水力旋流器的选择与计算
水力旋流器 (全面精炼版)课件

特 点
构造筒单,无活动部分;体积小,占地面积也小;操作方便; 运行可
靠;生产能力大;成本低;分离的颗粒范围较广,易于实现自动控制。但 能耗较高,分离效率较低。 在化工、石油(油水分离、污水处理等)、轻工、环保、采矿、食品、医 药、纺织与染料业、生物工程及建材等众多领域也已经或正在获得富有成 效的实际应用 。 常采用几级串联的方式或与其他分离设备配合应用,以提高其分离效率。
旋流器结构参数:旋流器柱段直径D、进料口直径d,溢流管直径d,沉砂口直径d、溢流
管插入深度h、圆柱体高度H及锥角a的大小。(已经安装的旋流器可以调整的参数,只有溢流管直
径和沉砂口直径。)
旋流器的结构越好,分离性能越好!
水力旋流器的选择
1、粗分级。 应采用较大直径和较大锥角旋流器。并可在较高给料浓度和较低压力下工 作。由于旋流器的高度较小,离心力较低,较粗颗粒亦可进入到溢流中。 2、细分级和超细分级。
水力旋流器
杨** 2017年4月17日
08:20:20
一、水力旋流器的基本概述
二、水力旋流器பைடு நூலகம்工作原理
三、影响分级效率和分离精度的主要原因
水力旋流器
又称水力旋风分离器、旋液分离器,是 旋流分离器的一种。 是利用离心力来分离 具有一定密度差 以 液体为主(液—液、液—固、液—气等两相或 多相混合物 ) 的悬浮液或乳浊液(液态非均相 混合物)的分离设备。
应采用直径小、锥角亦小的旋流器,以增大颗粒的离心加速度(与半径成
反比)和在器内的停留时间。并采取低的给料浓度和高的给料压力。 3、在满足分离能力的条件下,应该采用尽可能大直径的旋流器。 4、防止大块物料的堵塞,在进料之前加滤网,处理量大时可用并联小旋流 器组。
水力旋流器的结构参数如何?

水力旋流器的结构参数如何?水力旋流器是利用离心力场进行两相流体分离的有效分离设备,它是山上部筒体和下部锥体两大部分组成的非运动分离设备。
其原理是待矿浆以切线、渐开线或螺旋线方式山给矿管射入筒体后;介质和颗粒的混合体产生旋转形成离心力场,不同粒度、不同密度的颗粒(或液相)产生不同的运动轨迹;在离心力、介质阻力和等力场的作用下,粗颗粒和大密度的颗粒向周边运动,通过锥形体从沉砂口排出;细颗粒和密度低的颗粒(或液相)向中心运动,山溢流管排出,终实现固体颗粒的粗细分级和不同密度流体的分离。
旋流器结构参数水力旋流器的结构参数:(1)水力旋流器直径:水力旋流器直径主要影响生产才能和别离粒度的大小。
(2)入料管直径Di:入料口的大小对处置才能、分级粒度及分级服从均有肯定影响。
(3)锥体角度:增大锥角,分级粒度变粗,减小锥角,分级粒度变细。
(4)溢流管直径:1增大溢流管直径,溢流量增大,溢流粒度变粗,底流中细粒级减少,底流浓度添加。
(5)溢流管插入深度:溢流管插入深度是溢流管插入到旋流器内部一节长度,指的是溢流管底部到旋流器顶盖的间隔。
减小溢流管插入深度,分级粒度变细;增大溢流管插入深度,分级粒度变粗。
(6)溢流管壁厚:研讨表明:溢流管璧厚添加,能够在某种水平上进步旋流器的别离服从;并低落其内部能量丧失,并且还能进步水力旋流器的生产才能。
(7)进料口断面尺寸:进料口的外形和尺寸对其生产才能、别离服从等产业忖标有紧张的影响。
进料口的作用主要是将作直线活动的液流在柱段进口处变化为圆周活动。
进料口按照截面外形能够分为圆形和矩形两种。
(8)底流口直径(d):底流口直径增大,分级粒度变细,底流口直径减小,分级粒度变粗。
(9)内表面粗糙度及拆卸精度:水力旋流器的内表面粗糙度及拆卸精度对其生产才能、别离服从等功能参数的影7响较小;但是在生产实践及研讨发明,水力旋流器的内表面内衬鑫海耐磨橡胶,耐磨防腐, 比较润滑,将会增大流动阻力;同时别离服从也有所添加,同时接纳较粗糙内壁的水力旋流器,其流动阻力将会低落,同时底流量增大。
