最新初三数学易错题集锦

合集下载

初三数学错题集及解析

初三数学错题集及解析

初三数学错题集及解析1、若一个三角形的三边长分别为10,24,26,则这个三角形的面积是()。

解释:题目中给出的三边长并不能构成一个三角形,因为它们不满足三角形的两边之和大于第三边的条件。

因此,无法计算这个三角形的面积。

2、如果实数a、b满足a^2 + 4a + 4 + b - 1 = 0,则a、b的值分别为()。

解释:通过配方,我们可以得到(a+2)2+b−1=0。

从这个方程可以解出a=-2,b=1。

3、在一元二次方程中,如果方程有两个相等的实数根,那么它的判别式()0。

解释:一元二次方程有两个相等的实数根意味着它的判别式等于0。

4、在一个等腰三角形中,如果底边长为8cm,底边上的高为3cm,则它的面积为()cm²。

解释:等腰三角形的面积可以通过底边长和高来计算,公式为面积= 底边长×高/ 2。

在这个例子中,底边长为8cm,高为3cm,所以面积为12cm²。

5、在一个直角三角形中,如果两条直角边的长分别为3和4,则斜边长为()。

解释:根据勾股定理,斜边的平方等于两条直角边的平方和。

在这个例子中,斜边的平方= 3²+ 4²= 25,所以斜边长为5。

6、如果两个相似三角形的相似比为2:3,那么它们的面积比为()。

解释:相似三角形的面积比等于相似比的平方。

在这个例子中,相似比为2:3,所以面积比为4:9。

7、在一个平行四边形中,如果一组对边相等且相互平行,那么它是一个()。

解释:根据平行四边形的定义,如果一组对边相等且相互平行,那么它是一个平行四边形。

8、如果一个正方形的周长为8cm,那么它的边长为()。

解释:正方形的周长是边长的4倍,所以如果周长为8cm,边长为2cm。

9、在一个等腰梯形中,如果上底和下底相等且平行,那么它是一个()。

解释:等腰梯形是上底和下底相等且平行的四边形。

10、如果两个角相等,那么它们的余角也相等()。

解释:两个角相等,它们的余角也相等。

九年级上册数学易错题目汇总,初三数学易错题集锦及答案解析

九年级上册数学易错题目汇总,初三数学易错题集锦及答案解析

九年级上册数学易错题汇总1. 关于X 的方程¥+21-7〃 = 0有两个相等的实数根,则,〃的值是()A.m = 1 = - 1 = 2 D.〃,=-2【考点】根的判别式.【解答】由题意可知:△=4+4m = 0,in = - 1,故选:B.2. 下列关于X 的方程是一元二次方程的是()A./+1 =0B.x+1 = 1X (x+l ) (x-l ) *七€+1故本选项符合题意;C. ”+Z )x+f = O D.【考点】一元二次方程的定义.【解答】刀、是一元二次方程,不是一元二次方程,故本选项不符合题意;。

、不是一元二次方程,故本选项不符合题意;D 、 不是一元二次方程,故本选项不符合题意;故选:A.3.一个容器盛满纯药液63千克,第一次倒出一部分药液后加满水,第二次 又倒出同样多的药液,再加满水,此时容器内的纯药液剩下28千克,那么每次倒出的药液是()A.20千克 B.21千克 C.22千克 D.175千克【考点】一元二次方程的应用.【解答】设每次倒出药液x升,63-x依题意,得:士寻二1-咎63 63整理,得:一i26r+2205=0,解得:XI二21,.K2二105(不合题意,舍去).故选:B.4.已知关于x的一元二次方程(4 1)r—2x+2=0有两个不相等的实数根,则次的取值范围值是()A.k<旦B.k<2CA〈岂且《兴1DAW岂且上尹L2222[考点】一元二次方程的定义;的判别式.【解答】根据题意得:△二〃-4w=4・8(*1)=12.8左>0,且X-1产0,:上且左乂1./'JT得故选:C.5.—元二次方程寸一6x一1=0配方后可变形为()A.(X-3)2=8B.(x-3)2=10 c.(x+3)J8 D.(x+3)2 =10【考点】解一元二次方程•配方法.【解答】・.・*2-6*-1=0,•*-x2-6x=1,.•-(x-3)2=10,故选:8.6.某商品原售价为60元,4月份下降了20%,从5月份起售价开始增长,6月份售价为75元,设5、6月份每个月的平均增长率为.「则的值为()A.15% B.25% C.20% D.30%【考点】一元二次方程的应用.【解答】设5、6月份每个月的平均增长率为X,由题意,得60(1-20%)(1+x)2=755得X=0.25二25%(舍去负值)牧选:B.7.一元二次方程X2-5.X+1=。

九年级上册数学期末精选试卷易错题(Word版 含答案)

九年级上册数学期末精选试卷易错题(Word版 含答案)

九年级上册数学期末精选试卷易错题(Word 版 含答案)一、初三数学 一元二次方程易错题压轴题(难)1.如图,在平面直角坐标系中,()4,0A -,()0,4B ,四边形ABCO 为平行四边形,4,03D ⎛⎫- ⎪⎝⎭在x 轴上一定点,P 为x 轴上一动点,且点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,已知P 点运动时间为t . (1)点C 坐标为________,P 点坐标为________;(直接写出结果,可用t 表示) (2)当t 为何值时,BDP ∆为等腰三角形;(3)P 点在运动过程中,是否存在t ,使得ABD OBP ∠=∠,若存在,请求出t 的值,若不存在,请说明理由!【答案】(1)(4,4),(43t ,0);(2)1101-,4; (3)存在,3109t【解析】 【分析】(1)利用平行四边形的性质和根据P 点的运动速度,利用路程公式求解即可; (2)分三种情况:①当BD BP 时,②当BD DP =时,③当BP DP =时,分别讨论求解,即可得出结果; (3)过D 点作DF BP 交BP 于点F ,设OP x =,则可得224BPx ,43DPx ,453DF,利用1122BDPS DP BO BP DF ,即可求出OP 的长,利用路程公式可求得t 的值。

【详解】解:(1)∵()4,0-A ,()0,4B ,四边形ABCO 为平行四边形, ∴点C 坐标为(4,4),又∵P 为x 轴上一动点,点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,P 点运动时间为t ,∴P 点坐标为(43t ,0), (2)∵B ,D 的坐标分别为:()0,4B ,4,03D ⎛⎫- ⎪⎝⎭, ∴4OB =,43OD =, 由勾股定理有:22224441033DB OBOD, 当BDP ∆为等腰三角形时, ①如图所示,当BDBP 时,OD OP =,∴P 点坐标为(43,0), ∴1t =②如图所示,当BD DP =时,∵4103DB ,OP DP OD∴44410101333OP ,∴101t③如图所示,当BP DP =时,设P 点坐标为:(x ,0) 则有:2224BP x,2243DPx, ∴222443xx,解之得:163x = ∴P 点坐标为(163,0), ∴4t =综上所述,当t 为1,101-,4时,BDP ∆为等腰三角形;(3)答:存在t ,使得ABD OBP ∠=∠。

九年级数学上册易错题精选练习汇总(解析版)

九年级数学上册易错题精选练习汇总(解析版)

