种,常采用圆形柱体构筑物或金属管制作。
水靠压力或重力由构筑物(或金属管)上部沿切线进入,在离心力作用下,粗重颗粒物质被抛向器壁并旋转向下和形成的浓液一起排出。
较小的颗粒物质旋转到一定程度后随二次上旋涡流排出。
构造及原理:水力旋流器由上部一个中空的圆柱体,下部一个与圆柱体相通的倒椎体,二者组成水力旋流器的工作筒体。
除此,水力旋流器还有给矿管,溢流管,溢流导管和沉砂口。
水力旋流器用砂泵(或高差)以一定压力(一般是0.5~2.5公斤/厘米)和流速(约5~12米/秒)将矿浆沿切线方向旋入圆筒,然后矿浆便以很快的速度沿筒壁旋转而产生离心力。
通过离心力和重力的作用下,将较粗、较重的矿粒抛出。
水力旋流器在选矿工业中主要用于分级、分选、浓缩和脱泥。
当水力旋流器用作分级设备时,主要用来与磨机组成磨矿分级系统;用作脱泥设备时,可用于重选厂脱泥;用作浓缩脱水设备时,可用来将选矿尾矿浓缩后送去充填地下采矿坑道。
水力旋流器无运动部件,构造简单;单位容积的生产能力较大,占面积小;分级效率高(可达80%~90%),分级粒度细;造价低,材料消耗少。
悬浮液以较高的速度由进料管沿切线方向进入水力旋流器,由于受到外筒壁的限制,迫使液体做自上而下的旋转运动,通常将这种运动称为外旋流或下降旋流运动。
外旋流中的固体颗粒受到离心力作用,如果密度大于四周液体的密度(这是大多数情况),它所受的离心力就越大,一旦这个力大于因运动所产生的液体阻力,固体颗粒就会克服这一阻力而向器壁方向移动,与悬浮液分离,到达器壁附近的颗粒受到连续的液体推动,沿器壁向下运动,到达底流口附近聚集成为大大稠化的悬浮液,从底流口排出。
矿山分级设备-水力旋流器

机械之美—神奇的矿冶机械水力旋流器主讲教师:吴彩斌江西理工大学·资源与环境工程学院•水力旋流器的发展历程•水力旋流器的基本功能•水力旋流器的应用范围(一)水力旋流器的发展史传统水力旋流器新型聚氨酯水力旋流器(二)水力旋流器的基本功能◆规格水力旋流器的规格以圆柱体的直径表示。
如FX660,FX710,FX840。
圆锥的锥角可以不同,一般最小为10°、最大为45°。
FX 660-4◆结构其下部是一圆锥形壳体2,上部连接一圆柱形壳体l,圆柱壳体上口封死,中间有一层底板,底板中央插入一短管溢流管5,在底板下部沿圆柱壳面的切线方向连接有给矿管3,在底板之上沿壳体切线方向连接有溢流排出管6,锥体最下端有可更换的沉砂嘴4。
◆工作原理矿浆在0.4-3.5大气压从给矿管沿切线方向给入,在内部高速旋转,因而产生很大的离心力。
在离心力和重力的作用下,较粗的颗粒被抛向器壁,作螺旋运动,最后由下部排砂嘴排出。
较细的颗粒及大部分水分,形成旋流沿中心向上升,至溢流管流出。
✓分级:用来分出800~74(43)微米的粒级✓脱泥:用来脱出74(43)~5微米的细泥。
◆分类✓优点:构造简单、占地面积小、生产率高。
✓缺点:易磨损、工作不稳定、需专门给料砂泵。
◆优缺点与磨机构成闭路磨矿水力旋流器机组✓可用于一段、二段、再磨等磨矿分级工艺。
✓适用于任一系列选矿厂规模。
✓超过3000吨选矿厂一般采用旋流器进行分级。
(三)水力旋流器的应用范围(1)入料压力(2) 入料量(3) 浓度(4) 入料粒度◆操作参数(1)如锥体角度(2)溢流管直径(3)溢流管插入深度(4)底流口直径◆结构参数机械之美—神奇的矿冶机械谢谢观看。
水力旋流器分级原理(二)