旋流器选型设计计算

一、输入参数:(在淡绿色的格子内输入数据)日处理量:1200d/t小时处理量:50d/t给矿浓度:45%溢流浓度:30%底流浓度:矿石比重 2.9矿浆比重 1.42矿浆时流量:235.06m3/h 日流量:5641.38m3/d 循环量:旋流器锥角:20°旋流器直径:500mm单台能力:220m3/h1219cm 188cm 旋流器压力:0.15Mpa 292.20m3/h;共需台数:1.33台43.35μm二、旋流器计算(1)选择旋器直径,计算旋流器体积处理q V =292.20m3/hKa=0.995K D =0.824d f ——给矿口当量直径,cmd f =17.04b、h——分别为给矿口宽度和高度,cm;旋流器溢流管、沉砂管直径旋流器给矿口宽、高 式中 q V ——按给矿体积计的处理量,m 3/h;K a ——水力旋流器锥角修正系数;K D ——水力旋流器直径修正系d95溢流上限粒度 :单台旋流器计算处理能力:旋流器选型设计p o ——旋流器给矿口工作压力,MPa; d o ——溢流管直径,cm;D——旋流器筒体直径,cm.(2)按样体给出的范围确定沉砂口直径,并验算其单位截面积负荷(按固体量计),使其在0.5~2.5t/(cm 2·h)范围内。
(3)计算旋流器实际需要的给矿压 (4)计算溢流上限粒度d 95,使其满足溢流粒度的要求。
旋流器给矿及溢流中各个不同粒级含量之间关系可参见表2。
d 95=43.35粒级/μm-7410203040506070-40 5.611.317.32431.539.548-2013172326上限粒度,d 95430320240180含量/% 式中 d 95——溢流上限粒度,μm;C f ——给矿重量浓度,%; d u ——沉砂口直径,cm;ρ——矿浆中固体物料密度,t/m3; D、d o 、p o 、K D 、——同式(1).表2 旋流器给矿及溢流中各个不同粒级含量之间关系公式:R = [δ(δn -1)/δn (δ-1)]×100%60%矿浆浓度R=0.45;矿比重δ= 2.9δn=1.4180933公式:浓度R =0.45;干矿重Q=1200矿浆比重δn =1.42a=1880.46a=Q/Rδn 输入变量:求: 矿浆比重 δn? 已知:,矿浆浓度 R, 矿比重δ即:δn=δ/(R(1-δ)+δ)输入变量:求: 矿浆量a m3 ? 已知:矿浆浓度R,干矿重Q t; 矿浆比重量之间关系8090955871.580.53546551409474。
选矿设备中水力旋流器给矿泵的选择

大中型选矿设备厂中的分级、脱泥、浓缩、洗涤和澄清作业旋流器基本上都是成组配置,特别是同磨机构成闭路的分级旋流器。旋流器配置方案,目前国内外应用量广泛的是放射形方案。理想的放射形配置方案应该是由中心矿浆分配器给人并联的每个旋流器的给矿压力、给矿流量和给矿性质(浓度、粒度和粒度组成)保持相同,以便得到符合工艺设计要求的分级产物。
பைடு நூலகம்
砂泵泵池的断面有圆形和方形两种,其有斜底和斜侧而的方形泵池可以优先采用,通常泵池底边斜度为55度.泵池容积通常以该系统的一分钟矿浆流量为宜,大型选厂可以低于一分钟,泵池容积应该让矿浆带入的空气有充分的逸出(析出)停留时间。
选矿设备中的水力旋流器给矿泵应具有高效、节能、低成本、长寿命、性能稳定和维修方便的特点。
选矿设备中的水力旋流器均是采用压力给矿,其给矿管路在可能条件下尽量缩短,以便减少沿程阻力损失。给矿管路中的矿浆流速应稍大于其临界流速,以便使其管道磨损最小并防止矿浆中的固体颗粒沉淀、堵塞管道和影响正常生产。