九年级数学上册易错题精选练习汇总一、选择题1.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则的正切值是A. 2B.C.D.2.如图,在中,,,垂足为D,AF平分,交CD于点E,交CB于点若,,则CE的长为A. B. C. D.3.如图,菱形OABC的一边OA在x轴的正半轴上,O是坐标原点,,反比例函数的图象经过点C,与AB交于点D,则的面积为A. 12B. 20C. 24D. 404.如图,在中,D、E分别是AB、BC上的点,且,若::4,则:A. 1:16B. 1:18C. 1:20D. 1:245.已知关于x的一元二次方程有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为A. 6B. 5C. 4D. 36.已知抛物线与x轴交于A,B两点,将这条抛物线的顶点记为C,连接AC,BC,则的值为A. B. C. D. 27.如图,的半径为3,四边形ABCD内接于,连接OB、OD,若,则的长为A.B.C.D.8.如图,AB是的直径,BT是的切线,若,,则阴影部分的面积是A. 2B.C. 1D.9.如图,在边长为6的菱形ABCD中,,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是A. B. C. D.10.若关于x的一元二次方程有两个相等的实数根,则实数a的值为A. B. 1 C. 或2 D. 或111.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是A. B.C. D.12.如图,在x轴的上方,直角∠绕原点O按顺时针方向旋转,若∠的两边分别与函数-,的图象交于B、A两点,则∠的值的变化趋势为:A. 逐渐变小B. 逐渐变大C. 时大时小D. 保持不变二、填空题13.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是____结果保留.14.如图,在中,,,,点F在边AC上,并且,点E为边BC上的动点,将沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是______.15.已知方程的两根恰好是的两条边的长,则的第三边长为______ .16.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于______.17.如图,一名滑雪运动员沿着倾斜角为的斜坡,从A滑行至B,已知米,则这名滑雪运动员的高度下降了______米.参考数据:,,18.在中,,,点D在边AB上,且,点E在边AC上,当______时,以A、D、E为顶点的三角形与相似.19.在中,,,,则______.20.已知关于x的方程的两根为和,则___,___.三、解答题21.用配方法解方程:.22.如图,在中,,以AB为直径的与边BC、AC分别交于D、E两点,过点D作,垂足为点F.求证:DF是的切线;若,,求DF的长.23.“为了安全,请勿超速”如图,一条公路建成通车,在某直线路段MN限速60千米小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知,,米,此车超速了吗?请说明理由.参考数据:,24.如图,已知AB是圆O的直径,弦,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.求证:;连接DF,若,,求圆O的直径的长度.25.如图,AE与BD交于点C,,且DM交AC于F,ME交BC于G求证:∽.26.如图,要设计一本画册的封面,封面长40cm,宽30cm,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度结果保留小数点后一位,参考数据:.27.如图,游客在点A处坐缆车出发,沿的路线可至山顶D处,假设AB和BD都是直线段,且,,,求DE的长.参考数据:,,28.如果关于x的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”例如,一元二次方程的两个根是2和4,则方程就是“倍根方程”.若一元二次方程是“倍根方程”,则______;若是“倍根方程”,求代数式的值;若关于x的一元二次方程是“倍根方程”,求a,b,c之间的关系.29.如图,四边形ABCD中,,AC平分,点P是AC延长线上一点,且.证明:;若AC与BD相交于点E,,CE::3,求AE的长.30.列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?31.如图,和均为等腰直角三角形,且,,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角,线段BE与CD相交于点F求证:;连接BD,请你判断AC与BD有什么位置关系?并说明理由;设,的面积为S,求S与x之间的函数关系式.答案和解析1.【答案】D【解析】【分析】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.连接AC,根据勾股定理,可得AC、AB、BC的长,由勾股定理逆定理可得是直角三角形,根据正切函数的定义,可得答案.【解答】解:如图:,由勾股定理,得,,,为直角三角形,,故选D.2.【答案】A【解析】解:过点F作于点G,,,,,,平分,,,,平分,,,,,∽,,,,,,,,,解得:,即CE的长为.故选:A.根据三角形的内角和定理得出,,根据角平分线和对顶角相等得出,即可得出,再利用相似三角形的判定与性质得出答案.本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出.3.【答案】B【解析】【分析】本题考查了菱形的性质,反比例函数的性质,三角函数的定义,考查了菱形面积的计算,本题中求得菱形是解题的关键.易证菱形,再根据的值即可求得菱形的边长,即可求得点C的坐标,可得菱形的面积和结论.【解答】解:作,,,设,,,,,,由勾股定理得:,,菱形四边形OABC为菱形,,,,,同理,菱形,,菱形;故选B.4.【答案】C【解析】解:::4,设的面积为a,则的面积为4a,和的点D到BC的距离相等,,,,∽,::25,,:::20.故选:C.设的面积为a,表示出的面积为4a,根据等高的三角形的面积的比等于底边的比求出,然后求出和相似,根据相似三角形面积的比等于相似比的平方求出的面积,然后表示出的面积,再求出比值即可.本题考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用的面积表示出的面积是解题的关键.5.【答案】B【解析】解:,,,关于x的一元二次方程有实数根,.为正整数,且该方程的根都是整数,或3..故选:B.根据方程的系数结合根的判别式,即可得出,由m为正整数结合该方程的根都是整数,即可求出m的值,将其相加即可得出结论.本题考查了根的判别式以及一元二次方程的整数解,牢记“当时,方程有实数根”是解题的关键.6.【答案】D【解析】解:令,则,解得或1,不妨设,,,顶点,如图所示,作于D.在中,,故选:D.先求出A、B、C坐标,作于D,根据即可计算.本题考查二次函数与x轴交点坐标,锐角三角函数的定义,解题的关键是熟练掌握求抛物线与x轴交点坐标的方法,记住锐角三角函数的定义,属于中考常考题型.7.【答案】C【解析】解:四边形ABCD内接于,,,,,解得:,,的长;故选:C.由圆内接四边形的性质和圆周角定理求出,得出,再由弧长公式即可得出答案.本题考查了弧长公式、圆内接四边形的性质、圆周角定理;熟练掌握圆内接四边形的性质和圆周角定理,求出是解决问题的关键.8.【答案】C【解析】【分析】本题考查了切线的性质,等腰直角三角形的性质,解决本题的关键是利用等腰直角三角形的性质把阴影部分的面积转化为三角形的面积.设AT交于D,连结BD,先根据圆周角定理得到,则可判断、都是等腰直角三角形,所以,然后利用弓形AD的面积等于弓形BD的面积得到阴影部分的面积.【解答】解:是的切线.设AT交于D,连结BD,是的直径,,而,、都是等腰直角三角形,,弓形AD的面积等于弓形BD的面积,阴影部分的面积.故选C.9.【答案】A【解析】解:四边形ABCD是菱形,,,,是菱形的高,,,图中阴影部分的面积菱形ABCD的面积扇形DEFG的面积.故选:A.由菱形的性质得出,,由三角函数求出菱形的高DF,图中阴影部分的面积菱形ABCD的面积扇形DEFG的面积,根据面积公式计算即可.