3.4水力旋流器分级原理水力旋流器最早在20世纪30年代末在荷兰出现。
水力旋流器是利用回转流进行分级的设备,并也用于浓缩、脱水以致选别。
它的构造很简单,如图3-16(a)、(b)所示。
主要是由一个空心圆柱体1和圆锥2连接而成。
圆柱体的直径代表旋流器的规格,它的尺寸变化范围很大,由50 mm到1000 non,通常为125~500 oun。
在圆柱体中心插入一个溢流管5,沿切线方向接有给矿管3,在圆锥体下部留有沉砂口4。
矿浆在压力作用下,沿给矿管给入旋流器内,随即在圆筒臃器壁限制下作回转运动。
粗颗粒因惯性离心力大而被抛向器壁,并逐渐向下流动由底部排出攻为沉砂。
细颗粒向器壁移动舶速度较小,被朝向中心流动的液体带动由中心溢流管排出,成为溢流。
水力旋流器是一种高效率的分级、脱泥设备,由于它的构造简单,便于制造,处理量大,在国内外已广泛使用。
它的主要缺点是消耗动力较大,且在高压给矿时磨损严重。
采用新的耐磨材料,如硬质合金、碳化硅等制作沉砂口和给矿口的耐磨件,可部分地解决这一问题。
此外,当用于闭路磨矿的分级时,因其容积小,对矿量波动没有缓冲能力,不如机械分级机工作稳定。
3.4.2水力旋流器分级原理为明了矿物颗粒在旋流器内的分离过程,有必要先说明液流的运动特性。
矿浆给入旋流器后呈螺旋线状,一面回转一面向中心推移,最后由上下两端排出,如图3-17所示。
矿浆的这种流动属于空间运动体系,为此要查明液流的速度分布,须将旋流器内任一点的速度分解为三个互相垂直的方向,即切线方向、径向方向和平行于轴线的方向。
盖勒萨尔(D.F.Kel阻Ⅱ,1952年)曾以内径76 nun的透明水力旋流器,用光学方法观测加入水中的铝粉运动速度,在给水量约为50 L/min条件下,得到了下述三个方向速度的变化规律。
3.4.2.1切向速度分布及旋流器内压强变化3.4.2.2径向速度分布及颗粒粒度沿径向排列3.4.2.3轴向速度u.的分布及对分级粒度的影响液体进入旋流器的初期沿轴向的运动方向基本是向下的,但由于下面的流动断面愈来愈小,内层矿浆即转而向上流动。
水力旋流器

1.3.2水力旋流器选型结构的确定
在水力旋流器系统中,结构因素中最重要的就是如 何在众多平行运行的水力旋流器中分配浆液。在该系 统中,应该选用一种母管,浆液可以从中心混合室通 过母管呈放射状流入各个水力旋流器。 如果应用“内嵌式”母管,当浆液流经管道时,每 个水力旋流器里的给料都在母管内流动,这样,大质 量的颗粒就会经过第一个水力旋流器而进入最后一个 水力旋流器。因为这些颗粒有足够的能量“拐弯”。 结果导致最后一个水力旋流器中粗糙颗粒的浓度较高。 内嵌式母管的另一个问题是,如果最后一个水力旋流器 关闭的话,母管的末端很可能会由于堵塞而报废。
1.3水力旋流器的选型
1.3.1水力旋流器选型参数的确定 水力旋流器选型的主要任务就是选择水力旋 流器的入口压力和直径。 对于水力旋流器分离分级效果的好坏,主 要取决于分离粒度D50,当水力旋流器的入口压 力一定时,尽量选用小直径的设备,这样必须 增加旋流子的数量和相应的管件、阀门、仪器 仪表等设备,从而增加一次投资。
在石膏一级脱水中,旋流器的目的是浓缩石膏浆液。 旋流器入口浆液的固体颗粒含量一般为15%左右,底流 液固体颗粒物含量可达50%以上,而溢流液固体颗粒物 含量为4%以下,分离浆液的浓度大小取决于石膏颗粒 尺寸分布。底流液送到二级脱水设备真空皮带过滤机 进一步脱水。大部分溢流液返回吸收塔,少部分送至 废水旋流器再分离出较小的颗粒。采用旋流器进行脱 水的另一个特点是,浆液中没有反应的石灰石颗粒的 粒径比石膏小,它倾向进入旋流器的溢流部分再返回 吸收塔,使没有反应的石灰石进一步反应。因此,吸 收塔浆液固体物中石灰石含量略高于最终产物石膏中 的石灰石含量,这样,既有利于获得高脱硫效率,又 可以是副产物中的石灰石含量降到最低程度,提高石 灰石利用率。