给矿泵是选矿设备中水力旋流器的心脏.它控制着水力旋流器分离的全过程.就磨矿回路中的分级旋流器而言,它控制着磨机的生产能力、循环负菏和分级效果。用于水力旋流器的给矿泵要有足够的处理能力,以便适应其矿石性质变化和矿浆流量波动的需要。磨矿回路中用于旋流器给矿的砂泵必须安装足够的动力,以保证不致因砂泵动力不足而限制磨机的产量。
水力旋流器的选择与计算

水力旋流器的选择与计算一、水力旋流器的选择水力旋流器广泛用于分级、脱泥、脱水等作业。
其主要优点是结构简单、本身无运动部件、占发面积小;在分级粒度较细的情况下,分级效率较螺旋分级机高。
其主要缺点是给矿需泵扬送,电耗较高;操作比螺旋分级机复杂。
水力旋流器适宜分级粒度范围一般为0.3~0.01mm。
水力旋流器的规格取决于需要处理的矿量和溢流粒度要求。
当需要处理的矿量大、溢流粒度粗时,选择大规格水力旋流器;反之宜选用小规格水力旋流器。
在处理矿量大又要求溢流粒度细时,可采用小规格水力旋流器组。
旋流器的结构参数和操作参数对溢流粒度及分级效果有较大影响,选用时应认真考虑。
旋流器的主要结构参数与旋流器直径D的关系,一般范围;给矿口当量直径d f=(0.15~0.25)D; 溢流管直径d o=(0.2~0.4)D;沉砂口直径d u=(0.06~0.20)D;锥角a≤20°.进口压力是水力旋流器的主要参数之一,通常为49~157kPa(0.5kgf/cm2~1.6kgf/cm2).进口压力与溢流粒度的一般关系见表1。
表1 进口压力溢流粒度一般关系表溢流粒度d95/min 0.59 0.42 0.30 0.21 0.15 0.10 0.074 0.037 0.019 0.010进口压力/kPa(kgf/cm2) 29.40.3490.539~78(0.4~0.8)49~98(0.5~1.0)59~118(0.6~1.2)78~137(0.8~1.4)98~147(1.0~1.5)118~167(1.2~1.7)147~196(1.5~2.0)196~245(2.0~2.5)二、水力旋流器计算水力旋流器的计算多采用如下两种方法。
A 原苏联波瓦罗夫(JIoBapoB)计算法波瓦罗夫计算法的主要步骤和计算公式如下:(1)选择旋器直径,计算旋流器体积处理量和需要台数。
体积处理量按下式计算式中 q V——按给矿体积计的处理量,m3/h;K a——水力旋流器锥角修正系数;当a=10°时,K a+1.15;当a=20°时,K a=1.0;K D——水力旋流器直径修正系数;d f——给矿口当量直径,cmb、h——分别为给矿口宽度和高度,cm;p o——旋流器给矿口工作压力,MPa;d o——溢流管直径,cm;D——旋流器筒体直径,cm.(2)按样体给出的范围确定沉砂口直径,并验算其单位截面积负荷(按固体量计),使其在0.5~2.5t/(cm2·h)范围内。
水力旋流器 (全面精炼版)课件

特 点
构造筒单,无活动部分;体积小,占地面积也小;操作方便; 运行可
靠;生产能力大;成本低;分离的颗粒范围较广,易于实现自动控制。但 能耗较高,分离效率较低。 在化工、石油(油水分离、污水处理等)、轻工、环保、采矿、食品、医 药、纺织与染料业、生物工程及建材等众多领域也已经或正在获得富有成 效的实际应用 。 常采用几级串联的方式或与其他分离设备配合应用,以提高其分离效率。
器、尾矿干排专用旋流器进口(进料管) 两个轴向出口(底流管、溢 流管) 底流管
一、水力旋流器的基本概述
二、水力旋流器的工作原理
三、影响分级效率和分离精度的主要原因
工作原理
介质从圆筒上部的切向 进口(进料管)以一定压力 进入器内(产生高速旋转流 场),高速旋转向下流动。
水力旋流器
杨** 2017年4月17日
08:20:20
一、水力旋流器的基本概述
二、水力旋流器的工作原理
三、影响分级效率和分离精度的主要原因
水力旋流器