本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.10.【答案】A【解析】解:原方程可变形为.该方程有两个相等的实数根,,解得:.故选:A.将原方程变形为一般式,根据根的判别式即可得出关于a的一元二次方程,解之即可得出结论.本题考查了根的判别式,牢记“当时,方程有两个相等的实数根”是解题的关键.11.【答案】C【解析】【分析】本题考查了由实际问题抽象出一元二次方程,利用两块相同的矩形绿地面积之和为60米得出等式是解题关键设人行道的宽度为x米,根据矩形绿地的面积之和为60米,列出一元二次方程.【解答】解:设人行道的宽度为x米,根据题意得,,化简整理得,.故选C.12.【答案】D【解析】【分析】本题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.作辅助线;首先证明∽,得到;设,,得到,,,,进而得到,,此为解决问题的关键性结论;运用三角函数的定义证明知为定值,即可解决问题.【解答】解:如图,分别过点A、B作轴、轴;,,,,∽,;设,,则,,,,,;,;∽,,由知为定值,的大小不变.故选:D.13.【答案】【解析】【分析】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.根据阴扇形计算即可;【解答】解:,阴扇形故答案为.14.【答案】【解析】【分析】本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.延长FP交AB于M,当时,点P到AB的距离最小,利用∽,得到求出FM即可解决问题.【解答】解:如图,延长FP交AB于M,当时,点P到AB的距离最小.点P 在以F为圆心CF为半径的圆上,当时,点P到AB的距离最小,,∽,,,,,,,,,,点P到边AB距离的最小值是.故答案为.15.【答案】5或【解析】【分析】解方程可以求出两根,即直角三角形的两边,利用勾股定理就可以求出第三边.知道直角三角形的两边,要分第三边是斜边和直角边两种情况讨论.【解答】解:方程的两个根是3和也就是的两条边的长是3和4.当3和4都是直角边时,第三边.当4为斜边时,第三边故第三边长是5或.故答案为5或.16.【答案】【解析】解:由图形可知,圆心先向前走的长度,从O到的运动轨迹是一条直线,长度为圆的周长,然后沿着弧旋转圆的周长,则圆心O运动路径的长度为:,故答案为:.根据题意得出半圆在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可.本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度.17.【答案】280【解析】解:如图在中,,这名滑雪运动员的高度下降了280m.故答案为280如图在中,,可知这名滑雪运动员的高度下降了280m.本题考查解直角三角形、坡度坡角问题、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的定义,属于中考常考题型.18.【答案】或【解析】解:当时,,∽,此时;当时,,∽,此时;故答案为:或.若A,D,E为顶点的三角形与相似时,则或,分情况进行讨论后即可求出AE的长度.本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法,解题的关键是分两种情况进行讨论.19.【答案】【解析】解:,,.故答案为:.根据的正弦求出,再根据的正弦值求解即可.本题考查了特殊角的三角函数值,熟记、、角的三角函数值是解题的关键.20.【答案】4;3【解析】【分析】本题考查了根与系数的关系,根据根与系数的关系找出、是解题的关键.由根与系数的关系可得出关于p或q的一元一次方程,解之即可得出结论.【解答】解:关于x的方程的两根为和,,,,.故答案为4;3.21.【答案】解:方程变形得:,配方得:,即,开方得:,解得:,.【解析】方程整理后,利用完全平方公式变形,开方即可求出解.此题考查了解一元二次方程配方法,熟练掌握完全平方公式是解本题的关键.22.【答案】证明:如图,连接OD,作于点G,,,,又,,,,,,是的切线.解:,,,,,四边形OGFD为矩形,.【解析】证明:如图,连接OD,作于点G,推出;然后根据,,推出,即可推出DF是的切线.首先判断出:,然后判断出四边形OGFD为矩形,即可求出DF的值是多少.此题主要考查了切线的性质和应用,等腰三角形的性质和应用,以及解直角三角形的应用,要熟练掌握.23.【答案】解:此车没有超速.理由:过C作,,米,米,米,,米,,千米小时,,此车没有超速.【解析】根据题意结合锐角三角函数关系得出BH,CH,AB的长进而求出汽车的速度,进而得出答案.此题主要考查了勾股定理以及锐角三角函数关系的应用,得出AB的长是解题关键.24.【答案】证明:连接OF,则,如图所示.与相切,.,.,,.,.,,,,,.连接OC,如图2所示.,,.设,则,,,,,,,.设圆的半径为r,则,在中,,,,,,解得:,圆O的直径的长度为.【解析】连接OF,根据切线的性质结合四边形内角和为,即可得出,由三角形外角结合平行线的性质即可得出,再通过互余利用角的计算即可得出,由此即可证出;连接OC,由圆周角定理结合、,即可求出CH、AH 的长度,设圆的半径为r,则,根据勾股定理即可得出关于r的一元一次方程,解之即可得出r,再乘以2即可求出圆O直径的长度.本题考查了切线的性质、勾股定理、解直角三角形、圆周角定理以及解一元一次方程,解题的关键是:通过角的计算找出;利用解直角三角形求出CH、AH的长度.25.【答案】解:是的外角,,且∽【解析】由于是的外角,所以,又因为,所以,从而可证明∽本题考查相似三角形的判定,解题的关键是找出两对对应角相等,本题属于中等题型.26.【答案】解一:设上、下边衬宽均为4xcm,左、右边衬宽均为3xcm,则.整理,得,解之得,,舍去,答:上、下边衬宽均为,左、右边衬宽均为.解二:设中央矩形的长为4xcm,宽为3xcm,则,解得,舍去,上、下边衬宽为,左、右边衬宽均为,答:上、下边衬宽均为,左、右边衬宽均为.【解析】设上、下边衬宽均为4xcm,左、右边衬宽均为3xcm,根据封面的面积关系建立方程求出其解即可.本题考查了一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据矩形的面积公式建立方程是关键.27.【答案】解:在中,,,,在中,,,四边形BCEF是矩形,,.答:DE的长为579m.【解析】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.在中,求出BC,在中,求出DF,由四边形BCEF是矩形,可得,由此即可解决问题.28.【答案】;解方程得,,.方程两根是2倍关系,或4,当时,,即,代入代数式,当时,,即,代入代数式.综上所述,;根据“倍根方程”的概念设一元二次方程的两个根为t 和2t.原方程可以改写为,,.解得.,b,c之间的关系是.【解析】【分析】本题考查了根与系数的关系:若,是一元二次方程的两根时,,也考查了一元二次方程的解和解一元二次方程.由一元二次方程是“倍根方程”,得到,,即可得到结论;解方程得,,由方程两根是2倍关系,得到或43,代入解方程即可得到结论;根据“倍根方程”的概念得到原方程可以改写为,解方程即可得到结论.【解答】解:一元二次方程是“倍根方程”,,,即,,,故答案为2;见答案;见答案.29.【答案】证明:,AC平分,,,,,,,,;解:过点C作于点M,,,,,∽,,设,::3,,,,解得:,故AE.【解析】直接利用等腰三角形的性质结合互余的定义得出;首先过点C作于点M,进而得出∽,求出EC的长即可得出答案.此题主要考查了相似三角形的判定与性质以及等腰三角形的性质等知识,正确得出∽是解题关键.30.【答案】解:设销售单价为x元,由题意,得:,整理,得:,解得:,答:这种玩具的销售单价为460元时,厂家每天可获利润20000元.【解析】根据单件利润销售量总利润,列方程求解即可.本题主要考查一元二次方程的应用、一元二次方程的解法,理解题意找到题目蕴含的相等关系列出方程是解题的关键.31.【答案】证明:和均为等腰直角三角形,,,∽,;解:,理由:,,又,∽,,,,;解:如图所示:作于M,,和均为等腰直角三角形,,∽,,即,,,,,的面积.【解析】此题主要考查了相似形综合、平行线的判定方法以及相似三角形的判定与性质等知识直接利用相似三角形的判定方法得出∽,进而得出答案;首先得出∽,进而求出,即可得出AC与BD的位置关系;首先利用相似三角形的性质表示出BD,PM的长,进而表示出的面积.。

九年级数学上册 _ 月考易错题型专练:二次函数【存在性问题】

九年级数学上册 _ 月考易错题型专练:二次函数【存在性问题】

九年级数学上册| 月考易错题型二次函数【存在性问题】【一】如图,在平面直角坐标系中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于点A(﹣2,0)与点C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)直接写出B点的坐标;解:把A(﹣2,0)和C(8,0)代入y=ax2+bx﹣4,得4a-2b-4=0,64a+8b-4=0解得a=1/4,b=-3/2∴抛物线的解析式为y=1/4x2-3/2x﹣4;当x=0时,y=1/4x2-3/2x﹣4=﹣4,则B(0,﹣4)(2)求该二次函数的解析式;解:由(1)知,抛物线的解析式为y=1/4x2-3/2x﹣4(3)若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,AB.请问是否存在点P,使得△BDP的面积恰好等于△ADB的面积?若存在请求出此时点P的坐标,若不存在说明理由.解:存在.∵y=1/4x2-3/2x﹣4=1/4(x﹣3)2﹣25/4,∴抛物线的对称轴为直线x=3,∴D(3,0).由(1)知,B(0,﹣4).连接OP,如图,设P(m,1/4m2-3/2m﹣4)(0<m<8),∵S△PBD=S△POD+S△POB﹣S△BOD,S△ABD=1/2×5×4=10,而△BDP的面积恰好等于△ADB的面积,∴1/2×3×(-1/4m2+3/2m+4)+1/2×4×m-1/2×3×4=10,整理得3m2﹣34m+80=0,解得m1=10/3,m2=8(舍去),∴P点坐标为(10/3,-56/9).【二】如图,抛物线过A(1,0)、B(﹣3,0),C(0,﹣3)三点,直线AD交抛物线于点D,点D的横坐标为﹣2,点P (m,n)是线段AD上的动点,过点P的直线垂直于x轴,交抛物线于点Q.(1)求直线AD及抛物线的解析式;解:设抛物线的解析式为y=ax2+bx+c,将A(1,0),B(﹣3,0)C(0,﹣3)代入y=ax2+bx+c得:a+b+c=0;9a-3b+c=0;c=-3解得:a=1;b=2;c=-3;∴抛物线的解析式为:y=x2+2x﹣3,当x=﹣2时,y=(﹣2)2﹣4﹣3=﹣3,∴D(﹣2,﹣3),设直线AD的解析式为y=kx+b,将A(1,0),D(﹣2,﹣3)代入得:k+b=0,-2k+b=-3 解得:k=1,b=-1∴直线AD的解析式为y=x﹣1;因此直线AD的解析式为y=x﹣1,抛物线的解析式为:y=x2+2x﹣3.(2)求线段PQ的长度l与m的关系式,m为何值时,PQ最长?解:∵点P在直线AD上,Q抛物线上,P(m,n),∴n=m﹣1 Q(m,m2+2m﹣3)∴PQ的长l=(m﹣1)﹣(m2+2m﹣3)=﹣m2﹣m+2 (﹣2≤m≤1)∴当m=-(-1/-1×2)=1/2时,PQ的长l最大=﹣(-1/2)2﹣(-1/2)+2=9/4.∴线段PQ的长度l与m的关系式为:l=﹣m2﹣m+2 (﹣2≤m≤1)当m=-1/2时,PQ最长,最大值为9/4.(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P、Q、D、R为顶点的四边形是平行四边形?若存在,求出点R的坐标;若不存在,说明理由.解:①若PQ为平行四边形的一边,则R一定在直线x=﹣2上,如图:∵PQ的长为0<PQ≤9/4的整数,∴PQ=1或PQ=2,当PQ=1时,则DR=1,此时,在点D上方有R1(﹣2,﹣2),在点D下方有R2(﹣2,﹣4);当PQ=2时,则DR=2,此时,在点D上方有R3(﹣2,﹣1),在点D下方有R4(﹣2,﹣5);②若PQ为平行四边形的一条对角线,则PQ与DR互相平分,当PQ=1时,即:x﹣1﹣(x2+2x﹣3)=1,此时x不是整数,当PQ=2时,即x﹣1﹣(x2+2x﹣3)=2,此时x1=﹣1,x2=0;当x1=﹣1,R与点C重合,即R5(0,﹣3),当x2=0;此时R6(2,﹣1)综上所述,符合条件的点R有:R1(﹣2,﹣2),R2(﹣2,﹣4),R3(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣3),R6(2,﹣1).答:符合条件的点R共有6个,【三】如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,﹣1),图象与y轴交于点C(0,3),与x轴交于A、B 两点.(1)求抛物线的解析式;解:∵抛物线的顶点坐标为(2,﹣1),∴可设抛物线解析式为y=a(x﹣2)2﹣1(a≠0),把C(0,3)代入可得a(0﹣2)2﹣1=3,解得a=1,∴抛物线解析式为y=(x﹣2)2﹣1=x2﹣4x+3;(2)设抛物线对称轴与直线BC交于点D,连接AC、AD,点E为直线BC上的任意一点,过点E作x轴的垂线与抛物线交于点F,问是否存在点E使△DEF为直角三角形?若存在,求出点E坐标,若不存在,请说明理由.解:在y=x2﹣4x+3中,令y=0可得x2﹣4x+3=0,解得x=1或x=3,∴A(1,0),B(3,0),设直线BC解析式为y=kx+3,把B(3,0)代入得:3k+3=0,解得k=﹣1,∴直线BC解析式为y=﹣x+3,由(1)可知抛物线的对称轴为x=2,此时y=﹣2+3=1,∴D(2,1),∴AD2=2,AC2=10,CD2=8,∵AD2+CD2=AC2,∴∠ADC=90°,由题意知EF∥y轴,则∠FED=∠OCB≠90°,∴△DEF为直角三角形,分∠DFE=90°和∠EDF=90°两种情况,①当∠DFE=90°时,即DF∥x轴,则D、F的纵坐标相同,∴F点纵坐标为1,∵点F在抛物线上,∴x2﹣4x+3=1,解得x=2±√2,即点E的横坐标为2±√2,∵点E在直线BC上,∴当x=2+√2时,y=﹣x+3=1-√2,当x=2-√2时,y=﹣x+3=1,∴E点坐标为(2+√2,1-√2)或(2-√2,1+√2);②当∠EDF=90°时,且∠ADC=90°,∴点F在直线AD 上,∵A(1,0),D(2,1),∴直线AD解析式为y=x﹣1,∴直线AD与抛物线的交点即为F点,联立直线AD与抛物线解析式有x2﹣4x+3=x﹣1,解得x=1或x=4,当x=1时,y=﹣x+3=2,当x=4时,y=﹣x+3=﹣1,∴E点坐标为(1,2)或(4,﹣1),综上可知存在满足条件的点E,其坐标为(2+√2,1-√2)或(2-√2,1+√2)或(1,2)或(4,﹣1).。