又称水力旋风分离器、旋液分离器,是 旋流分离器的一种。 是利用离心力来分离 具有一定密度差 以 液体为主(液—液、液—固、液—气等两相或 多相混合物 ) 的悬浮液或乳浊液(液态非均相 混合物)的分离设备。
作 用
悬浮液中固体颗粒的增稠(浓缩); 悬浮液中固体粒子的分级(按颗粒(相同密度)粒度差分离的作业;
液—液萃取操作中两种不互溶液体的分离;
物料密度差进行分选 (按颗粒密度差分离的作 业 (如分选砂金 、分
选煤 );分选旋流器一般给料压力均较低,液流没有太大的旋转速度。)
澄清、脱泥等。
分类
按分散相:固一液旋流器和液一液旋流器;
溢流跑粗的另一个原因。
影响其分离粒度和分级效率的因素:旋流器的结构参数和
水力旋流器的基本知识

水力旋流器的基本知识
水力旋流器是利用离心力来加速矿粒沉降的分级设备。
水力旋流器最早出现在20世纪30年代末的荷兰,并随着科学技术的发展,被逐渐运用到各种行业中,例如在20世纪60年代中期,澳大利亚的BHP钢矿首次在工业上使用水力旋流器进行分级和脱水,取得了良好的效果;在20世纪80年代中期,我国开始从国外引进水力旋流器,并逐渐普及使用。
水力旋流器主要是由一个空心圆柱体和圆锥体连接而成,圆柱体的直径代表旋流器的规格,尺寸范围通常为50mm 到1000mm,在圆柱体中心插入一个溢流管,沿切线方向接有给矿管,在圆锥体下部留有沉砂口,矿浆在压力作用下,沿给矿管给入旋流器内,随即在圆筒形器壁限制下作回转运动,粗颗粒因惯性离心力大而被抛向器壁,并逐渐向下流动由底部排出成为沉砂,细颗粒向器壁移动的速度较小,被朝向中心流动的液体带动由中心溢流管流出,成为溢流。
水力旋流器分级原理(二)

3.4水力旋流器分级原理水力旋流器最早在20世纪30年代末在荷兰出现。
水力旋流器是利用回转流进行分级的设备,并也用于浓缩、脱水以致选别。
它的构造很简单,如图3-16(a)、(b)所示。
主要是由一个空心圆柱体1和圆锥2连接而成。
圆柱体的直径代表旋流器的规格,它的尺寸变化范围很大,由50 mm到1000 non,通常为125~500 oun。
在圆柱体中心插入一个溢流管5,沿切线方向接有给矿管3,在圆锥体下部留有沉砂口4。
矿浆在压力作用下,沿给矿管给入旋流器内,随即在圆筒臃器壁限制下作回转运动。
粗颗粒因惯性离心力大而被抛向器壁,并逐渐向下流动由底部排出攻为沉砂。
细颗粒向器壁移动舶速度较小,被朝向中心流动的液体带动由中心溢流管排出,成为溢流。
水力旋流器是一种高效率的分级、脱泥设备,由于它的构造简单,便于制造,处理量大,在国内外已广泛使用。
它的主要缺点是消耗动力较大,且在高压给矿时磨损严重。
采用新的耐磨材料,如硬质合金、碳化硅等制作沉砂口和给矿口的耐磨件,可部分地解决这一问题。
此外,当用于闭路磨矿的分级时,因其容积小,对矿量波动没有缓冲能力,不如机械分级机工作稳定。
3.4.2水力旋流器分级原理为明了矿物颗粒在旋流器内的分离过程,有必要先说明液流的运动特性。
矿浆给入旋流器后呈螺旋线状,一面回转一面向中心推移,最后由上下两端排出,如图3-17所示。
矿浆的这种流动属于空间运动体系,为此要查明液流的速度分布,须将旋流器内任一点的速度分解为三个互相垂直的方向,即切线方向、径向方向和平行于轴线的方向。
盖勒萨尔(D.F.Kel阻Ⅱ,1952年)曾以内径76 nun的透明水力旋流器,用光学方法观测加入水中的铝粉运动速度,在给水量约为50 L/min条件下,得到了下述三个方向速度的变化规律。
3.4.2.1切向速度分布及旋流器内压强变化3.4.2.2径向速度分布及颗粒粒度沿径向排列3.4.2.3轴向速度u.的分布及对分级粒度的影响液体进入旋流器的初期沿轴向的运动方向基本是向下的,但由于下面的流动断面愈来愈小,内层矿浆即转而向上流动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