数学九年级上册易错题

数学九年级上册易错题

数学九年级上册易错题一、选择题(1 - 10题)1. 一元二次方程x^2-2x - 3 = 0的根的情况是()- A. 有两个相等的实数根。

- B. 有两个不相等的实数根。

- C. 没有实数根。

- D. 无法确定。

- 解析:对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。

在方程x^2-2x - 3 = 0中,a = 1,b=-2,c=-3,则Δ=(-2)^2-4×1×(-3)=4 + 12=16>0。

当Δ>0时,方程有两个不相等的实数根,所以答案是B。

2. 若关于x的一元二次方程(m - 1)x^2+5x+m^2-3m + 2 = 0的常数项为0,则m的值等于()- A. 1.- B. 2.- C. 1或2。

- D. 0.- 解析:因为方程的常数项为0,所以m^2-3m + 2 = 0,即(m - 1)(m - 2)=0,解得m = 1或m = 2。

又因为方程是一元二次方程,二次项系数m - 1≠0,即m≠1,所以m = 2,答案是B。

3. 二次函数y = x^2-2x + 3的顶点坐标是()- A. (1,2)- B. (-1,2)- C. (1, - 2)- D. (-1,-2)- 解析:对于二次函数y=ax^2+bx + c(a≠0),其顶点坐标的横坐标x =-(b)/(2a),纵坐标y=frac{4ac - b^2}{4a}。

在y = x^2-2x + 3中,a = 1,b=-2,c = 3,x =-(-2)/(2×1)=1,y=frac{4×1×3-(-2)^2}{4×1}=(12 - 4)/(4)=2,所以顶点坐标是(1,2),答案是A。

4. 已知二次函数y = ax^2+bx + c(a≠0)的图象如图所示,则下列结论中正确的是()- A. a>0- B. c<0- C. 3是方程ax^2+bx + c = 0的一个根。

人教版九年级数学易错题收集整理+常见数学易错题精选

人教版九年级数学易错题收集整理+常见数学易错题精选

人教版九年级数学易错题收集整理+常见数学易错题精选人教版九年级数学易错题成长系列1、二次函数2y ax bx c =++图像如图所示,则下列结论正确的是( )A.20,0,0,40a b c b ac <<>-> B.20,0,0,40a b c b ac ><>-< C.20,0,0,40a b c b ac <><-> D.20,0,0,40a b c b ac <>>-> 如图,二次函数2y ax bx c =++的图像过(-1,1),(2,-1)两点,下列关于这个二次函数的叙述正确的是( )A. 当0x =时,y 的值大于1B. 当3x =时,y 的值小于0C. 当1x =时,y 的值大于1D. y 的最大值小于02、二次函数2y ax bx =+的图像如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为( )A. -3B. 3C. -5D. 94、设二次函数2y x bx c =++,当1x ≤时,总有0y ≥,当13x ≤≤时,总有0y ≤,那么c 的取值范围是 。

5、已知抛物线212y x bx =+经过点A (4,0)。

设点C (1,-3),请在抛物线的对称轴上确定一点D ,使得|AD-CD|的值最大,则D 的坐标为 。

6、已知:关于x 的方程2(13a)210ax x a --+-=(1)当a 取何值时,二次函数2(13a)21y ax x a =--+-的对称轴是x=-2? (2)求证:a 取任何实数时,方程2(13a)210ax x a --+-=总有根。

7、如图,抛物线254y ax x a =-+与x 轴相交于A 、B ,且过点C (5, 4)。

(1)求a 的值和该抛物线的顶点P 的坐标(2)请你设计一种平移方法,使平移之后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式。

中考数学易错100题(必考)及答案

中考数学易错100题(必考)及答案

中考数学易错100题(必考)1、在实数123.0,330tan ,60cos ,722,2121121112.0,,14.3,64,3,80032----Λπ中,无理数有( )A 、3个B 、4个C 、5个D 、6个2、下列运算正确的是( )A 、x 2 x 3 =x 6B 、x 2+x 2=2x 4C 、(-2x)2=4x 2 D 、(-2x)2 (-3x )3=6x 53、算式可化为( )A 、B 、C 、D 、4、“世界银行全球扶贫大会”于2004年5月26日在上海开幕.从会上获知,我国国民生产总值达到11.69万亿元,人民生活总体上达到小康水平,其中11.69万亿用科学记数法表示应为( )A 、11.69×1410B 、1410169.1⨯C 、1310169.1⨯ D 、14101169.0⨯ 5、不等式2)2(2-≤-x x 的非负整数解的个数为( )A 、1B 、2C 、3D 、46、不等式组⎩⎨⎧-≤-->x x x 28132的最小整数解是( )A 、-1B 、0C 、2D 、37、为适应国民经济持续协调的发展,自2004年4月18日起,全国铁路第五次提速,提速后,火车由天津到上海的时22222222+++422882162间缩短了7.42小时,若天津到上海的路程为1326千米,提速前火车的平均速度为x 千米/小时,提速后火车的平均速度为y 千米/时,则x 、y 应满足的关系式是( )A 、x – y =42.71326 B 、 y – x = 42.71326 C 、y x 13261326-= 7.42 D 、x y 13261326-= 7.428、一个自然数的算术平方根为a ,则与它相邻的下一个自然数的算术平方根为( )A 、1+aB 、 1+aC 、12+aD 、1+a9、设B A ,都是关于x 的5次多项式,则下列说法正确的是( )A 、B A +是关于x 的5次多项式 B 、B A -是关于x 的4次多项式C 、 AB 是关于x 的10次多项式D 、B A 是与x 无关的常数10、实数a,b 在数轴对应的点A 、B 表示如图,化简a a a b 244-++-||的结果为( )A 、22a b --B 、22+-b aC 、2-bD 、2+b11、某商品降价20%后出售,一段时间后恢复原价,则应在售价的基础上提高的百分数是 ( )A 、20%B 、25%C 、30% A BD 、35%12、某种出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加,加收2.4元(不足1km 按1km 计),某人乘这种车从甲地到乙地共支付车费19元,那么,他行程的最大值是( )A 、11 kmB 、8 kmC 、7 kmD 、5km13、在高速公路上,一辆长4米,速度为110千米/小时的轿车准备超越一辆长12米,速度为100千米/小时的卡车,则轿车从开始追及到超越卡车,需要花费的时间约是( )A 、1.6秒B 、4.32秒C 、5.76秒D 、345.6秒14、如果关于x 的一元二次方程0962=+-x kx 有两个不相等的实数根,那么k 的取值范围是( )A 、1<kB 、0≠kC 、1<k 且0≠kD 、1>k15、若a 2+ma +18在整数范围内可分解为两个一次因式的乘积,则整数m 不可能是( )A 、 ±9B 、±11C 、±12D 、±1916、在实数范围内把8422--x x 分解因式为( )A 、)1)(3(2+-x xB 、)51)(51(--+-x xC 、)51)(51(2--+-x xD 、)51)(51(2++-+x x 17、用换元法解方程x x x x +=++2221时,若设x 2+x=y, 则原方程可化为( ) A 、y 2+y+2=0 B 、y 2-y -2=0 C 、y 2-y+2=0D 、y 2+y -2=018、某商品经过两次降价,由每件100元降至81元,则平均每次降价的百分率为( )A 、8.5%B 、9%C 、9.5%D 、10%19、一列火车因事在途中耽误了5分钟,恢复行驶后速度增加5千米/时,这样行了30千米就将耽误的时间补了回来,若设原来的速度为x 千米/时,则所列方程为( )A 、30305560x x --= B 、30530560x x +-= C 、30305560x x -+= D 、303055x x -+= 20、已知关于x 的方程02=+-m mx x 的两根的平方和是3,则m的值是( )A 、1-B 、1C 、3D 、1-或321、如果关于x 的一元二次方程0)1(222=+--m x m x 的两个实数根为βα,,则βα+的取值范围是( )A 、1≥+βαB 、1≤+βαC 、21≥+βα D 、21≤+βα22、已知数轴上的点A 到原点的距离为2,那么在数轴上到A点的距离是3的点所表示的数有( )A 、1个B 、 2个C 、 3个D 、4个23、已知)0(1,≥+==a a y a x ,则y 和x 的关系是( ) A 、x y = B 、1+=x y C 、2x y = D 、)0(12≥+=x x y24、点A (2 ,-1)关于y 轴的对称点B 在( )A 、一象限B 、二象限C 、三象限D 、第四象限25、点P(x+1,x -1)不可能在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限26、已知函数式32+-=x y ,当自变量增加1时,函数值( )A 、增加 1B 、减少 1C 、增加 2D 、减少227、在平面直角坐标系内,A、B、C三点的坐标为(0,0) 、(4,0)、(3,2),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在( )A、第一象限 B、第二象限 C、第三象限 D、第四象限28、已知一元二次方程02=++c bx ax 有两个异号根,且负根的绝对值较大,则),(bc ab M 在( )A 、第一象限B 、第二象限C 、第三象限 D 、第四象限29、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡了一觉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学易错题代数第一章∶一元二次方程1、解方程1112-=+-x m x x 的过程中若会产生增根,则m=____2.关于x 的方程m 2x 2+(2m +1)x +1=0有两个不相等的根,求m 的取值范围__ 3,若关于x 的方程ax 2-2x +1=0有实根,那a 范围____4,已知方程3x 2-4x -2=0,则x 1-x 2=___,大根减小根为____ 5,以251+-和251--的一元二次方程是____6,若关于x 的方程(a+3)x 2-(a 2-a -6)x +a=0的两根互为相反数,则a=___7,已知a,b 为不相等的实数,且a 2-3a +1=0,b 2-3b+1=0则a b +ba=___8,方程ax 2+c=0(a ≠0)a,c 异号,则方程根为_____ 9,若方程3x 2+1=mx 的二次项为3x 2,则一次项系数为_____ 23,分解因式4x 2+8x +1=_____24,若方程2x 2+3x -5=0的两根为x 1 ,x 2 则x 12+x 22=_____ 25,方程组有两组相同的实数解,则k=___方程组的解为___43,若x 是锐角,cosA 是方程2x 2-5x +2=0的一个根,则∠A=___1、已知:Rt △ABC 中,∠C=900,斜边c 长为 5 ,两条直角边a,b 的长分别是x 2-(2m-1)x+4(m-1)=0的两根,则m 的值等于 ( ) A. –1 B. 4 C.-4或1 D. –1或4. 2、已知关于x 的方程012)32(2=+--x m x m 有两个不相等的实数根,则m 的范围是:( ) A .m<3 B. 233≠<m m 且 C. 0,233≠≠<m m m 且 D. 2330≠<≤m m 且 3、已知方程①01222=+-x x ,②041x =+-,③1122=++++x x x x ,④0x 12x =---,⑤01)12(2=-+++k x k x 其中一定有...实数解的方程有 A 、1个 B 、2个 C 、3个 D 、4个5、已知 ,012=-+m m 那么代数式2001223-+m m 的值是 ( ) (A)2000 (B)-2000 (C)2001 (D)-2001 6,下面解答正确的是( )A , 分式的值是零,x=-2或x=1B, 实数范围内分解因式2x 2+x -2=)4171)(4171(+-----x x C, x=-1是无理方程22-2x +7x =-x的根D, 代数式x 2+2x -1通过配方法知x=-1时,它有最小值是-27,关于x 的方程x 2-mx +n=0有一正一负的两实根,且负根绝对值较大,则( ) A , n >0, m <0 B,n>0, m >0, C, n<0 m>0 D,n <0 m<0 8,若x =-b+b 2+4ac 2a则有( )A ,ax 2+bx+c=0 B,ax 2+bx-c=0 C,ax 2-bx+c=0 D, ax 2-bx-c=09、在Rt △ABC 中,∠C=900,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )(A ) 23 (B )25(C ) 5 (D )220,已知关于x 的方程x 2+px +q=0的两根为x 1=-3 x 2=4,则二次三项式x 2-px +q=( ) A.(x +3)(x -4) B, (x -3)(x +4) C,(x +3)(x +4)D,(x -3)(x -4)三, 解答题1,甲乙二人合作一项工程,4天可完成,若先有甲单独做3天,剩下的由乙独做,则以所用的时间等于甲单独完成这项工程的时间,求甲乙二人单独完成此项工程各需几天?2,解方程mnx 2-(m 2+n 2)x +mn=0 (mn ≠0)3,在⊿ABC 中,∠A ∠B ∠C 的对边分别为a,b,c 且a,b 是关于x 的方程∶x 2-(c +4)x+4c +8=0的两根,若25asinA=9c,求⊿ABC 的面积第二章∶函数第一节∶平面直角坐标系22,平面直角坐标系中,点A (1-2a,a-2)位于第三象限且a 为整数,则点A 的坐标是_____10、已知点()2,1+-a a M 在第二象限,则a 的取值范围是( )(A )2->a (B )12<<-a (C )2-<a (D )1>a14、若点M (x -1,1-y )在第一象限,则点N (1-x ,y -1)关于x 轴的对称点在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限第二节∶函数 11、函数321+=x y 中,自变量x 的取值范围是____12、函数x x y -+=0的自变量的取值范围是_____1,锐角三角形ABC 内接于⊙O ,∠B=2∠C ,∠C 所对圆弧的度数为n ,则n 的取值范围是 ( )A, 0°<n <45° B, 0°<n <90° C, 30°<n <45° D,60°<n <90° 第三节∶一次函数15,当___时,函数y=(m +3)x2m +3+4x -5(x ≠0)是一个一次函数。