/html/0610/20061025_6990.asp
水力旋流器的选择与计算
2006-10-25 8:50:05 中国选矿技术网浏览1068 次收藏我来说两句
一、水力旋流器的选择
水力旋流器广泛用于分级、脱泥、脱水等作业。
其主要优点是结构简单、本身无运动部件、占发面积小;在分级粒度较细的情况下,分级效率较螺旋分级机高。
其主要缺点是给矿需泵扬送,电耗较高;操作比螺旋分级机复杂。
水力旋流器适宜分级粒度范围一般为0.3~0.01mm。
水力旋流器的规格取决于需要处理的矿量和溢流粒度要求。
当需要处理的矿量大、溢流粒度粗时,选择大规格水力旋流器;反之宜选用小规格水力旋流器。
在处理矿量大又要求溢流粒度细时,可采用小规格水力旋流器组。
旋流器的结构参数和操作参数对溢流粒度及分级效果有较大影响,选用时应认真考虑。
旋流器的主要结构参数与旋流器直径D的关系,一般范围;给矿口当量直径d f=(0.15~0.25)D; 溢流管直径d o=(0.2~0.4)D;沉砂口直径d u=(0.06~0.20)D;锥角a≤20°.
进口压力是水力旋流器的主要参数之一,通常为49~157kPa(0.5kgf/cm2~1.6kgf/cm2).进口压力与溢流粒度的一般关系见表1。
表1 进口压力溢流粒度一般关系表
溢流粒度d95/min0.590.420.300.210.150.100.0740.0370.0190.010
进口压力/kPa(kgf/cm2)29.4
0.3
49
0.5
39~78
(0.4~0.8)
49~98
(0.5~1.0)
59~118
(0.6~1.2)
78~137
(0.8~1.4)
98~147
(1.0~1.5)
118~167
(1.2~1.7)
147~196
(1.5~2.0)
196~245
(2.0~2.5)
二、水力旋流器计算
水力旋流器的计算多采用如下两种方法。
A 原苏联波瓦罗夫(JIoBapoB)计算法波瓦罗夫计算法的主要步骤和计算公式如下:
(1)选择旋器直径,计算旋流器体积处理量和需要台数。
体积处理量按下式计算
式中q V——按给矿体积计的处理量,m3/h;
K a——水力旋流器锥角修正系数;
当a=10°时,K a+1.15;当a=20°时,K a=1.0;
K D——水力旋流器直径修正系数;
d f——给矿口当量直径,cm
b、h——分别为给矿口宽度和高度,cm;
p o——旋流器给矿口工作压力,MPa;
d o——溢流管直径,cm;
D——旋流器筒体直径,cm.
(2)按样体给出的范围确定沉砂口直径,并验算其单位截面积负荷(按固体量计),使其在0.5~2.5t/(cm2·h)范围内。
(3)计算旋流器实际需要的给矿压力。
(4)计算溢流上限粒度d95,使其满足溢流粒度的要求。
旋流器给矿及溢流中各个不同粒级含量之间关系可参见表2。
式中d95——溢流上限粒度,μm;
C f——给矿重量浓度,%;
d u——沉砂口直径,cm;
ρ——矿浆中固体物料密度,t/m3;
D、d o、p o、K D、——同式(1).
表2 旋流器给矿及溢流中各个不同粒级含量之间关系
粒级/μm含量/%
-7410203040506070809095
-40 5.611.317.32431.539.5485871.580.5
-2013172326354655上限粒度,d954303202401801409474
B 美国克雷布斯公司(Krebs)计算法
(1)分离粒度d50、校正分离粒度d50(c)的计算分离粒度d50系指在沉砂和溢流中回收率(分配率)各为50%的极窄级别的粒度值。
在旋流器实际分级效率曲线(图1中的曲线1)上与沉砂中粒级回收率50%相对应的粒度即为分离粒度d50.
在旋流器分级过程中,进入沉砂的物料包括两部分:一部分由水夹带进入沉砂的物料,该部分物料实际上未经过分级,其相对量与沉砂中的水占给矿中水的比率(小数)相当;另一部分为经过分级进入沉砂的物料。
因此在计算旋流器沉砂粒级回收率时,应将水夹带的这部分未经分级的物料扣除,即:
式中y c、y——分别为沉砂中某粒级的校正回收率和实际回收率,%;
R f——沉砂中的水占给矿中水的比率,以小数计。
用y c代替y做出的分级效率曲线(图1中的曲线2)称为校正分级效率曲线或校正回收率曲线。
该曲线上的分离粒度称为校正分离粒度以d50(c)表示。
在磨矿回路中,旋流器的溢流粒度一般是以某一特定粒度d r的百分含量来表示的,它与d50(c)之间关系如表3所示。
如已知溢流中某一特定粒度的百分含量,即可按表3数据计算出校正分离粒度d50(c).
表3 水力旋流器溢流粒度d50(c)的关系
溢流中某一特定粒度(d r)百分含量/%98.895.090.080.070.060.050.0 d50(c)/dr0.540.730.91 1.25 1.67 2.08 2.78
(2)按下式计算水力族流器直径D:
D=0.0234d50(c)1.515P o0.424(ρ-1)0.758×(1-0.0189cυ)2.167(4①)
式中D——旋流器内径,cm;
d50(c)——校正分离粒度,μm;
P o——旋流器给矿压力,kPa;
ρ——物料密度,t/m3;
cυ——给矿体积浓度,%。
(3)按标准水力旋流器的处理量(见图2)计算旋流器台数,应该指出图2中所示的处理量是按水计的,处理矿浆时要稍高于此数据。
因此按此计算旋流器台数偏于保险,这在工程设计上是允许的。
(4)按沉砂口流量与沉砂口直径的关系,用图3确定沉砂口直径。
C 水力旋流器计算实例
某一磨矿回路,用水力旋流器分级与球磨机组成闭路,回路新给矿量为250t/h,旋流器溢流浓为40%,要求溢流粒度为-74μm占60%,矿石密度为2.9t/m3,旋流器入口压力为55kPa,磨矿回路循环负荷为225%。
按上述条件计算的物料平衡结果见表4。
试选择计算水力旋流器的规格和台数。
表4 水力旋流器物料平衡计算结果
项目单位溢流沉砂给矿
固体量t/h250562812
水量m3/h375187562矿浆量t/h6257491374重量浓度%407559.1体积浓度%5033.2
矿浆密度t/m3 1.355 1.966 1.632
矿浆体积量
m3/h
L/s 461
128
381
106
842
234
现采用两种方法进行计算
(1)波瓦罗夫法计算
根据设备样本可选用D=50cm、锥角a=20°的水力旋流器,其给矿口尺寸11cm×12cm(直径d f=13cm),选用溢流管直径d o=18cm,沉砂口直径d u=9cm.
处理量计算:
根据计算结果选用6台D=50cm旋流器,另处备用3台。
沉砂口直径d u=9cm,其截面积为63.6cm2,沉砂口单位截面固体负荷为,在允许范围之内。
计算实际需要的给矿压力:
参见表2,此上限粒度呆满足-74μm占60%的要求。
(2)克雷布斯法计算
按溢流粒度-74μm60%的要求,查表3,计算校正分离粒度:
d50(c)=2.08×74=154(μm)
计算旋流器直径:
D=0.0234d50(c)1.515P o0.424(ρ-1)0.758(1-0.0189cυ)2.167
=0.0234×1541.515×550.424(2.9-1)0.758(1-0.0189×33.2)2.167
=50.6(cm)
可选用D=51cm克雷布斯标准旋流器。
于图2中查出,在给矿压力55kPa时,D=51cm旋流器处理量为44L/s,则旋流器台数台,可选用6台,外备用3台。
按沉砂矿浆体积流量选择沉砂口尺寸:每台旋流器沉砂矿浆体积流量为,根据图3查出,沉砂口直径为9.5cm.。