16,若直线y=kx+b 经过第一,三,四象限,则直线y=bx+k 过____象限 17.已知函数y=3x+1,当自变量x 增加h 时,函数值增加____19,下列图形中,表示一次函数y=mx+n 与正比例函数y=mnx.(m,n 是常数且mn ≠0)图像的是( )18,已知直线l 与直线y=2x+1的交点的横坐标是2,与直线y=-x+2的交点的纵坐标为1,求直线l 解析式为____19.已知y 与x 成正比例,若y 随x 增大而减小,且其图像过(3,-a )和(a,-1)两点则此解析式为_____20,直线y=ax-3与y=bx+4交于x 轴上同一点,则a ∶b=____21,若一次函数y 1=(m 2-4)x +1-m 与一次函数y 2=(m 2-2)x +m 2-3的图像与y 轴交点的纵坐标互为相反数,则m=____11.不论m 何实数,直线m x y 2+=与4+-=x y 的交点不可能在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 17,对于不同的k 值,函数y=kx+4(k ≠0)时不同直线,则这些直线一定( )A, 互相平行 B, 相交于一点 C, 有无数个交点 D, k >0交于一点,k<0交于另一点11,一次函数y=kx+b 的图像经过点(m,-1)(1,m ),其中m <-1,则k,b 满足的条件( )A,k <0,b <0 B,k >0,b >0 C,k <0,b >0 D,k >0,b <0 第四节∶二次函数1,二次函数的一般形式是_____,它的解为_____13、抛物线c bx x y ++=2与y 轴交于点A ,与x 轴的正半轴交于B 、C 点,且BC=2,3=∆ABC S ,则b=_____14、若抛物线22)1(2++--=k kx x k y 与x 轴有交点,则k 的取值范围是___。

16,已知等腰三角形ABC 周长为20,则底边y 与腰长x 的函数关系式是______自变量的取值范围是_____11,抛物线y=x 2+(m-4)x -4m ,若顶点在y 轴上,则m=___若顶点在x 轴上,则m=___11,若二次函数y=mx 2-(m -2)x -1的图像与x 轴交于点A (a,0)B (b,0)且a+b=ab 则m =____12,用30厘米的铁丝围成的矩形最大面积可以达到____厘米12,如图,用12米长的木方,作一个有一条横档的矩形窗子,为使透 进的光线最多,应选窗子的长宽各为___米11,抛物线y=x 2+11x -2m 于x 轴交于(x 1,0)(x 2,0),已知x 1x 2=x 1+x 2-15,要是次抛物线经过原点,应将它向__平移___个单位。

12,函数y=-2(x +3)2+2的对称轴是___,于x 轴的交点为___,于y 轴的交点为___11,已知函数y=-21x +2,当-1<x ≤1时,y 的取值范围( )2523,2523,2523,2325,≤<<≤-<≤≤<-y D y C y B y A13,已知抛物线y=ax 2+bx,当a >0,b <0时,它的图像过( )A,一,二,三,象限 B,一,二,四象限 C,一,三,四象限 D ,一,二,三,四象限 13,不论x 为何值,函数y=ax 2+b x +c (a ≠0)的值小于0的条件是 ( )A,a <0 ⊿<0 B,a >0 ⊿<0 C,a <0 ⊿>0 D,a >0 ⊿<0 16、下列四个函数:①2y x =;②2y x=-;③32y x =-;④22(0)y x x x =+≥;⑤)0(1<-=x xy ;⑥)0(2<=x x y 。

其中,在自变量的允许值范围内,y 随x 的减小而减小的函数个数为( )A 、1B 、2C 、3D 、4 18、下列四个函数中,y 的值随着x 值的增大而减小的是( ) (A )x y 2=(B )()01>=x xy (C )1+=x y (D )()02>=x x y第五节∶反比例函数1,已知反比例函数的图像经过点(a,b ),则它的图像一定经过( ) A,(-a,b ) B,(a,-b) C,(-a,b) D,(0,0) 2,下列函数中,反比例函数是( )A,x(y-1)=1 B,11+=x y C,y=1/x 2 D,y=1/3x3,若y 与-3x 成反比例,x 与z4成正比例,则y 是z 的( )A,正比例函数 B,反比例函数 C,一次函数 D,不确定第三章∶统计初步2,已知一组数据x 1,x 2,x 3,x 4的平均数是2,方差是1,则另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数和方差分别是____2,对60名学生的测量身高,落在167.5~170.5cm 之间的频率是0.3,未落在这个区间的学生人数是____人。

21,下列语句正确的是( )A,四个班的平均成绩分别是a,b,c,d,则这四个班的总体评剧成绩为4dc b a +++B, 方差都为正数 C,标准差都为正数 D,众数,中位数,平均数有可能一样几何第一章∶三角函数1、在Rt △ABC 中,∠C=90°,tanA+2cotA=3,AC=23,则AB=____ 2,sinA=23,求cos 2A =___6,sin 221°39′+sin 2α=1,α=___7,(1+sin45°-cos30°)(1-sin45°-cos30°)=___ 29,cos 231°-2sin59°+1=__________30,若A 是锐角,且sinA=53则tanA=_____31,比较大小∶ sin α____tan α (α为锐角) 32,在⊿ABC 中,a=2b=332c,则tanC=____33,利用正切和余切的倒数关系消去公式1/cot38°21′中的分母为___ 36,计算 cos 21°+cos 22°+cos 23°+- - -+cos 288°+cos 289°=____ 37,在等腰Rt ⊿ABC 中,∠C=90°,AD 是中线,则∠DAC 的余弦值是____ 38,tan 230°+2sin60°+tan45°×sin90°-tan60°+cos 230°=____39,等腰⊿ABC 的腰长为2cm,面积为1cm 2,其顶角度数为_____ 41,tanA=2,AA A A c os si n c os si n -+=______42,已知sin α+cos α=3/2,则sin α×cos α=____1,一直角三角形的两边长为3,4,则较小角的正切值时( ) A ,3/4 B,4/3 C,3/4 或37 D ,以上答案都不对2、在△ABC 中,∠C =90°,△ABC 面积为5cm 2 ,斜边长为4cm ,则tanA +cotB 的值为( )(A)58 (B)516 (C)85 (D)1653,若α为锐角,sin α>cos30°,则α的取值范围( )A,0<α<30° B,30°<α<60° C,α>60° D,60°<α<90°第二章∶解直角三角形3.在高2m ,坡角为30°的楼梯表面铺地毯,地毯长度至少需___m4.在Rt ⊿ABC 中,∠ACB=90°,CD 为斜边上的高,BD =3,AD =16/3则sinA =_5.以坡面长为42米,水平宽为26米,则这个坡面的坡角为___第三章∶圆第一节∶圆的有关性质8、如图,锐角△ABC 中,以BC 为直径的半圆O 分别交AB ,AC 于D 、E 两点,且2:1:=∆DBCE ADE S S 四边形,则cosA=_____ 11,一弦分圆周为5∶7,此弦所对的圆周角为____12,在半径为5cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为_____15,⊙O 的半径为5cm 弦AB ∥CD ,AB=6cm,CD=8cm ,则两弦之间的距离为____16,已知,如图,∠P=40°, ==CD BCAB 则∠ACD=____ 27,已知A,B,C 三点在⊙0上,且∠A0B=1000,则∠C=____28,已知⊙0的半径为5cm,A 为线段OP 中点,当OP=6cm 时,点A 与⊙0的位置关系是________40,一直顶角A =50°的等腰⊿ABC 内接⊙0,D 为圆周上一点,则∠ADB 度数为___ 18,在⊿ABC 中,AB=AC=13cm ,BC=10cm,求⊿ABC 的外接圆半径R=____第二节∶直线与圆13,正⊿ABC 的边长为a,则它的高为___内切圆半径为___外接圆直径为___14,已知⊿ABC 中,∠C =90°,AC =9cm,BC =12cm ,以C 为圆心,AC 为半径作圆交BA 于D ,则AD 长为____17,圆中最大弦长为12,若直线与圆相交,设直线与圆心的距离为d ,则d 的取值范围____ 18,如图⊙O 是⊿ABC 的内切圆⊙0的切线DE 交AB 于D ,交AC 于E①若DE=6,BC=8,则四边形DBCE 的周长为____②若⊙O 的半径为6,OA=10,则⊿ADE 的周长为____19、已知P 是△ABC 的内心,O 是△ABC 的外心,若∠BPC=125°则∠BOC __20、如图,点P 是半径为5的⊙O 内一点,且OP=3,在过点P 的所有⊙O 的弦中,弦长为整数的弦的条数为_____21,AB 是⊙O 的弦,P 是AB 上的一点,AB=10cm ,PA=4cm ,OP=5cm 则⊙O 的半径为_______22,已知顶角A 等于50°的等腰三角形ABC 内接⊙O,D 为圆周上一点,则∠ADB 的度数为_____23,已知⊙0直径AB =22cm,AD=6cm,那麽弧CD 的度数为___24,已知⊙O 的半径为2cm ,弦AB 的长为23cm ,求这弦中点到这条弦所对的弧中点的距离为____2513.如图:△ABC 中∠C=90°,AC=3,BC=4,D 在边AB 上,以AD 为直径的半圆切BC 于E , 交AC 于F ,则BD = ______________.B CD B26,⊙O 中弦AB,CD 互相垂直,垂足为E ,AE=2,EB=6,ED=3,则⊙0半径为___ 34,PAB 为⊙O 的割线,PO 交⊙O 于C ,若⊙O 的半径为R ,PO=d ,则PA ×PB=( )A,2R -2d B,2R+2d C, d 2—R 2 D, R 2-d 2 35,如图,已知正方形ABCD ,以D 为圆心,以DA 为半径的圆与以AB 为直径的圆交于P,AP 的延长线交BC 于Q ,则CQ 与QB 的关系是( ) A, CQ=QB B, CQ >QB C, CQ <QB D, 无法确定4、如图,圆外切等腰梯形ABCD 的中位线EF= 15 cm ,那么等腰梯形ABCD 的周长等于 ( )(A )15 cm (B )20 cm (C )30 cm (D )60 cm 5.如图,在R t△A B C 中,∠C =90°,A C =4,BC =3,以BC 上一点O 为圆心作⊙O 与AC 、AB 都相切,又⊙O 与BC 的另一个交点为D ,则线段B D 的长为( )(A )1 (B ) (C ) (D )6、如图,已知⊙O 的直径AB 与弦CD 交于点F ,∠AFD =450,AB =2,则FC 2+FD 2=_______. A . 2 B.21 C. 1 D.不确定7.⊙O 的直径AB =5,弦BC =4,∠ABC 的平分线交半圆于点D ,延长AD 、BC 交于E ,则DCE ABCD S S :四的值为( )A 、9 B 、8 C 、7 D 、68、相交两圆的公共弦长为24cm,两圆的半径长分别为15cm 和20cm,则这两个圆的圆心距等于 ( )A .16cm B. 9cm 或16cm C. 25cm D.7cm 和25cm9.如果两圆心都在X 轴上,⊙O 1的圆心坐标为(7,0),半径为1;⊙O 2的圆心坐标为(X,0),半径为2,当2<X<4时,两圆的位置关系是( ) A.相交 B.相切 C.外离 D.内含10.在直角三角型ABC 中,∠C=60°,以AB 为直径的半圆交斜边BC 于D ,则△ACD 与△ABD 的面积之比为 ( ) A.1:2 B.1:3 C.2:3 D.3:411、使用直角钢尺检查某一工件是否恰好是半圆形的凹面,成半圆形的为合格,如图所示的四种情况中合格的是 ( )15.在⊙O 中,弦AB=2CD ,则( ) A ,>2CDABB,<2AB CDC,=2ABCDD,不能确定FAOCDB16、四边形ABCD 内接于圆,∠A 、∠B 、∠C 、∠D 的度数比依次可以是( ) (A )1:2:3:4 (B )6:7:8:9 (C )4:1:3:2 (D )4 :3:1:2 19,已知点P 到⊙0最大距离为a,最小距离为b(a>b)则此圆的半径为( ) 2,ba A + 2ab D, 2b -a 2b a C, 2b -a B ,或+21,如图,AB 为⊙0的一直径,它把⊙0分成上下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCP 的平分线交⊙0于点P ,当C 在上半圆(不包括A,B 两点)上移动时,则点P ( )A, 到CD 的距离保持不变 B,位置不变 C ,等分弧DB D,随C 移动而移动1.已知,如图直径AB ⊥CD ,弦AE ,CD 延长线交于F ,求证:AC ×EF=CE ×DF1,如图,BC 为直径,G 为半圆上任意点,A 为弧BG 中点,AP ⊥BC 于P ,求证AE=BE=EF2,如图,⊿ABC 中,AB=AC,BD 平分∠B 交AC 于D ,⊿ABD 的外接圆交AC 于E ,求证AD =EC4,如图等边三角形ABC 内接于圆,P 为BC 上任一点,AP 交BC 于D,求证∶PB 和PC 是方程x 2-PA ×x +PA ×PD=0的两根5,如图,从圆外一点P 作圆的一条切线PA ,A 为切点,过点PD OE F C B A PDC OBAODCB A作一直线与圆交于B ,C 两点,弦CD ∥AP ,PD 与圆交于E ,连结EB 并延长交AP 于M ,求证:AM=PM 6,已知PBD 是⊙0的割线,PA ,PC 是⊙0的切线,求证:①PA ×PB =PB ×AD ②AD 2/AB 2 =PD /PB7,P 是⊙0直径CB 延长线上一点,PA 切⊙0于A ,AD ⊥BC 于D ,若PA=10,PB=5,求sin ∠BAP 的值8,如图,BC 为⊙O 的直径,PA 切⊙0与A ,AB =15,∠P 的正弦值为3/5,求PC 的长9,已知,如图,⊿ABC 内接于⊙0,∠BAC 的平分线交BC 于D ,交⊙0于E ,⊙0的切线BF 交AE 延长线于F ,过E 作EH ⊥BF ,垂足为H ,求证:①BE 平分∠CBF ②BC =2BH ;③AD ×EF=CD ×BF10,已知,如图PA,PB 切⊙0于A,B 求证 ∠OPC=∠OCM11,已知Rt ⊿ABC ,以o 为圆心,OB 为半径的圆交AB 于E ,且AC 于D ,延长ED ,BC 交于F ,求证:BC=CF第三节∶圆与圆9、直径分别为12和4的两个圆的圆心距是8,则这两个圆共有__条公切线。

相关文档
最新文档